Dissertations / Theses on the topic 'Nanotubes of carbon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Nanotubes of carbon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Brunner, Eric W. "Bioapplications of carbon nanotubes and carbon nanotube assemblies." Thesis, University of Surrey, 2010. http://epubs.surrey.ac.uk/2858/.
Full textPach, Elzbieta. "Electron microscopy studies on functional carbon nanotubes." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/456581.
Full textThe present PhD thesis focuses on the thorough study of functional carbon nanotubes by means of electron microscopy techniques. Functional carbon nanotubes (CNTs) are attracting an increased attention due to their potential use for biomedical applications, including in vivo imaging, tumour targeting and drug delivery systems. An intrinsic advantage of carbon nanotubes is that their inner cavity can be filled with a chosen payload whilst the outer surface can be modified to improve their dispersability and biocompatibility. Being the envisaged application in the biomedical field, a detailed characterization of the samples in all the steps of the preparation process (namely purification, shortening, filling and external functionalization) is mandatory. To achieve this goal, in this PhD thesis we have employed already established analysis including high resolution transmission electron microscopy to study the structure of the filling material, or energy dispersive X-ray spectroscopy to assess their composition, but also we have explored the use of other techniques to expand the possibilities of characterization of the samples. In this sense, we have optimized the conditions for the study of the lengths of as-purified single-walled CNTs by surface sensitive high resolution scanning electron microscopy (HRSEM). Besides, low voltage scanning transmission electron microscopy (STEM) has been demonstrated as a time-efficient technique for assessment of filling yield and purity. Indeed, the combination of high spatial resolution and low voltage operation of this technique has made it particularly suitable for the study of the interaction of functional carbon nanotubes with biological samples such as cells. Some of the employed compounds with interest for biomedical applications have a layered structure in their bulk form. Layered materials are known to form monolayers which may exert enhanced or novel properties due to the confinement effects. CNTs may act as templates to guide those layered materials to form single-layered nanotubes. This is the case of lutetium halides and lead iodide. In this PhD thesis we have succeeded in the formation of lutetium halide subnanometer-sized nanotubes, and proved their tubular nature by aberration corrected STEM and image simulations. Additionally, the high yield growth of PbI2 nanotubes on the exterior of CNTs has been achieved. Thanks to aberration corrected HAADF STEM and electron tomography, the structure of the hybrids has been revealed. Remarkably, the optical properties of the hybrids differ from those of the bulk PbI2. The blue shift observed by photoluminescence has been further confirmed by cathodoluminescence STEM analysis detected on individual PbI2-CNT hybrids. In conclusion, during this PhD project the range of electron microscopy techniques used for the study of functional CNTs has been expanded to get a thorough characterisation of the samples.
Fifield, Leonard S. "Functional materials based on carbon nanotubes : carbon nanotube actuators and noncovalent carbon nanotube modification /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/11560.
Full textMaestro, Luis Fernando. "Aperfeiçoamentos na obtenção de nanotubos de carbono com paredes simples (NTCPS) e possíveis aplicações na estocagem de energia." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277457.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-04T03:18:18Z (GMT). No. of bitstreams: 1 Maestro_LuisFernando_M.pdf: 1958027 bytes, checksum: cb56dc89c2faea48a95f3fa1350d5666 (MD5) Previous issue date: 2005
Resumo: Desde a sua descoberta em 1991, os Nanotubos de Carbono (NTC) têm atraído muito a atenção da comunidade científica, devido as suas propriedades. Neste trabalho é apresentada uma breve revisão das pesquisas em NTC e algumas definições básicas relevantes para a sua estrutura e propriedades. Em vista da utilização deste material em uma futura aplicação e devido ao interesse do grupo na área de energia, é apresentado o estado da arte do armazenamento de Hidrogênio e, em particular, no armazenamento em sólidos de grande área superficial, classe a qual os NTC pertencem. Apresentam-se as modificações realizadas em um Reator de Arco Elétrico (Forar II) para se realizar a Síntese de NTC, são relatadas as experiências e a caracterização das amostras obtidas utilizando-se Microscopia Eletrônica de Varredura e Espectroscopia Raman.
Abstract: Since their discovery in 1991 Carbon Nanotubes (CNT) have received increasing attention by the scientific community due to their properties. Here is presented a brief review of ongoing CNT research, and basic definitions useful to understand their structure and significant properties. Because of future applications in the energy area, are presented developments in Hydrogen storage, more specifically its adsorption in solids with large internal surface areas, a characteristic of CNT materials. Modifications of the existing FORAR II to obtain CNT by the electric arc method are presented, and a description of the routines employed to obtain CNT. The characterization of catalysts and CNT by Scanning Electron Microscopy and Raman Spectroscopy are presented and discussed.
Mestrado
Física da Matéria Condensada
Mestre em Física
Martinčić, Markus. "Encapsulation of inorganic payloads into carbon nanotubes with potential application in therapy and diagnosis." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/458136.
Full textCarbon nanotubes present a relatively novel group of materials with potential application in different scientific fields. The scope of this Thesis is to benefit from their inner cavities to encapsulate biomedically relevant payloads. Carbon nanotubes allow the confinement of selected materials within their walls, preventing their leakage and, as a consequence, undesired effects of such materials to the surrounding media. This makes filled carbon nanotubes very elegant vectors for the diagnosis and therapy of diseases. The process used to purify samples of carbon nanotubes proved to be a valuable asset, not only in the reduction of impurities which might cause cytotoxicity, but also for shortening the length of nanotubes. Thermogravimetric analysis is a widely-used technique in evaluating the purity of carbon nanotube samples. The role of different parameters that control the analysis has been investigated to assure that the most appropriate and representative results are obtained. The purification process has also been readjusted to assure the presence of the lowest amount of catalyst possible in the carbon nanotube samples with the employed purification strategy. We have also introduced a simple UV-Vis spectrophotometric assertion of the catalyst content in samples of nanotubes in a precise and reliable manner. The preparation of dry samarium(III) chloride from samarium(III) oxide was investigated, together with the nanotube filling-ability of the prepared material, of interest for the development of radiotracers. Bulk filling of carbon nanotubes results in samples that contain a large amount of external, non-encapsulated material, which can compromise the performance of the material in the biological context. We have developed a protocol to monitor the removal of the non-encapsulated material by means of UV-Vis, which in turn allows improving the washing procedure. The usage of multi-walled carbon nanotubes has some benefits over their single-walled counterparts, due to the presence of a bigger cavity which can host more material. The spontaneous closure of the tips of multi-walled carbon nanotubes by thermal annealing was investigated at different temperatures, along with the encapsulation of different materials. The prepared filled multi-walled samples were tested in-vitro to assess cytotoxicity and cellular uptake of the developed nanosystems.
Amanatidis, Ilias. "Carbon Nanotubes and Carbon Nanomotors." Thesis, Lancaster University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.524723.
Full textDurán, Valdeiglesias Elena. "Study of optical and optoelectronic devices based on carbon nanotubes." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS100/document.
Full textSilicon photonics is widely recognized as an enabling technology for next generation optical interconnects. Nevertheless, silicon photonics has to address some important challenges. Si cannot provide efficient light emission or detection in telecommunication wavelength range (1.3μm-1.5μm). Thus sources and detectors are implemented with Ge and III-V compounds. This multi-material approach complicates device fabrication, offsetting the low-cost of Si photonics. Nanomaterials are a promising alternative route for the implementation of faster, cheaper, and smaller transceivers for datacom applications.This thesis is dedicated to the development of active silicon photonics devices based on single wall carbon nanotubes (SWCNTs). The main goal is to implement the basic building blocks that will pave the route towards a new Si photonics technology where all active devices are implemented with the same technological process based on a low-cost carbon-based material, i.e. SWCNT.Indeed, carbon nanotubes are an interesting solution for nanoelectronics, where they provide high-performance transistors. Semiconducting SWCNT exhibit a direct bandgap that can be tuned all along the near infrared wavelength range just by choosing the right tube diameter. s-SWCNTs provide room-temperature photo- and electro- luminescence and have been demonstrated to yield intrinsic gain, making them an appealing material for the implementation of sources. SWCNTs also present various absorption bands, allowing the realization of photodetectors.The first objective of this thesis was the optimization of the purity of s-SWCNT solutions. A polymer-sorting technique has been developed and optimized, yielding high-purity s-SWCNT solutions. Based on this technique, several solutions have been obtained yielding emission between 1µm and 1.6µm wavelengths.The second objective was the demonstration of efficient interaction of s-SWCNT with silicon photonics structures. Different geometries have been theoretically and experimentally studied, aiming at maximizing the interaction of s-SWCNT with optical modes, exploiting the electric field component transversal to light propagation. An alternative approach to maximize the interaction of s-SWCNT and the longitudinal electric field component of waveguide modes was proposed. Both, a power emission threshold and a linewidth narrowing were observed in several micro disk resonators. These results are a very promising first step to go towards the demonstration of an integrated laser based on CNTs.The third objective was to study optoelectronic SWCNT devices. More specifically, on-chip light emitting diode (LED) and photodetector have been developed, allowing the demonstration of the first optoelectronic link based on s-SWCNT. s-SWCNT-based LED and photodetector were integrated onto a silicon nitride waveguide connecting them and forming an optical link. First photodetectors exhibited a responsivity of 0.1 mA/W, while the complete link yielded photocurrents of 1 nA/V.The last objective of the thesis was to explore the nonlinear properties of s-SWCNT integrated on silicon nitride waveguides. Here, it has been experimentally shown, for the first time, that by choosing the proper s-SWCNT chirality, the sign of the nonlinear Kerr coefficient of hybrid waveguide can be positive or negative. This unique tuning capability opens a new degree of freedom to control nonlinear effects on chip, enabling to compensate or enhancing nonlinear effects for different applications
Casanova, Cháfer Juan. "Gas Sensing with Modified Carbon Nanotubes, Graphene and Diamondoids." Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/669791.
Full textEsta tesis está centrada en el desarrollo de distintos sensores de gases mediante la modificación de nanomateriales de carbono. Concretamente, a lo largo de este trabajo se han modificado nanotubos de carbono (CNT), grafeno y nanodiamantes, con distintas aproximaciones. Por ejemplo, se ha procedido a su decoración con nanopartículas de óxidos metálicos, la formación de monocapas autoensambladas o su funcionalización con distintas moléculas o átomos, entre otras estrategias. A pesar de las extraordinarias propiedades electrónicas, físico-químicas y mecánicas de los nanomateriales de carbono, todavía no se han podido desarrollar sensores a nivel comercial basados en su uso. Esto es debido a sus problemas intrínsecos en la detección de moléculas gaseosas, como por ejemplo su baja especificidad y limitada reactividad. Por tanto, en esta tesis se han desarrollado diversos sensores modificando los nanomateriales de carbono con la finalidad de mejorar parámetros clave en la monitorización de gases, como puede ser la selectividad, sensibilidad y tiempos de respuesta. Además, se ha llevado a cabo una exhaustiva caracterización de los nuevos nanomateriales desarrollados mediante técnicas espectroscópicas y microscópicas. Asimismo, se han propuesto detallados mecanismos de detección, es decir, se han estudiado las interacciones físico-químicas entre los nanomateriales y los gases. Por tanto, este trabajo ofrece una visión integral para el desarrollo de nuevos sensores, desde su diseño y caracterización, hasta sus principios de funcionamiento a nivel atómico. Además, considerando las inquietudes de nuestra sociedad, los sensores desarrollados suelen trabajar a temperatura ambiente, con la consiguiente drástica reducción del consumo energético. Como conclusión, los nanomateriales de carbono desarrollados son capaces de detectar gases tóxicos, como por ejemplo el dióxido de nitrógeno, a concentraciones traza, muy por debajo de los límites establecidos por la legislación.
This thesis focuses in the development of different gas sensors through the modification of carbon nanomaterials. In particular, we employed carbon nanotubes (CNT), graphene and diamondoids, with different approaches. For instance, these nanomaterials were either decorated with metal oxide nanoparticles, modified of self-assembled monolayers of thiols or functionalized with different molecules or atoms, among other strategies. Despite the outstanding properties of carbon nanomaterials, such as their electronic, physicochemical and mechanical properties, it has not been possible so far to develop commercial sensors based on these nanomaterials. The main reason is derived from their inherent problems in the gas molecule detection process, such as low specificity and limited reactivity. Thus, we developed new gas sensors by modifying carbon nanomaterials to improve essential gas sensing parameters, such as selectivity, sensitivity and response time. Furthermore, an exhaustive material characterization was carried out through spectroscopic and microscopic techniques. Also, detailed gas sensing mechanisms were proposed, ergo, the physicochemical interactions between nanomaterials and gases were studied. In consequence, this thesis provides a comprehensive vision for the development of new gas sensors employing carbon nanomaterials, from their design and characterization to their working principles at to the atomic scale. In consideration of the social concerns, the sensors developed usually work at room temperature. Therefore, the device power-consumption was drastically reduced. In summary, the modified carbon nanomaterials employed in this thesis can detect harmful gases, such as nitrogen dioxide, at trace concentration, even at lower levels than those established by law as threshold limit values.
Willey, Anthony D. "Thin Films of Carbon Nanotubes and Nanotube/Polymer Composites." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3540.
Full textSippel-Oakley, Jennifer A. "Charge induced actuation in carbon nanotubes and resistance changes in carbon nanotube networks." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0010052.
Full textSattari, Andrea Poopak. "Field emission of carbon nanotubes and electroless silver deposition in carbon nanotubes, utilizing carbon nanotubes formed in porous aluminum oxide." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0004/MQ45626.pdf.
Full textVishnubhatla, Kapil Bharadwaj. "Catalyst Immobilization for Patterned Growth of Carbon Nanotubes." University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1282053821.
Full textAbraham, Jürgen. "Functionalization of carbon nanotubes." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=97712293X.
Full textKorneva, Guzeliya Gogotsi IU G. Schweitzer-Stenner Reinhard. "Functionalization of carbon nanotubes /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2797.
Full textSamsonidze, Georgii G. "Photophysics of carbon nanotubes." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/38921.
Full textIncludes bibliographical references (leaves 213-233).
This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in diameter exhibit dramatic changes in their electron and phonon dispersion relations due to the curvature of the nanotube sidewall and the enhanced electron correlation effects associated with one dimensionality. The optical transition energies in small-diameter carbon nanotubes show a strong dependence on their geometrical structure, as was first observed in the photoluminescence experiments. The frequencies of the Raman-active phonon modes also become very sensitive to the geometrical structure of small-diameter carbon nanotubes. In particular, certain phonon modes exhibit anomalous behavior that significantly affects resonance Raman spectra of small-diameter carbon nanotubes. We have developed the extended tight-binding and advanced force-constant models that properly take into account the curvature effects in the small-diameter limit. The many-body corrections are fitted to the photoluminescence and resonance Raman spectroscopy data.
(cont.) The resulting extended tight-binding model with semiempirical many-body corrections shows a good agreement with the experimental results. The electron-photon and electron-phonon transition matrix elements are calculated within the framework of the extended tight-binding model. Finally, the photoluminescence and Raman intensities in the graphene sheet and carbon nanotubes are calculated. The calculated intensities show a reasonable agreement with the experimental results and allow structural characterization of carbon nanotubes by their spectroscopic signatures.
by Georgii G. Samsonidze.
Ph.D.
Singh, Charanjeet. "Synthesis of carbon nanotubes." Thesis, University of Cambridge, 2002. https://www.repository.cam.ac.uk/handle/1810/272043.
Full textSandoval, Rojano Stefania. "Functionalization of carbon nanomaterials with nitrogen, halides and oxides." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/394000.
Full textGraphene and carbon nanotubes (CNTs) are of wide interest in materials science due to their outstanding properties. Several approaches allow modulating their properties further expanding their potential applications in many fields. This thesis reports on the functionalization of carbon nanomaterials with nitrogen, halides and oxides. The modification of the structure of multiwalled carbon nanotubes (MWCNTs) and graphene derivatives has been carried out through solid-gas and solid-liquid reactions. Different methods of functionalization, which include oxidation, nitrogen functionalization and doping, as well as endohedral and exohedral modifications have been employed for tuning the properties of the prepared nanostructures. A systematic study of the conditions of treatment and an extensive characterization has allowed the determination of the structural characteristics of the samples and the evaluation of some of their physical and chemical properties. In this thesis we propose a simple, efficient and reproducible method for the synthesis of nitrogen-containing reduced graphene oxide (RGO). The nature of the nitrogen atoms within the RGO lattice has been tuned by ammonolysis treatments of graphene oxide (GO) in the range of 25 ˚C-800 ˚C. The reported protocol allows the introduction of aliphatic moieties (N-functionalization) and structural nitrogen (N-doping). Additionally, the structural composition of the N-containing RGO has been modified by post-annealing the material under non-oxidizing atmospheres. High temperature treatments induce internal rearrangements, leading to samples with an enhanced thermal stability. On the other hand, endohedral and exohedral functionalization of MWCNTs with inorganic materials have been carried out. We report on the formation of single-layered inorganic nanotubes within the cavities of MWCNTs through a molten phase capillary wetting technique. We have optimized the conditions of the synthesis to enhance the growth of the single-layered nanotubes, while decreasing the formation of other nanostructures (nanoparticles, nanorods and nanosnakes). A new technique for the confinement and/or release of the filled substances within the hollow cavity of the CNTs has also been developed. We have explored the potential of fullerenes as corking agents and as promoting species for the release of guest structures. Finally, we have prepared MWCNTs decorated with reduced titanium oxides employing high temperature treatments. By oxidation of MWCNTs self-standing titania “nano-necklaces” are formed. The photocatalytic performance of the carbon supported materials overpasses that of the reference material titania P25.
Eberhardt, Oliver, and Thomas Wallmersperger. "Molecular mechanics methods for individual carbon nanotubes and nanotube assemblies." SPIE, 2015. https://tud.qucosa.de/id/qucosa%3A35032.
Full textKierkowicz, Magdalena. "Development of carbon nanocapsules for biomedical applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/458543.
Full textThe high surface area and hollow core of carbon nanotubes (CNTs) make them ideal candidates for the development of smart nanovectors in nanomedicine. Their inner cavity can be employed to host selected payloads for either diagnosis or therapeutic purposes while the external walls can be modified to increase their biocompatibility and even for targeting purposes. A major challenge to turn the potential of CNT based devices into customer applications is to reduce or eliminate their toxicity. Taking into account health and safety concerns, intensified research efforts are conducted to improve the biocompatibility of CNTs, including the development of new shortening and purification strategies. The first part of this thesis focused on the influence of steam on the length, purity, and sidewall integrity of chemical vapor deposition (CVD) and arc discharge single-walled carbon nanotubes (SWCNTs). In order to obtain individualized carbon nanotubes we developed a protocol that consisted of dispersing the samples in ortho-dichlorobenzene and employed scanning electron microscopy (SEM) to acquire the images. Short CVD CNTs with median length of ca. 200 nm can be obtained after 10 h of steam treatment, whereas arc discharged CNTs show low reactivity towards steam. The efficiency of other commonly employed shortening methods, namely ball milling, sulfuric/nitric acids, and piranha was also investigated for both SWCNT and multi-walled CNTs (MWCNTs) grown by CVD. A combination of piranha and steam turned out to be the most efficient for SWCNTs, and a combined sulfuric/nitric acids and steam for MWCNTs. These protocols provide a good balance between length distribution, sidewall integrity and purity of samples with a high yield of production. In the second part, we report on the encapsulation of selected metal halides, of interest for both imaging and therapy, inside CVD and arc discharge SWCNTs. The role of temperature on the degree of end-closing has been investigated, which has allowed the preparation of closed-ended metal halide filled CNTs. Bulk filling of carbon nanotubes results in samples that contain a large amount of non-encapsulated material, external to the carbon nanotubes, which can affect and even dominate the properties of filled carbon nanotubes. Therefore, we developed a straight forward approach that allows the removal of non-encapsulated compounds in a time efficient and environmentally friendly manner, using water as a “green” solvent in a Soxhlet setup, while minimizing the residual waste. The last part of the thesis describes the external modification of previously filled CNTs. SWCNTs have been covalently functionalized via Tour and Prato reactions, the former resulting in a higher degree of functionalization. To complete the study, lutetium chloride filled MWCNTs were externally decorated with gold nanoparticles. The developed hybrid nanocapsules hold potential to be employed as dual agents for diagnosis and therapy. To summarize, this thesis brings new insights in the preparation of carbon nanocapsules, i.e. close-ended filled carbon nanotubes with chosen payloads, for the development of the next generation of theranostic agents.
Yu, Zhixin. "Synthesis of Carbon Nanofibers and Carbon Nanotubes." Doctoral thesis, Norwegian University of Science and Technology, Department of Chemical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-508.
Full textCarbon nanofibers (CNFs) and carbon nanotubes (CNTs) have attracted intense research efforts with the expectation that these materials may have many unique properties and potential applications. The most promising way for large-scale synthesis of CNFs and CNTs is chemical vapor deposition (CVD).
CNFs were synthesized on a series of hydrotalcite (HT) derived 77 wt.% Ni-Fe/Al2O3 catalysts in order to achieve the optimization of productivity and quality. It was found that only the Fe catalyst was active in CO disproportionation and only the Ni catalyst was active in ethylene decomposition, whereas all catalysts were active in ethylene decomposition when the reactants were a mixture of C2H4/CO. More control over the structure and diameter of the CNFs has been realized with the HT catalysts. At the same time, a high yield can be obtained. The synthesis process has been further studied as a function of various process parameters. It turned out that high hydrogen concentration, space velocity, and reaction temperature would enhance the production of CNFs. However, a slightly lower quality was associated with the higher productivity. The optimum CNF yield of 128 gCNF/gcat could be reached within 8 h on the HT catalyst with a Ni/Fe ratio of 6:1. Therefore, HT derived catalysts present a new promising route to large-scale controlled synthesis of CNFs.
CNTs has been synthesized from CO disproportionation on Ni-Fe/Al2O3 supported catalysts with metal loadings of 20 and 40 wt.%. A high space velocity resulted in a high production rate but a short lifetime and a low carbon capacity. Increasing the metal loading to 40 wt.% significantly increased the reaction rate and productivity, and produced similarly uniform CNTs. Furthermore, H2 was found to be necessary for a high productivity, and the H2 partial pressure could be changed to adjust the orientation angle of the graphite sheets.
The effects of catalyst particle size and catalyst support on the CNT growth rate during CO disproportionation were studied over SiO2 and Al2O3 supported Fe catalysts with varying particle sizes. It was found that there was an optimum particle size at around 13-15 nm for the maximum growth rate, and the growth rate was influenced both by the particle size and the support but the particle size was the dominating factor. The trends have been demonstrated at two different synthesis temperatures of 600 and 650°C. The effect of gas precursors on the yield and structure of carbon growth has been systematically investigated over powder Fe and Fe/Al2O3 catalysts. CO/H2, CO, CH4, and C2H6/H2 were the gas precursors studied. The carbon yield was higher on powder Fe from CO, but the yield was higher on Fe/Al2O3 from hydrocarbons. Completely different or similar carbon nanostructures were synthesized, depending on the gas precursors. It was suggested that the reactivity of gas precursors and the structures of carbon deposits are determined by the size and crystallographic faces of the catalyst particles, which are dictated by the interactions among metal particles, support, and the reactants. Controlled synthesis of CNT, platelet nanofiber, fishbone-tubular nanofiber, and onion-like carbon with high selectivity and yield was realized. A mechanism was proposed to illustrate the growth of different carbon nanostructures.
Pereira, Aline Cristina [UNESP]. "Estudo da cinética de cura e das propriedades térmicas da resina benzoxazina e de seus compósitos nanoestruturados." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/94420.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
As resinas polibenzoxazinas constituem uma nova classe de resinas fenólicas termorrígidas que surgiram nas últimas décadas, superando as propriedades das tradicionais resinas epóxi e fenólicas aplicadas na indústria aeroespacial. A incorporação de baixa concentração em massa de nanotubo de carbono (NTC) em matrizes poliméricas pode produzir materiais estruturais com propriedades superiores. Nesse sentido, o presente trabalho tem como objetivo a preparação de compósitos nanoestruturados de resina benzoxazina/NTC, bem como o estudo da cinética de cura da resina benzoxazina e de seus compósitos nanoestruturados. Além disso, objetiva-se, ainda, a caracterização térmica da resina benzoxazina curada e de seus compósitos nanoestruturados também curados pelo mesmo ciclo de cura. O estudo da cinética de cura foi realizado por meio da técnica de calorimetria exploratória diferencial (DSC) sob condições não-isotérmicas (dinâmicas). A caracterização térmica foi realizada por meio do uso de termogravimetria, da análise dinâmico-mecânica, da análise termomecânica, do DSC e por análises de espectroscopia de infravermelho com transformada de Fourier e microscopia eletrônica de varredura. A partir destas análises, concluiu-se, de maneira geral, que os nanotubos de carbono agem como catalisadores da cura da matriz de benzoxazina sem afetar suas temperaturas iniciais e finais de polimerização. A adição de NTC não modifica a estabilidade térmica da resina benzoxazina e nem a temperatura de transição vítrea (Tg) dos compósitos nanoestruturados, com exceção da adição de 0,1% em massa de NTC na matriz polimérica que gera um aumento na Tg
Polibenzoxazine resins are a new class of thermosetting phenolic resins that have emerged in recent decades, overcoming the traditional properties of epoxy and phenolic resins applied in the aerospace industry. The addition of small amount of carbon nanotube in polymeric matrices can produce superior structural materials. Thus, this work aims to prepare nanostructured composite benzoxazine resin/NTC as well the study of the cure kinetic of neat benzoxazine resin and their nanostructured composites produced. Moreover, the objective is also the thermal characterization of cured neat benzoxazine resin and their composites nanostructured also cured by the same cure cycle. The study of cure kinetics was performed using the technique of differential scanning calorimetry (DSC) under non-isothermal (dynamic). The thermal characterization was performed by using thermogravimetry, dynamic mechanical analysis, thermomechanical analysis, DSC analysis and infrared spectroscopy with Fourier transformed and scanning electron microscopy. From these tests, it can be concluded, in general, that the carbon nanotubes act as catalysts for curing the benzoxazine matrix without affecting the initial and final temperatures of polymerization. The addition of CNT does not change neither the thermal stability of the benzoxazine resin nor the glass transition temperature (Tg) of nanostructured composites, except for the addition of 0.1 wt% of CNT in polymer matrix that generates a slight increase in Tg
Miranda, Reyes Cesar Alejandro. "Thermoelectric properties of carbon nanotube films." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289715.
Full textPRADHAN, NIHAR R. "Thermal Conductivity of Nanowires, Nanotubes and Polymer-Nanotube Composites." Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-dissertations/112.
Full textPantoja, Suárez Luis Fernando. "Carbon nanotubes grown on stainless steel for supercapacitor applications." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667708.
Full textLa capacidad de los seres humanos para estudiar, manipular y comprender la materia a escala nanométrica nos ha permitido desarrollar materiales que pueden combinar propiedades físicas, químicas, ópticas, magnéticas y mecánicas que los materiales a granel no poseen. Uno de los materiales que despertó el interés en el mundo de la Nanociencia y la Nanotecnología fueron los nanotubos de carbono (CNTs por sus siglas en inglés). Estas nanoestructuras ya habían sido reportadas hace más de cuarenta años, pero no es hasta principios de los años 90 que el Dr. Sumio Iijima logra producirlas en condiciones estables en su laboratorio. A partir de ese momento, los recursos dedicados a la investigación y producción de estos materiales basados en el carbono fueron en aumento. Aunque hoy en día no captan el mismo interés científico que hasta 2010, su importancia en el mundo científico y especialmente en el mercado es relevante. De hecho, ya que la tecnología para la producción de CNTs a escala industrial ha madurado, estos se encuentran en un gran número de aplicaciones, tales como en el refuerzo de polímeros, actuando como andamiajes para el crecimiento de tejidos artificiales, en la fabricación de tintas conductoras o como parte de los electrodos para baterías y de los supercondensadores de nueva generación. Es precisamente en esta última aplicación donde el interés científico se ha centrado con especial atención. Junto con otros materiales a base de carbono, como el grafeno, son excelentes materiales de soporte para materiales con alta capacitancia. Los grupos de investigación y las empresas de todo el mundo están invirtiendo muchos recursos en la obtención de electrodos que tienen una arquitectura tridimensional a nanoescala y cuya superficie específica es elevada. En ese sentido, el objetivo de este trabajo fue sintetizar CNTs sobre la superficie de un material flexible y conductor: el acero inoxidable 304. Nos centramos en la optimización de los procesos de crecimiento mediante el depósito químico en fase de vapor asistido por plasma (PECVD por sus siglas en inglés) y el depósito químico en fase de vapor asistido por agua (WACVD por sus siglas en inglés) con y sin la contribución de material de catalizador externo. Además, como se verá en el desarrollo de este trabajo, hubo un esfuerzo importante para entender los efectos que los procesos térmicos, necesarios para el crecimiento de CNTs, producen sobre las propiedades del acero. Especialmente la influencia en la resistencia a la corrosión, ya que el uso final de los CNTs en acero inoxidable es la fabricación de electrodos expuestos a ambientes corrosivos.
Parlapalli, Rohit. "Effect of twist on load transfer and tensile strength in carbon nanotube bundles." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1382372894.
Full textPapadopoulos, Christo. "Nanotube engineering and science, synthesis and properties of highly ordered carbon nanotube arrays and Y-junction carbon nanotubes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0018/MQ53443.pdf.
Full textMontalti, Massimo. "Spectroscopical investigation of carbon nanostructures : carbon nanotubes and carbon onions." Thesis, University of Newcastle Upon Tyne, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413968.
Full textZhu, Mingyao. "Carbon nanosheets and carbon nanotubes by RF PECVD." W&M ScholarWorks, 2006. https://scholarworks.wm.edu/etd/1539623509.
Full textChoi, Yongho. "Growth, fabrication, and characterization of carbon nanotubes, nanotube films, and nanowires." [Gainesville, Fla.] : University of Florida, 2008. http://purl.fcla.edu/fcla/etd/UFE0022789.
Full textYaghoobi, Parham. "Electron emission from carbon nanotubes." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/7112.
Full textGoh, Roland Ghim Siong. "Carbon nanotubes for organic electronics." Queensland University of Technology, 2008. http://eprints.qut.edu.au/20849/.
Full textPalser, Adam H. R. "Theoretical properties of carbon nanotubes." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365716.
Full textShi, Mingxing. "Mode transformation in carbon nanotubes." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500487.
Full textAndrews, Robert. "Carbon nanotubes : synthesis and functionalization." Thesis, University of Edinburgh, 2007. http://hdl.handle.net/1842/2395.
Full textSajjad, Muhammad Tariq. "Exciton dynamics in carbon nanotubes." Thesis, University of Surrey, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576127.
Full textHaque, M. S. "Gas sensors using carbon nanotubes." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603677.
Full textLonghurst, Matthew James. "Fluid interactions with carbon nanotubes." Thesis, Imperial College London, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486910.
Full textCullen, Sarah Louise. "Electron microscopy of carbon nanotubes." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387605.
Full textAitkaliyeva, Assel. "Irradiation Stability of Carbon Nanotubes." [College Station, Tex. : Texas A&M University, 2009. http://hdl.handle.net/1969.1/ETD-TAMU-2009-08-3251.
Full textRushfeldt, Scott I. "Sensor applications of carbon nanotubes." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33619.
Full textIncludes bibliographical references (leaves 47-49).
A search of published research on sensing mechanisms of carbon nanotubes was performed to identify applications in which carbon nanotubes might improve on current sensor technologies, in either offering improved performance, reduced cost of manufacture, or both. Using this overview of carbon nanotube-based sensors, specific sensor technologies that could benefit from the use of newly developed techniques for producing aligned and ordered bundles of carbon nanotubes were selected. Reports of chemical/gas, biological, optical, mechanical, and a few other sensor applications of carbon nanotubes are reviewed. Only a few of these applications might benefit from aligned and ordered bundles of carbon nanotubes. Of these potential applications, only applications in semiconducting gas sensors, DNA sensors, and infrared sensors appear to have clearly defined market niches and are sufficiently technologically mature to allow a detailed assessment of commercial potential. It is argued that DNA and infrared sensors have good commercial potential with a medium amount of risks, while gas sensors have a smaller potential. Finally, DNA sensors are believed to derive the most value from aligned and ordered bundles of carbon nanotubes.
by Scott I. Rushfeldt.
M.Eng.
Scardaci, Vittorio. "Carbon nanotubes for photonic devices." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612536.
Full textOei, Shu-Pei. "Novel applications of carbon nanotubes." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611680.
Full textMiners, Scott A. "Chemical reactions inside carbon nanotubes." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33062/.
Full textStoppiello, Craig Thomas. "Inorganic synthesis inside carbon nanotubes." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/41855/.
Full textZhang, Ru. "Spectroscopic Studies of Carbon Nanotubes." Ohio University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1196402233.
Full textJohnson, Aaron A. "Thermal Processing of Carbon Nanotubes." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1399629659.
Full textAbdallah, Banu. "Carbon nanotubes in cancer therapy." Thesis, University of Central Lancashire, 2013. http://clok.uclan.ac.uk/9658/.
Full textMotavas, Saloome. "Optical absorption in carbon nanotubes." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/50121.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Zhang, Qiuhong. "Carbon Nanotubes on Carbon Fibers: Synthesis, Structures and Properties." Dayton, Ohio : University of Dayton, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1272515887.
Full textTitle from PDF t.p. (viewed 06/23/10). Advisor: Liming Dai. Includes bibliographical references (p. 136-162). Available online via the OhioLINK ETD Center.
Gontijo, Régis Fernandes. "Aplicação de técnicas de planejamento experimental e de espectroscopia de absorção óptica ao estudo da dispersibilidade de nanotubos de carbno de parede única em solução aquosa de surfactantes." CNEN - Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 2011. http://www.bdtd.cdtn.br//tde_busca/arquivo.php?codArquivo=255.
Full textNeste trabalho os nanotubos de carbono de parede única (SWNTs, do inglês single-walled carbon nanotubes) sintetizados pelo método HiPco foram dispersados em solução aquosa de três surfactantes aniônicos: colato de sódio (NaC), dodecilbenzenosulfonato de sódio (NaDDBS) e dodecilsulfato de sódio (SDS). Foi empregado um procedimento de dispersão que consiste de uma uma etapa inicial de desagregação ultrassônica, seguida de uma etapa de centrifugação, para remoção do material não desagregado. A concentração inicial de SWNTs foi fixada em 0,25 mg⋅mL−1. Todas as amostras foram preparadas em duplicatas. Quatro variáveis foram investigadas simultaneamente: a concentração de surfactante, o tempo de sonificação, a aceleração centrípeta e o tempo de centrifugação. Foram aplicadas técnicas de planejamento estatístico de experimentos para compreender a influência simultânea destes fatores e como eles interagem entre si. Como variável de resposta foi utilizada a área das absorções ressonantes na região de 500 a 1000 nm. As medidas de espectroscopia de absorção óptica foram realizadas em quatro datas diferentes para avaliar a degradação das amostras ao longo do tempo. A microscopia eletrônica de transmissão foi utilizada para avaliar a qualidade e o estado de agregação de algumas dispersões em função das condições experimentais. Foi desenvolvido um algoritmo computacional para automatizar o tratamento dos dados. No primeiro passo os dados são processados por um filtro de ruído espectral que calcula as médias sobre valores de absorção óptica consecutivos. No passo seguinte as absorções ressonantes dos SWNTs são obtidas após a correção da linha de base típica de materiais grafíticos. No passo final, são calculadas as áreas espectrais e identificadas as posições de máximo das linhas espectrais. Os resultados mostraram que nas condições experimentais estudadas, os fatores tempo de sonificação, aceleração centrípeta e tempo de centrifugação foram significativos. Como esperado, verificou-se que o tempo de sonificação contribui para aumentar a concentração final dos nanotubos dispersos e que o aumento da aceleração centrípeta e do tempo de centrifugação contribui para reduzir a concentração final. Verificou-se que todas as interações entre as variáveis consideradas no planejamento experimental (AB+CD, AC+BD e AD+BC) influenciam na absorção óptica das dispersões, apesar de terem menor influência que os efeitos principais B, C e D. Através de um modelo de ajuste para as áreas totais, foi estimada a absorção óptica média na faixa de 500 a 1000 nm, em excelente concordância com os valores médios obtidos experimentalmente. Em relação à microscopia eletrônica de transmissão (MET), esta revelou a presença de feixes de nanotubos em todas as dispersões analisadas. Todavia, devido às limitações da técnica, não foi possível afirmar se esta estrutura agregada existe em solução ou foi formada durante a preparação da grade de microscopia. A análise por MET também revelou uma característica importante da amostra utilizada. Observou-se que estes nanotubos encontram-se altamente decorados com nanopartículas esféricas de ferro, cujos diâmetros são da ordem de 5 nm e que foram encontradas mesmo após condições rigorosas de centrifugação (120.000 g por 120 min). Isso evidencia a existência de uma forte interação entre as nanopartículas de Fe e os SWNTs nesta amostra.
In this work, HiPco single-walled carbon nanotubes (SWNTs) were dispersed in aqueous solutions of three anionic surfactants: Sodium cholate (NaC), sodium dodecylbenzenesulfonate (NaDDBS) and sodium dodecyl sulfate (SDS). The dispersion procedure employed consisted of an initial ultrasonic disaggregation step, followed by a centrifugation step for the removal of the non disaggregated material. The initial concentration of SWNTs was set at 0.25 mg⋅mL−1. All samples were prepared in duplicate. Four variables were investigated simultaneously: the surfactant concentration, the sonication time, the centripetal acceleration, and the centrifugation time. Experimental design techniques were employed to evaluate the simultaneous influence and interaction of the factors. The response variable used was the area of the resonant absorptions ranging from 500 nm to 1,000 nm. Optical absorption measurements were performed at four different dates to evaluate the degradation of the samples over time. Transmission electron microscopy was used to evaluate the quality and the state of aggregation of some dispersions as a function of the experimental conditions. A computer algorithm was developed for the automatic data processing. In the first step the data were processed with a spectral noise filter that calculated the average of consecutive absorption values. In the next step, with the help of a hyperbolic baseline, the resonant absorptions of the SWNTs were obtained after correction of the typical baseline of graphitic materials. In the last step, the area above the baseline, or the specific area - AE, the total area - AT , and the ratio of the two (the percent area) Apct were calculated. The algorithm also allowed the identification of maximum absorption peak positions. The results shows that in the experimental conditions investigated, the factors sonication time, centripetal acceleration, and centrifugation time were significant. As expected, it was observed that the sonication time contributes to increase the final concentration of the dispersed nanotubes and that the increase in the centripetal acceleration and in the centrifugation time contributes to reduce the final concentration. However, its contribution was insignificant for NaC and little important for NaDDBS. All the interactions considered in the experimental design (AB+CD, AC+BD, and AD+BC) influenced the optical absorption of the nanotube dispersions, despite their smaller influence in relation to the main effects B, C, and D. The average optical absorption in the range from 500 nm to 1,000 nm was estimated using a fitting model for the total areas, giving excellent agreement with the average values obtained from the experimental data. Transmission electron microscopy (TEM) analysis revealed the presence of nanotube bundles in the dispersions analyzed. However, due to technical limitations, it is not possible to state whether this aggregate structure existed in solution or whether it was formed during the preparation of microscopy grids. The TEM analysis also revealed an important characteristic of the samples studied. These HiPco SWNTs are highly decorated with spherical iron nanoparticles with diameter in the order of 5 nm, which were also observed even after rigorous ultracentrifugation (120,000g for 120 min), making it clear that there is a strong interaction between Fe nanoparticles and SWNTs in this sample.