Academic literature on the topic 'Natural fiber'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Natural fiber.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Natural fiber"

1

Zaleha, M., M. Shahruddin, and I. Maizlinda Izwana. "A Review on the Mechanical and Physical Properties of Natural Fiber Composites." Applied Mechanics and Materials 229-231 (November 2012): 276–81. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.276.

Full text
Abstract:
Research on the use of natural fibers as replacement to man-made fibre in fiber reinforced composites have received more interest and opened up further industrial possibilities. Natural fibre presents many advantages compared to synthetic fibers which make them attractive as reinforcements in composite material. They come from abundant and renewable resources, which ensures a continuous fibre supply and a significant material cost saving to the plastics, automotive and packaging industries. The paper reviews the previous and current research works published in the field of natural fiber reinforced composite material with special reference in mechanical properties of the natural fiber reinforced composite.
APA, Harvard, Vancouver, ISO, and other styles
2

Parasakthibala, Ms G., and Mrs A. S. Monisha. "A Review on Natural Fibers; Its Properties and Application Over Synthetic Fibers." International Journal for Research in Applied Science and Engineering Technology 10, no. 8 (August 31, 2022): 1894–97. http://dx.doi.org/10.22214/ijraset.2022.46530.

Full text
Abstract:
Abstract: Fibre is a long, thin strand or thread of material made by weaving or knitting threads together. Fibre is a hair like strand of material. A fibre is the smallest visible unit of any textile product. Fibres are flexible and may be spun into yarn and made into fabric. Natural fibres are taken from animals, vegetables or mineral sources. A few examples of widely used natural fibres include animal fibre such as wool and silk vegetables fibres, especially cotton and flax and asbestos, a mineral. Natural fibers are more important part in our human environment. Natural fibers are ecofriendly and inexpensive which are readily available in nature. In this chapter we discuss about the overview of natural fiber and their characteristic. this paper also deals with the impact of natural fibers over the synthetic fibers and also the application of natural fiber in various fields.
APA, Harvard, Vancouver, ISO, and other styles
3

Khalid, S. N. A., Al Emran Ismail, and Muhd Hafeez Zainulabidin. "A Review on Effect of Orientation Fabric on Mechanical Energy Absorption Natural Fibres Reinforced Composites." Applied Mechanics and Materials 773-774 (July 2015): 134–38. http://dx.doi.org/10.4028/www.scientific.net/amm.773-774.134.

Full text
Abstract:
This paper presents the combination technique in developing the woven kenaf fiber that is used as a new method to improve energy absorption performance. This method focuses on the effect energy absorption of angle orientation. Due to the low density, natural fiber such as kenaf fiber provides comparatively good mechanical properties. Thus, natural fibers have high potential for better reinforcement in light weight structures on automotive applications. Total force, total energy, and energy absorption of natural fibre reinforced composite for different type’s natural fibre and angle orientation are discussed and reviewed.
APA, Harvard, Vancouver, ISO, and other styles
4

Tran, L. Q. N., X. W. Yuan, D. Bhattacharyya, C. Fuentes, A. W. Van Vuure, and I. Verpoest. "Fiber-matrix interfacial adhesion in natural fiber composites." International Journal of Modern Physics B 29, no. 10n11 (April 23, 2015): 1540018. http://dx.doi.org/10.1142/s0217979215400184.

Full text
Abstract:
The interface between natural fibers and thermoplastic matrices is studied, in which fiber-matrix wetting analysis and interfacial adhesion are investigated to obtain a systematic understanding of the interface. In wetting analysis, the surface energies of the fibers and the matrices are estimated using their contact angles in test liquids. Work of adhesion is calculated for each composite system. For the interface tests, transverse three point bending tests (3PBT) on unidirectional (UD) composites are performed to measure interfacial strength. X-ray photoelectron spectroscopy (XPS) characterization on the fibers is also carried out to obtain more information about the surface chemistry of the fibers. UD composites are examined to explore the correlation between the fiber-matrix interface and the final properties of the composites. The results suggest that the higher interfacial adhesion of the treated fiber composites compared to untreated fiber composites can be attributed to higher fiber-matrix physico–chemical interaction corresponding with the work of adhesion.
APA, Harvard, Vancouver, ISO, and other styles
5

Reddy, P. Sai Vardhan, K. Sravanthi, and S. P. Jani. "Effect of Natural Filler on Natural Fibre Hybrid Composite." Materials Science Forum 1075 (November 30, 2022): 133–39. http://dx.doi.org/10.4028/p-97q6q5.

Full text
Abstract:
The natural filler material is reinforced along with natural fibers in the composite to improve the quality and property of the component materials based on the requirements and its applications. In this paper, the hybrid composite was developed with Hemp/ Basalt fiber. Various wt% (15%,20%,25%) of Hemp fiber and filler materials were used as reinforcement. The Hemp fiber was surface treated with 5% of KMnO4. The developed hybrid natural fiber composites were performed with various mechanical properties studies like tensile, bending, impact, and Brinell hardness all these tests were performed as per ASTM standards. From the mechanical property study, 25 wt% Hemp fiber hybrid composite hold good mechanical properties compared to all other wt% developed hybrid composite.
APA, Harvard, Vancouver, ISO, and other styles
6

K V, Ambareesh. "Moisture Absorption Studies of COIR and Sisal Short Fiber Reinforced Polymer Composites." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 116–27. http://dx.doi.org/10.22214/ijraset.2021.37928.

Full text
Abstract:
Abstract: Easy availability of natural fibre, low cost and ease of manufacturing have urged the attention of researchers towards the possibility of reinforcement of natural fiber to improve their mechanical properties and study the extent to which they satisfy the required specifications of good reinforced polymer composite for industrial and structural applications. Polymer composites made of natural fiber is susceptible for moisture. Moisture absorption in such composites mainly because of hydrophilic nature of natural fibers. Water uptake of natural fiber reinforced composites has an effect on different. Lot of researchers prepared the natural fiber reinforced composites without conducting water absorption tests; hence it is the potential area to investigate the behavior of the composites with different moisture absorption. In this research the experimental sequence and the materials are used for the study of coir and Sisal short fiber reinforced epoxy matrix composites. The coir and Sisal short fibers are made into the short fibers with 10 mm x 10 mm x 5 mm size. The Epoxy Resin-LY556(Di glycidyl ether of bi phenol) and Hardner-HYD951 (Tetra mine), the water absorption behaviors are analyzed in the coir and Sisal short fibers reinforced epoxy composites. The water absorption behaviors of the epoxy composites reinforced with the coir and sisal short fibers with 25, 30 and 35wt% were analyzed at three different water environments, such as sea water, distilled water, and tap water for 12 days at room temperature. It was observed that the composites show the high level of the water absorption percentage at sea water immersion as compared to the other water environments. Due to the water absorption, the mechanical properties of macro particle/epoxy composites were decreased at all weight percentages. Keywords: Natural fibre, Moisture absorption, Coir and sisal short fibre, Reinforced polymer composites, Water absorption behaviour Polymer matrix composite (Epoxy resin) using Coir and sisal short fibre and to study its moisture absorption behaviour
APA, Harvard, Vancouver, ISO, and other styles
7

Bambach, Mike R. "Direct Comparison of the Structural Compression Characteristics of Natural and Synthetic Fiber-Epoxy Composites: Flax, Jute, Hemp, Glass and Carbon Fibers." Fibers 8, no. 10 (September 28, 2020): 62. http://dx.doi.org/10.3390/fib8100062.

Full text
Abstract:
Recent decades have seen substantial interest in the use of natural fibers in continuous fiber reinforced composites, such as flax, jute and hemp. Considering potential applications, it is of particular interest how natural fiber composites compare to synthetic fiber composites, such as glass and carbon, and if natural fibers can replace synthetic fibers in existing applications. Many studies have made direct comparisons between natural and synthetic fiber composites via material coupon testing; however, few studies have made such direct comparisons of full structural members. This study presents compression tests of geometrically identical structural channel sections fabricated from fiber-epoxy composites of flax, jute, hemp, glass and carbon. Glass fiber composites demonstrated superior tension material coupon properties to natural fiber composites. However, for the same fiber mass, structural compression properties of natural fiber composite channels were generally equivalent to, or in some cases superior to, glass fiber composite channels. This indicates there is substantial potential for natural fibers to replace glass fibers in structural compression members. Carbon fiber composites were far superior to all other composites, indicating little potential for replacement with natural fibers.
APA, Harvard, Vancouver, ISO, and other styles
8

Raghu, M. J., and Govardhan Goud. "Tribological Properties of Calotropis Procera Natural Fiber Reinforced Hybrid Epoxy Composites." Applied Mechanics and Materials 895 (November 2019): 45–51. http://dx.doi.org/10.4028/www.scientific.net/amm.895.45.

Full text
Abstract:
Natural fibers are widely used for reinforcement in polymer composite materials and proved to be effectively replacing synthetic fiber reinforced polymer composites to some extent in applications like domestic, automotive and lower end aerospace parts. The natural fiber reinforced composites are environment friendly, have high strength to weight ratio as well as specific strengths comparable with synthetic glass fiber reinforced composites. In the present work, hybrid epoxy composites were fabricated using calotropis procera and glass fibers as reinforcement by hand lay-up method. The fibre reinforcement in epoxy matrix was maintained at 20 wt%. In 20 wt% reinforcement of fibre, the content of calotropis procera and glass fibre were varied from 5, 10, 15 and 20 wt%. The dry sliding wear test as per ASTM G99 and three body abrasive wear test as per ASTM G65 were conducted to find the tribological properties by varying speed, load, distance and abrasive size. The hybrid composite having 5 wt% calotropis procera and 15 wt% glass fibre showed less wear loss in hybrid composites both in sliding wear test as well as in abrasive wear test which is comparable with 20 wt% glass fibre reinforced epoxy composite which marked very low wear loss. The SEM analysis was carried out to study the worn out surfaces of dry sliding wear test and three body abrasive wear test specimens.
APA, Harvard, Vancouver, ISO, and other styles
9

Latuconsina, Muhammad Fachnoor, and Istyawan Priyahapsara. "BENDING STRENGTH OF HYBRID COMPOSITE OF GLASS AND NATURAL FIBER PHINEAGE LEAVES." Vortex 2, no. 2 (June 30, 2021): 89. http://dx.doi.org/10.28989/vortex.v2i2.1012.

Full text
Abstract:
The development of composite fibers has developed very much, and to reduce the environmental impact, composite fibers use natural fiber alternatives. The development of composite fibers has developed very much, and to reduce the environmental impact, composite fibers use natural fiber alternatives. One of the natural fibers that are commonly used is natural fiber from pineapple leaves, where natural fiber from ananas leaves is still very minimal in its commercial use and is only considered as waste
APA, Harvard, Vancouver, ISO, and other styles
10

Ramu, S., and N. Senthilkumar. "Approaches of material selection, alignment and methods of fabrication for natural fiber polymer composites: A review." Journal of Applied and Natural Science 14, no. 2 (June 18, 2022): 490–99. http://dx.doi.org/10.31018/jans.v14i2.3351.

Full text
Abstract:
The recent superiority of the composite materials is cautiously focusing on environmental adoption of natural fiber composites. The major source of the natural fiber materials covered in the globe, especially natural fibers, is plant-based, animal-based and mineral-based. Eco friendly based material can save the environment and recycling of the material is possible, as well as important criteria. Hence engineers ultimately focused on natural fiber polymer matrix materials to save the environment, pollution control, plastic manipulation, etc. The literature work was studied to identify natural fiber material possession. The major goal of the present review was to identify material characterization and appropriate application, mainly offering to enhance mechanical properties, flexural strength, electrical properties, thermal properties etc. The major consequence of the natural fiber is hydrophilic treatment. There is poor interfacial adhesion between the addition/filling substances and poor mechanical characteristics. All of these shortcomings constitute a critical issue. This review presents numerous sorts of natural and synthetic polymers, natural fibres such as jute, ramie, banana, pineapple leaf fibre, and kenaf, etc.; short and long fibre loading methods, fibre fillers in micro and nanoparticle, American society of testing and materials (ASTM) standard plate dimensions, fabrication methods such as hand lay-up process, spray lay-up process, vacuumed-bag, continuous pultrusion, and pulforming process, etc.; industries and home appliances such as automotive parts, building construction, sports kits, domestic goods, and electronic devices. The review lists various material combinations, fibre loading, fillers, and matrix that can aid in the improvement of material properties and the reduction of failures during mechanical testing of composites.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Natural fiber"

1

Siengchin, Suchart. "Natural Fiber Reinforced Thermoplastics." Doctoral thesis, Universitätsverlag der Technischen Universität Chemnitz, 2015. https://monarch.qucosa.de/id/qucosa%3A20671.

Full text
Abstract:
Biocomposites made from biodegradable polymer as matrix and natural fiber as reinforcement are certainly environmentally friendly materials. Both constituent materials are fully biodegradable and do not leave any noxious components on Earth. The natural fibers have been used as reinforcement due to their advantages compared to glass fibers such as low cost, high specific strength and modulus, low density, renewability and biodegradability. Major aims of this work were to produce natural fibers and/or nanoparticles with polyethylene (PE), polypropylene (PP) and polylactide (PLA), poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) matrices and determine their structure-property relationships. Following abstracts of the present research work are manifold: BINARY COMPOSITES Polylactide (PLA)/flax mat composites The polylactide (PLA)/flax mat and modified PLA/flax mat composites were produced by hot press technique. Two additives of non-regulated wax/ethylene acrylate copolymer/butyl acrylate and acrylic were used as modifier for PLA. The dispersion of the flax mat in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical and thermal properties of the composites were determined in tensile test, thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the PLA based composites increased the impact resistance. The tensile strength value of modified PLA/flax mat composite decreased slightly compared to the PLA. The elongation at break data indicated that an improvement in ductility of modified PLA and its composites. Moreover, addition of thermal modifier enhanced thermal resistance below processing temperature of PLA and had a marginal effect on the glass transition temperature of PLA. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. The principle of linear viscoelastic material was fairly applicable to convert from the modulus to the creep compliance for all systems studied. Polylactide (PLA)/woven flax textiles composites The polylactide (PLA)/woven flax textiles 2x2 twill and 4x4 hopsack composites were produced by interval hot press technique. Two weave styles of flax used to reinforce in PLA. The dispersion of the flax composite structures in the composites was inspected in scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical properties (tensile, stiffness and strength) of the composites were determined in tensile and dynamic-mechanical thermal analysis (DMTA) tests, respectively. SEM observed that the interfacial gaps around pulled-out fibers were improved when produced by the interval hot press. It was also found that the both styles of flax composites increased the impact resistance compared to the neat PLA. The tensile strength and stiffness value of PLA/flax composites were markedly higher than that of the neat PLA and reflect the effects of composite structures. The calculated storage creep compliance was constructed by applying the time-temperature superposition (TTS) principle. The calculated creep response of these flax composites was much lower than that of the neat PLA. Polyethylene and polypropylene/nano-silicon dioxide/flax composites Composites composed of polylactide (PLA), modified PLA and woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) were produced by hot press technique. Two structurally different additives used to modify PLA. The dispersion of the flax composite structures in the composites was studied by scanning electron microscopy (SEM) and computed microtomography system (µCT). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The thermomechanical and creep properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA)and short-time creep tests, respectively. It was found that the modified PLA and its composite increased the impact resistance compared to the unmodified PLA. Incorporation of flax decreased resistance to thermal degradation and increased water uptake. The impact energy and stiffness value of PLA/flax composites was markedly higher than that of PLA but reflect the effects of composite structures and flax content. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. From the master curve data, the effect of modified PLA on the storage modulus was more pronounced in the low frequencies range. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites The textile biocomposites made from woven and non-woven flax fibre reinforced poly(butylene adipate-co-terephthalate) (PBAT) were prepared by compression moulding using film stacking method. The mechanical properties (such as tensile strength and stiffness, flexural strength and modulus, and impact strength) of textile biocomposites were determined in tensile, flexural and impact tests, respectively. The PBAT-based composites were subjected to water absorption. The comparison of the mechanical properties was made between pure PBAT and textile composites. The influence of flax weave styles on the mechanical properties was also evaluated. The results showed that the strength of the textile biocomposites was increased according to weave types of fibers, especially in the stiffness was significantly increased with the higher densification of the fibers. The 4x4-plain woven fibers (4-yard-wrap and 4-yard-weft weave direction) reinforced biocomposite indicated the highest strength and stiffness compared to the other textile biocomposites and pure PBAT. This was considered to be as the result of the character of weave style of 4x4-plain woven fibers. The aminopropyltriethoxysilane affected the mechanical properties and water absorption of the resulting composites laminates due to the surface compatibility between flax fiber and PBAT. HYBRID COMPOSITES Polyethylene/nanoparticle, natural and animal composites Binary and ternary composites composed of high-density polyethylene (HDPE), boehmite alumina (BA) and different kinds of natural-, animal fibers, like flax, sponge gourd (SG), palm and pig hair (PH) were produced by hot press technique. Aqueous BA suspensions were sprayed on the HDPE/flax mat to prepare nanoparticle/natural fiber reinforced ternary polymer composites followed by drying. The dispersion of the natural-, animal fibers and BA particles in the composites was studied by scanning electron microscopy (SEM) and discussed. The thermomechanical and stress relaxation properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and short-time stress relaxation tests (performed at various temperatures), respectively. The HDPE based composites were subjected to water absorption and instrumented falling weight impact tests. It was found that the all composites systems increased the stiffness, stress relaxation and reduced the impact toughness. The stress relaxation modulus of natural-, animal fiber composites were higher compared to that of the neat HDPE. This modulus increased greatly with in corporation of BA. The relaxation master curves were constructed by applying the time-temperature superposition (TTS) principle. The inverse of Findley power law could fairly applicable to describe the relaxation modulus vs. time traces for all systems studied. Incorporation of BA particles enhanced the thermal resistance which started to degrade at higher temperature compared to the HDPE/flax mat composite. The HDPE/flax mat/BA composite could reduce the water uptake. Polyethylene/Flax/SiO2 Composites Composites composed of high-density polyethylene (HDPE), woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) and silicon dioxide (SiO2) were produced by hot press with nano spraying technique. The SiO2 slurries were sprayed by a hand onto the both surface of the woven flax fiber. The HDPE /woven flax fibers composites with and without used nano-spraying technique were produced by hot pressing in a laboratory press. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related HDPE based composites were subjected to instrumented falling weight impact test. The thermal resistance, stiffness and tensile strength properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and tensile tests, respectively. It was found that the impact energy and stiffness value of HDPE/flax composites was markedly higher than that of HDPE but reflect the effects of composite structures and flax content. Incorporation of SiO2 particles enhanced resistance to thermal degradation. It was established that the linear viscoelastic material principle are fairly applicable to convert from the modulus to the creep compliance results. Un- and Modified Polylactide (PLA) /woven Flax Fiber composites Hybrid composites composed of polypropylene (PP) or high-density polyethylene (HDPE), different flax fibers (unidirectional-, biaxial and twill2x2) and silicon dioxide (SiO2) were produced by hot press technique. The ternary polymer composite was effectively fabricated by spraying SiO2 solvents onto the surface of flax fiber. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related PP and HDPE based composites were subjected to instrumented falling weight impact test. The thermal and mechanical properties of the composites were determined by thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA), creep and stress relaxation tests, respectively. It was found that thermal decomposition temperature of the PP or HDPE/flax composites increased by the addition of SiO2 particles. The impact energy, stiffness, creep resistance and relaxation modulus value of all flax composites increased markedly compared to the PP and HDPE matrix. Time–temperature superposition (TTS) was applied to estimate the creep and relaxation modulus of the composites as a function of time in the form of a master curve. The activation energies for the all PP and HDPE composites systems studied were also calculated by using the Arrhenius equation. The generalized Maxwell model was fairly applicable to the stress relaxation results. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites Composites composed of polylactide (PLA), woven flax fiber textiles (weave style of 2x2 twill and 4x4 hopsack) and boehmite alumina (BA) were produced by hot press. The spraying technique served for the pre-dispersion of the alumina nanoparticles. The aqueous alumina slurry was produced by mixing the water with water dispersible alumina. The dispersion of the flax structures and alumina particles in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The creep and thermomechanical properties of the composites were determined in short-time creep tests (performed at various temperatures), thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the incorporation of alumina particles reduced the water uptake compared to the PLA/flax blends. The impact energy and stiffness value of PLA/flax blends was markedly higher than that of PLA but reflected the effects of composite structures. Incorporation of alumina particles enhanced storage modulus and the creep resistance compared to the PLA/flax blends but slightly incremented thermal resistance at high temperature. No clear trend in the flax weave style- effect was found in the thermal behaviour. The creep master curves were constructed by applying the time-temperature superposition (TTS) principle. The Findley power law could satisfactorily describe the creep compliance vs. time traces for all systems studied. Poly(hydroxybutyrate-co-hydroxyvalerate)/sisal natural fiber/clay composites Poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) biocomposites different sisal containing with the fiber length of 0.25 and 5 mm, and addition of clay particles were prepared by hot compression technique. Silane (Bis(triethoxysilylpropyl)tetrasulfide) treatment has been used to modify in order to enhance the properties of related hybrid composites. The all composites were subject to water absorption test. The mechanical properties of hybrid composites such as tensile stiffness and strength, toughness and hardness determined in tensile, impact and hardness tests, respectively. It was found that tensile strength, stiffness and impact strength of long sisal fiber improved with increasing fiber content. Hardness of short sisal fiber improved with increasing fiber content. Treated Silane of long fibers at 20 wt.% loading was found to enhance the tensile strength fiber by 10% and impact strength by 750% as compared to the neat PHBV. Note that this feature was also confirmed by the appearance of a scanning electron microscopy. Moreover, the hardness and water resistance of the PHBV/sisal composites increased by the addition of clay particles. The diffusion coefficient for the PHBV and hybrid composites systems studied were also calculated.
Bioverbundwerkstoffe aus biologisch abbaubarem Polymer als Matrix und Naturfasern als Verstärkung sind ohne weiteres umweltfreundliche Materialien. Beide Bestandsmaterialien sind vollständig biologisch abbaubar und hinterlassen keine schädlichen Bestandteile auf der Erde zurück. Die als Verstärkung verwendeten Naturfasern wurden aufgrund ihrer Vorteile gegenüber Glasfasern, wie z.B. geringe Kosten, hohe spezifische Festigkeit und Steifigkeit, geringe Dichte, Erneuerbarkeit und Kompostierbarkeit ausgesucht. Der Hauptfokus dieser Arbeit lag darin Naturfasern und/oder Nanopartikel mit Polyethylen (PE), Polypropylen (PP) und Polylactid (PLA) herzustellen, sowie Poly-Hydroxybutyrat-Co-Hydroxyvalerat (PHBV) Matrizen und deren Struktur-Eigenschaft-Verhältnis zu bestimmen. Die folgenden Kurzfassungen der vorliegenden Forschungsarbeit sind vielfältig: BINÄRE VERBUNDWERKSTOFFE Polylactid (PLA)/ Flachsmatten-Verbundwerkstoffe Die Polylactid (PLA)/Flachsmatte und modifizierte PLA/Flachsmatten-Verbundwerkstoffe wurden im Pressverfahren hergestellt. Als Modifikator für das PLA wurden zwei nicht regulierte Wachs/Ethylen-Acrylat-Copolymer/Butyl-Acrylat und Acryl Additive verwendet. Die Verteilung der Flachsmatte in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen und thermischen Eigenschaften der Verbundwerkstoffe wurden im Zugversuch, der thermogravimetrische Analyse (TGA) und der dynamisch mechanischen Thermoanalyse (DMTA) jeweils bestimmt. Es zeigte sich, dass die PLA/Flachsmatten-basierten Verbundwerkstoffe eine erhöhte Schlagzähigkeit aufwiesen. Die Zähigkeitswerte der modifizierten PLA/Flachsmatten-Verbundwerkstoffe waren leicht verringert im Vergleich zum PLA. Die Bruchdehnungswerte zeigten eine Verbesserung der Verformbarkeit des modifizierten PLAs und dessen Verbundwerkstoffe. Nach Zugabe eines Wärme-Modifikators verbesserte sich der Wärmewiderstand auf unter Verarbeitungstemperatur des PLA und hatte nur einen unwesentlichen Einfluss auf die Glasübergangstemperatur des PLA. Die Hauptkurve des Speichermoduls wurde mit der Zeit-Temperatur-Überlagerung (TTS) aufgestellt. Auf alle untersuchten Systeme konnte das dafür gut geeignete Prinzip der linear viskoelastischen Werkstoffe angewendet werden um die Steifigkeit in die Kriechneigung umzuwandeln. Polylactid (PLA)/Flachstextilgewebe-Verbundwerkstoffe Die Polylactid (PLA)/Flachstextilgewebe 2x2 Körper und 4x4 Gewebe mit Leinwandbindung-Verbundwerkstoffe wurden im Intervall-Pressverfahren hergestellt. Das PLA wurde mit zwei Flachsgewebeformen verstärkt. Die Verteilung der Flachs-Verbundwerkstoffstrukturen in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen Eigenschaften (Zugfestigkeit, Steifigkeit und Festigkeit) der jeweiligen Verbundwerkstoffe wurden in Zugversuchen und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Das Rasterelektronenmikroskop zeigte auf, das der Grenzflächenzwischenraum von rausgezogenen Fasern sich durch das Herstellen im Intervall-Pressverfahren verbessert hat. Auch zeigte sich, dass beide Arten der Flachs-Verbundwerkstoffe die Schlagzähigkeit der Verbundwerkstoffe erhöht im Vergleich zum puren PLA. Die Zugfestigkeit- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe waren deutlich höher als die der puren PLA und spiegeln die Effekte von Verbundwerkstoffstrukturen wieder. Die berechnete Kriechneigung im Speichermodul wurde durch die Anwendung des Zeit-Temperatur-Überlagerung (TTS) Prinzips aufgestellt. Die errechnete Kriechgeschwindigkeit der Flachs-Verbundwerkstoffe war wesentlich geringer als im puren PLA. Polyethylen und Polypropylen/Nanosilikon Dioxid/Flachs-Verbundwerkstoffe Verbundwerkstoffe hergestellt aus Polylactid (PLA), modifiziertem PLA und Flachsfasertextilgewebe (Flachsgewebeform von 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) wurden im Pressverfahren hergestellt. Zwei strukturell unterschiedliche Additive wurden verwendet um das PLA zu modifizieren. Die Verteilung der Flachs-Verbundwerkstoffstruktur wurde unter dem Rasterelektronenmikroskop (SEM) und dem computergestütztes Computer-Tomography-System (µCT) untersucht. Die PLA Verbundwerkstoffe wurden dem Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die Kriech- und thermomechanischen Eigenschaften der respektiven Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Kriechversuch bestimmt. Das modifizierte PLA und dessen Verbundwerkstoffe zeigten eine Erhöhung der Schlagzähigkeit im Vergleich zum unmodifizierten PLA. Die Einbindung von Flachs verringerte den Widerstand gegenüber thermischer Degradierung und erhöhte die Wasseraufnahme. Die Schlagenergie- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe war deutlich höher als die der PLA aber spiegelt die Effekte von Verbundwerkstoffstrukturen mit Flachsinhalt wieder. Die Hauptkurve des Speichermoduls wurde mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Datenmaterial der Hauptkurve zeigte den Effekt des modifizierten PLAs auf dem Speichermodul deutlich ausgeprägter im Bereich der Niederfrequenz. Polylactide (PLA)/Flachfasertextilgewebe/Böhmit Aluminumoxid (BA)-Verbundwerkstoffe Die textilen Bioverbundwerkstoffe wurden aus flachsfaserverstärkten Poly(Butylen Adipat-Co-Terephtalat) (PBAT) Gewebe und Vlies im Formpressverfahren mit der Folien-Stapelmethode hergestellt. Die mechanischen Eigenschaften (wie Zugfestigkeit und Steifigkeit, Biegefestigkeit, Steifigkeit und Schlagzähigkeit) der jeweiligen textilen Bioverbundwerkstoffe wurde in Zug-, Biege-, und Schlagtests ermittelt. Die PBAT basierten Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Der Vergleich der mechanischen Eigenschaften wurde zwischen reinem PBAT und textilen Verbundwerkstoffen durchgeführt. Der Einfluss der Flachsgewebeformen auf die mechanischen Eigenschaften wurde ebenfalls untersucht. Die Ergebnisse zeigten das die Festigkeit der textilen Bioverbundwerkstoffe mit der Webart der Fasern anstieg, signifikant in Bezug auf die Steifigkeit bei einer erhöhten Verdichtung der Fasern. Die 4x4 flachfasergewebten (4-Schussfaden-Windung und 4-Kettfaden-Windung) verstärkten Bioverbundwerkstoffe zeigten die höchste Festigkeit und Steifigkeit im Vergleich zu den anderen textilen Bioverbundwerkstoffen und dem puren PBAT. Dieses Resultat wurde der Beschaffenheit der 4x4-flachfasergewebten Webart zugewiesen. Das Aminopropyltriethoxysilan beeinträchtigte die mechanischen Eigenschaften und Wasseraufnahme der entstandenen Verbundlaminate durch Oberflächenkompatibilität zwischen der Flachsfaser und dem PBAT. HYBRIDE VERBUNDWERKSTOFFE Polyethylen/Nanopartikel, natürliche und tierische Verbundwerkstoffe Binäre und ternäre Verbundwerkstoffe, bestehend aus hoch dichtem Polyethylen (HDPE), Böhmit Aluminumoxid (BA) und verschiedenen natürlichen und tierischen Fasern wie Flachs, Schwammgurke (SG), Palmfaser und Schweinehaar (PH), wurden im Pressverfahren hergestellt. Vorbereitend wurden wasserhaltige BA-Suspensionen auf die HDPE/Flachsmatte gesprüht um nanopartikel/naturfaserverstärkte ternäre Polymer-Verbundwerkstoffe nach dem Trocknen zu erhalten. Die Verteilung der Natur-,Tierfasern und der BA-Partikel in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop untersucht und diskutiert. Die thermomechanischen und Spannungsrelaxation-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Stressrelaxationstest (bei unterschiedlichen Temperaturen durchgeführt) bestimmt. Die HDPE-basierten Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Es wurde festgestellt, dass alle Verbundwerkstoffsysteme eine Erhöhung der Steifigkeit und Spannungsrelaxation und eine Verminderung der Kerbschlagzähigkeit aufzeigten. Die Spannungsrelaxations-Steifigkeit von Naturfaser-, Tierfaserverbundwerkstoffen war größer im Vergleich zu reinem HDPE. Diese Steifigkeit steig deutlich an mit der Einbindung von BA. Die Hauptkurven der Relaxation wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Die Umkehrung des Findley Potenzgesetzes konnte gut für die Beschreibung der Relaxations-Steifigkeit vs. Zeitüberwachung in allen untersuchten Systemen angewendet werden. Die Einbindung der BA-Partikel erhöhte den Wärmewiderstand, welcher bei höherer Temperatur zu sinken begann im Vergleich zu HDPE/Flachsmatten-Verbundwerkstoff. Der HDPE/Flachsmatte/BA-Verbundwerkstoff konnte die Wasseraufnahme verringern. Polyethylen/Flachs/SiO Verbundwerkstoffe Verbundwerkstoffe bestehend aus hoch dichtem Polyethylen (HDPE), Flachsfasertextilgewebe (Flachsgewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Siliziumdioxid (SiO2) wurden im Pressverfahren mit Nanospritztechnik hergestellt. Die SiO2 Schlämme wurden auf beide Oberflächen des Flachsfasergewebes per Hand gesprüht. Die HDPE/ Flachsfasergewebe-Verbundwerkstoffe wurden in einer Laborpresse im Pressverfahren mit und ohne Nanospritztechnik hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Der Wärmewiderstand, Steifigkeit- und Zugfestigkeit-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA) und Zugversuchen bestimmt. Es zeigte sich, dass die Aufprallenergie und Steifigkeitswerte der HDPE/Flachs-Verbundwerkstoffe deutlich höher als die des HDPE waren aber die Effekte von Verbundwerkstoffen mit Flachsinhalt widerspiegeln. Die Einbindung von SiO2-Partikeln erhöhte den Widerstand von thermischer Degradierung. Es wurde bestimmt, das das Prinzip der linear viskoelastischen Werkstoffe gut anwendbar auf die Umwandlung der Steifigkeit zu Kriechneigungsergebnissen ist. Modifizierte und nicht modifizierte Polylactid (PLA)/Flachsfasergewebe-Verbundwerkstoffe Hybride Verbundwerkstoffe aus Polypropylen (PP) oder hoch-dichtem Polyethylen (HDPE), verschiedenen Flachsfasern (unidirektional, biaxial und 2x2 Körper) und Siliziumdioxid (SiO2) wurden im Pressverfahren hergestellt. Der ternäre Polymer-Verbundwerkstoff wurde wirkungsvoll durch das Aufbringen von SiO2 Lösemitteln auf die Oberfläche der Flachsfaser hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen PP- und HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die thermischen und mechanischen Eigenschaften der respektiven Verbundwerkstoffe wurde in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA), Kriech- und Spannungsrelaxations-Tests bestimmt. Es zeigte sich, dass die thermische Zersetzungstemperatur der PP oder HDPE/Flachs-Verbundwerkstoffe durch das Auftragen der SiO2-Partikel ansteigt. Die Aufprallenergie-, Steifigkeit-, Kriechbeständigkeit- und Relaxation-Steifigkeitn-Werte aller Flachs-Verbundwerkstoffe stiegen deutlich an im Vergleich zur PP und HDPE Matrix. Die Zeit-Temperatur-Überlagerung (TTS) wurde angewandt um die Kriech- und Relaxation-Steifigkeit für die Verbundwerkstoffe als Funktion der Zeit in Form einer Hauptkurve zu schätzen. Die Aktivierungsenergien aller untersuchten PP und HDPE-Verbundwerkstoffsysteme wurden mit der Arrhenius Gleichung errechnet. Das generalisierte Maxwell Model war gut auf die Spannungsrelaxationsergebnisse anwendbar. Polylactide (PLA)/Flachsfasertextilgewebe/Böhmit Aluminiumoxid (BA)-Verbundwerkstoffe Verbundwerkstoffe bestehend aus Polylactid (PLA), Flachfasertextilgewebe (Gewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Böhmit Aluminium (BA) wurden im Pressverfahren hergestellt. Für die Vordispergierung der Aluminiumoxid-Nanopartikel wurde die Spritztechnik angewendet. Die wasserhaltigen Aluminiumoxid-Schlämme wurden durch das Vermischen von Wasser mit wasserdispergierbarem Aluminiumoxid hergestellt. Die Verteilung der Flachsstrukturen und Aluminiumoxid-Partikeln in den Verbundwerkstoffen wurde mit einem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Die Kriech- und thermomechanischen Eigenschaften der jeweiligen Verbundwerkstoffe wurden in Kurzzeit-Kriechversuchen (bei unterschiedlichen Temperaturen durchgeführt), thermogravimetrischen Analysen (TGA) und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Es zeigte sich, dass das Einbringen der Aluminiumoxid-Partikel die Wasseraufnahme im Vergleich zu PLA/Flachs-Gemischen reduziert. Die Aufprallenergie- und Steifigkeitswerte der PLA/Flachs-Gemische waren signifikant höher als die des PLA aber spiegelten die Effekte von Verbundwerkstoffstrukturen wieder. Das Einbringen von Aluminiumoxid-Partikeln verbesserte die Lagerungs-Steifigkeit und die Kriechbeständigkeit im Vergleich zu PLA/Flachs-Gemischen, erhöhte allerdings leicht den Wärmewiderstand bei hohen Temperaturen. Kein klarer Trend in der Flachswebart konnte dem Temperaturverhalten zugeordnet werden. Die Kriech-Hauptkurven wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Findley Potenzgesetz konnte zufriedenstellend die Kriechneigung vs. Zeitüberwachung für alle untersuchten Systeme beschreiben. Poly(Hydroxybutyrat-Co-Hydroxyvalerat)/Natursisalfaser/Ton-Verbundwerkstoffe Poly(Hydroxybutyrat-Co-Hydroxyvalerat) (PHBV) Bioverbundwerkstoffe die Sisalfasern in Längen von 0,25 und 5 mm und Ton-Partikeln enthalten wurden im Heißpressverfahren hergestellt. Die Silan (Bis(Trithoxysilylpropyl)Tetrasulfide) Behandlung wurde für die Modifizierung verwendet um die Eigenschaften von ähnlichen hybriden Verbundwerkstoffen zu verbessern. Alle Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Die mechanischen Eigenschaften der jeweiligen hybriden Verbundwerkstoffe wie Zugsteifigkeit und Festigkeit, Zähigkeit und Härte wurden in Zugversuchen, Schlagtests und Härteprüfungen bestimmt. Es zeigte sich, dass die Zugfestigkeit, Steifigkeit und Schlagzähigkeit von langen Sisalfasern sich mit der Erhöhung des Fasergehalts verbessert. Behandeltes Silan von langen Fasern mit 20 wt.% Belastung zeigte eine Verbesserung der Faser-Zugfestigkeit um 10% und Schlagzähigkeit von 750% im Vergleich zu reinem PHBV. Diese Besonderheit wurde auch von einem Rasterelektronenmikroskop bestätigt. Weiterhin ist die Härte und Wasserbeständigkeit in PHBV/Sisal-Verbundwerkstoffen durch das Einbringen von Ton-Partikeln angestiegen. Die Diffusionskoeffizienten für die untersuchten PHBV- und hybriden Verbundwerkstoffsysteme wurden auch errechnet.
APA, Harvard, Vancouver, ISO, and other styles
2

Siengchin, Suchart. "Natural Fiber Reinforced Thermoplastics." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-222094.

Full text
Abstract:
Biocomposites made from biodegradable polymer as matrix and natural fiber as reinforcement are certainly environmentally friendly materials. Both constituent materials are fully biodegradable and do not leave any noxious components on Earth. The natural fibers have been used as reinforcement due to their advantages compared to glass fibers such as low cost, high specific strength and modulus, low density, renewability and biodegradability. Major aims of this work were to produce natural fibers and/or nanoparticles with polyethylene (PE), polypropylene (PP) and polylactide (PLA), poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) matrices and determine their structure-property relationships. Following abstracts of the present research work are manifold: BINARY COMPOSITES Polylactide (PLA)/flax mat composites The polylactide (PLA)/flax mat and modified PLA/flax mat composites were produced by hot press technique. Two additives of non-regulated wax/ethylene acrylate copolymer/butyl acrylate and acrylic were used as modifier for PLA. The dispersion of the flax mat in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical and thermal properties of the composites were determined in tensile test, thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the PLA based composites increased the impact resistance. The tensile strength value of modified PLA/flax mat composite decreased slightly compared to the PLA. The elongation at break data indicated that an improvement in ductility of modified PLA and its composites. Moreover, addition of thermal modifier enhanced thermal resistance below processing temperature of PLA and had a marginal effect on the glass transition temperature of PLA. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. The principle of linear viscoelastic material was fairly applicable to convert from the modulus to the creep compliance for all systems studied. Polylactide (PLA)/woven flax textiles composites The polylactide (PLA)/woven flax textiles 2x2 twill and 4x4 hopsack composites were produced by interval hot press technique. Two weave styles of flax used to reinforce in PLA. The dispersion of the flax composite structures in the composites was inspected in scanning electron microscopy (SEM). The PLA composites were subjected to instrumented falling weight impact test. The mechanical properties (tensile, stiffness and strength) of the composites were determined in tensile and dynamic-mechanical thermal analysis (DMTA) tests, respectively. SEM observed that the interfacial gaps around pulled-out fibers were improved when produced by the interval hot press. It was also found that the both styles of flax composites increased the impact resistance compared to the neat PLA. The tensile strength and stiffness value of PLA/flax composites were markedly higher than that of the neat PLA and reflect the effects of composite structures. The calculated storage creep compliance was constructed by applying the time-temperature superposition (TTS) principle. The calculated creep response of these flax composites was much lower than that of the neat PLA. Polyethylene and polypropylene/nano-silicon dioxide/flax composites Composites composed of polylactide (PLA), modified PLA and woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) were produced by hot press technique. Two structurally different additives used to modify PLA. The dispersion of the flax composite structures in the composites was studied by scanning electron microscopy (SEM) and computed microtomography system (µCT). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The thermomechanical and creep properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA)and short-time creep tests, respectively. It was found that the modified PLA and its composite increased the impact resistance compared to the unmodified PLA. Incorporation of flax decreased resistance to thermal degradation and increased water uptake. The impact energy and stiffness value of PLA/flax composites was markedly higher than that of PLA but reflect the effects of composite structures and flax content. The storage modulus master curves were constructed by applying the time-temperature superposition (TTS) principle. From the master curve data, the effect of modified PLA on the storage modulus was more pronounced in the low frequencies range. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites The textile biocomposites made from woven and non-woven flax fibre reinforced poly(butylene adipate-co-terephthalate) (PBAT) were prepared by compression moulding using film stacking method. The mechanical properties (such as tensile strength and stiffness, flexural strength and modulus, and impact strength) of textile biocomposites were determined in tensile, flexural and impact tests, respectively. The PBAT-based composites were subjected to water absorption. The comparison of the mechanical properties was made between pure PBAT and textile composites. The influence of flax weave styles on the mechanical properties was also evaluated. The results showed that the strength of the textile biocomposites was increased according to weave types of fibers, especially in the stiffness was significantly increased with the higher densification of the fibers. The 4x4-plain woven fibers (4-yard-wrap and 4-yard-weft weave direction) reinforced biocomposite indicated the highest strength and stiffness compared to the other textile biocomposites and pure PBAT. This was considered to be as the result of the character of weave style of 4x4-plain woven fibers. The aminopropyltriethoxysilane affected the mechanical properties and water absorption of the resulting composites laminates due to the surface compatibility between flax fiber and PBAT. HYBRID COMPOSITES Polyethylene/nanoparticle, natural and animal composites Binary and ternary composites composed of high-density polyethylene (HDPE), boehmite alumina (BA) and different kinds of natural-, animal fibers, like flax, sponge gourd (SG), palm and pig hair (PH) were produced by hot press technique. Aqueous BA suspensions were sprayed on the HDPE/flax mat to prepare nanoparticle/natural fiber reinforced ternary polymer composites followed by drying. The dispersion of the natural-, animal fibers and BA particles in the composites was studied by scanning electron microscopy (SEM) and discussed. The thermomechanical and stress relaxation properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and short-time stress relaxation tests (performed at various temperatures), respectively. The HDPE based composites were subjected to water absorption and instrumented falling weight impact tests. It was found that the all composites systems increased the stiffness, stress relaxation and reduced the impact toughness. The stress relaxation modulus of natural-, animal fiber composites were higher compared to that of the neat HDPE. This modulus increased greatly with in corporation of BA. The relaxation master curves were constructed by applying the time-temperature superposition (TTS) principle. The inverse of Findley power law could fairly applicable to describe the relaxation modulus vs. time traces for all systems studied. Incorporation of BA particles enhanced the thermal resistance which started to degrade at higher temperature compared to the HDPE/flax mat composite. The HDPE/flax mat/BA composite could reduce the water uptake. Polyethylene/Flax/SiO2 Composites Composites composed of high-density polyethylene (HDPE), woven flax fiber textiles (Flax weave style of 2x2 twill and 4x4 hopsack) and silicon dioxide (SiO2) were produced by hot press with nano spraying technique. The SiO2 slurries were sprayed by a hand onto the both surface of the woven flax fiber. The HDPE /woven flax fibers composites with and without used nano-spraying technique were produced by hot pressing in a laboratory press. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related HDPE based composites were subjected to instrumented falling weight impact test. The thermal resistance, stiffness and tensile strength properties of the composites were determined in thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA) and tensile tests, respectively. It was found that the impact energy and stiffness value of HDPE/flax composites was markedly higher than that of HDPE but reflect the effects of composite structures and flax content. Incorporation of SiO2 particles enhanced resistance to thermal degradation. It was established that the linear viscoelastic material principle are fairly applicable to convert from the modulus to the creep compliance results. Un- and Modified Polylactide (PLA) /woven Flax Fiber composites Hybrid composites composed of polypropylene (PP) or high-density polyethylene (HDPE), different flax fibers (unidirectional-, biaxial and twill2x2) and silicon dioxide (SiO2) were produced by hot press technique. The ternary polymer composite was effectively fabricated by spraying SiO2 solvents onto the surface of flax fiber. The dispersion of SiO2 particles and flax in the composites was studied by scanning electron microscopy (SEM). The related PP and HDPE based composites were subjected to instrumented falling weight impact test. The thermal and mechanical properties of the composites were determined by thermogravimetric analysis (TGA), dynamic-mechanical thermal analysis (DMTA), creep and stress relaxation tests, respectively. It was found that thermal decomposition temperature of the PP or HDPE/flax composites increased by the addition of SiO2 particles. The impact energy, stiffness, creep resistance and relaxation modulus value of all flax composites increased markedly compared to the PP and HDPE matrix. Time–temperature superposition (TTS) was applied to estimate the creep and relaxation modulus of the composites as a function of time in the form of a master curve. The activation energies for the all PP and HDPE composites systems studied were also calculated by using the Arrhenius equation. The generalized Maxwell model was fairly applicable to the stress relaxation results. Polylactide (PLA)/woven flax fiber textiles/boehmite alumina (BA) composites Composites composed of polylactide (PLA), woven flax fiber textiles (weave style of 2x2 twill and 4x4 hopsack) and boehmite alumina (BA) were produced by hot press. The spraying technique served for the pre-dispersion of the alumina nanoparticles. The aqueous alumina slurry was produced by mixing the water with water dispersible alumina. The dispersion of the flax structures and alumina particles in the composites was studied by scanning electron microscopy (SEM). The PLA composites were subjected to water absorption and instrumented falling weight impact tests. The creep and thermomechanical properties of the composites were determined in short-time creep tests (performed at various temperatures), thermogravimetric analysis (TGA) and dynamic-mechanical thermal analysis (DMTA), respectively. It was found that the incorporation of alumina particles reduced the water uptake compared to the PLA/flax blends. The impact energy and stiffness value of PLA/flax blends was markedly higher than that of PLA but reflected the effects of composite structures. Incorporation of alumina particles enhanced storage modulus and the creep resistance compared to the PLA/flax blends but slightly incremented thermal resistance at high temperature. No clear trend in the flax weave style- effect was found in the thermal behaviour. The creep master curves were constructed by applying the time-temperature superposition (TTS) principle. The Findley power law could satisfactorily describe the creep compliance vs. time traces for all systems studied. Poly(hydroxybutyrate-co-hydroxyvalerate)/sisal natural fiber/clay composites Poly(hydroxybutyrate-co-hydroxyvalerate)(PHBV) biocomposites different sisal containing with the fiber length of 0.25 and 5 mm, and addition of clay particles were prepared by hot compression technique. Silane (Bis(triethoxysilylpropyl)tetrasulfide) treatment has been used to modify in order to enhance the properties of related hybrid composites. The all composites were subject to water absorption test. The mechanical properties of hybrid composites such as tensile stiffness and strength, toughness and hardness determined in tensile, impact and hardness tests, respectively. It was found that tensile strength, stiffness and impact strength of long sisal fiber improved with increasing fiber content. Hardness of short sisal fiber improved with increasing fiber content. Treated Silane of long fibers at 20 wt.% loading was found to enhance the tensile strength fiber by 10% and impact strength by 750% as compared to the neat PHBV. Note that this feature was also confirmed by the appearance of a scanning electron microscopy. Moreover, the hardness and water resistance of the PHBV/sisal composites increased by the addition of clay particles. The diffusion coefficient for the PHBV and hybrid composites systems studied were also calculated
Bioverbundwerkstoffe aus biologisch abbaubarem Polymer als Matrix und Naturfasern als Verstärkung sind ohne weiteres umweltfreundliche Materialien. Beide Bestandsmaterialien sind vollständig biologisch abbaubar und hinterlassen keine schädlichen Bestandteile auf der Erde zurück. Die als Verstärkung verwendeten Naturfasern wurden aufgrund ihrer Vorteile gegenüber Glasfasern, wie z.B. geringe Kosten, hohe spezifische Festigkeit und Steifigkeit, geringe Dichte, Erneuerbarkeit und Kompostierbarkeit ausgesucht. Der Hauptfokus dieser Arbeit lag darin Naturfasern und/oder Nanopartikel mit Polyethylen (PE), Polypropylen (PP) und Polylactid (PLA) herzustellen, sowie Poly-Hydroxybutyrat-Co-Hydroxyvalerat (PHBV) Matrizen und deren Struktur-Eigenschaft-Verhältnis zu bestimmen. Die folgenden Kurzfassungen der vorliegenden Forschungsarbeit sind vielfältig: BINÄRE VERBUNDWERKSTOFFE Polylactid (PLA)/ Flachsmatten-Verbundwerkstoffe Die Polylactid (PLA)/Flachsmatte und modifizierte PLA/Flachsmatten-Verbundwerkstoffe wurden im Pressverfahren hergestellt. Als Modifikator für das PLA wurden zwei nicht regulierte Wachs/Ethylen-Acrylat-Copolymer/Butyl-Acrylat und Acryl Additive verwendet. Die Verteilung der Flachsmatte in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen und thermischen Eigenschaften der Verbundwerkstoffe wurden im Zugversuch, der thermogravimetrische Analyse (TGA) und der dynamisch mechanischen Thermoanalyse (DMTA) jeweils bestimmt. Es zeigte sich, dass die PLA/Flachsmatten-basierten Verbundwerkstoffe eine erhöhte Schlagzähigkeit aufwiesen. Die Zähigkeitswerte der modifizierten PLA/Flachsmatten-Verbundwerkstoffe waren leicht verringert im Vergleich zum PLA. Die Bruchdehnungswerte zeigten eine Verbesserung der Verformbarkeit des modifizierten PLAs und dessen Verbundwerkstoffe. Nach Zugabe eines Wärme-Modifikators verbesserte sich der Wärmewiderstand auf unter Verarbeitungstemperatur des PLA und hatte nur einen unwesentlichen Einfluss auf die Glasübergangstemperatur des PLA. Die Hauptkurve des Speichermoduls wurde mit der Zeit-Temperatur-Überlagerung (TTS) aufgestellt. Auf alle untersuchten Systeme konnte das dafür gut geeignete Prinzip der linear viskoelastischen Werkstoffe angewendet werden um die Steifigkeit in die Kriechneigung umzuwandeln. Polylactid (PLA)/Flachstextilgewebe-Verbundwerkstoffe Die Polylactid (PLA)/Flachstextilgewebe 2x2 Körper und 4x4 Gewebe mit Leinwandbindung-Verbundwerkstoffe wurden im Intervall-Pressverfahren hergestellt. Das PLA wurde mit zwei Flachsgewebeformen verstärkt. Die Verteilung der Flachs-Verbundwerkstoffstrukturen in den Verbundwerkstoffen wurde mit dem Rasterelektronenmikroskop (SEM) untersucht. Die PLA Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die mechanischen Eigenschaften (Zugfestigkeit, Steifigkeit und Festigkeit) der jeweiligen Verbundwerkstoffe wurden in Zugversuchen und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Das Rasterelektronenmikroskop zeigte auf, das der Grenzflächenzwischenraum von rausgezogenen Fasern sich durch das Herstellen im Intervall-Pressverfahren verbessert hat. Auch zeigte sich, dass beide Arten der Flachs-Verbundwerkstoffe die Schlagzähigkeit der Verbundwerkstoffe erhöht im Vergleich zum puren PLA. Die Zugfestigkeit- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe waren deutlich höher als die der puren PLA und spiegeln die Effekte von Verbundwerkstoffstrukturen wieder. Die berechnete Kriechneigung im Speichermodul wurde durch die Anwendung des Zeit-Temperatur-Überlagerung (TTS) Prinzips aufgestellt. Die errechnete Kriechgeschwindigkeit der Flachs-Verbundwerkstoffe war wesentlich geringer als im puren PLA. Polyethylen und Polypropylen/Nanosilikon Dioxid/Flachs-Verbundwerkstoffe Verbundwerkstoffe hergestellt aus Polylactid (PLA), modifiziertem PLA und Flachsfasertextilgewebe (Flachsgewebeform von 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) wurden im Pressverfahren hergestellt. Zwei strukturell unterschiedliche Additive wurden verwendet um das PLA zu modifizieren. Die Verteilung der Flachs-Verbundwerkstoffstruktur wurde unter dem Rasterelektronenmikroskop (SEM) und dem computergestütztes Computer-Tomography-System (µCT) untersucht. Die PLA Verbundwerkstoffe wurden dem Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die Kriech- und thermomechanischen Eigenschaften der respektiven Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Kriechversuch bestimmt. Das modifizierte PLA und dessen Verbundwerkstoffe zeigten eine Erhöhung der Schlagzähigkeit im Vergleich zum unmodifizierten PLA. Die Einbindung von Flachs verringerte den Widerstand gegenüber thermischer Degradierung und erhöhte die Wasseraufnahme. Die Schlagenergie- und Steifigkeitswerte der PLA/Flachs-Verbundwerkstoffe war deutlich höher als die der PLA aber spiegelt die Effekte von Verbundwerkstoffstrukturen mit Flachsinhalt wieder. Die Hauptkurve des Speichermoduls wurde mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Datenmaterial der Hauptkurve zeigte den Effekt des modifizierten PLAs auf dem Speichermodul deutlich ausgeprägter im Bereich der Niederfrequenz. Polylactide (PLA)/Flachfasertextilgewebe/Böhmit Aluminumoxid (BA)-Verbundwerkstoffe Die textilen Bioverbundwerkstoffe wurden aus flachsfaserverstärkten Poly(Butylen Adipat-Co-Terephtalat) (PBAT) Gewebe und Vlies im Formpressverfahren mit der Folien-Stapelmethode hergestellt. Die mechanischen Eigenschaften (wie Zugfestigkeit und Steifigkeit, Biegefestigkeit, Steifigkeit und Schlagzähigkeit) der jeweiligen textilen Bioverbundwerkstoffe wurde in Zug-, Biege-, und Schlagtests ermittelt. Die PBAT basierten Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Der Vergleich der mechanischen Eigenschaften wurde zwischen reinem PBAT und textilen Verbundwerkstoffen durchgeführt. Der Einfluss der Flachsgewebeformen auf die mechanischen Eigenschaften wurde ebenfalls untersucht. Die Ergebnisse zeigten das die Festigkeit der textilen Bioverbundwerkstoffe mit der Webart der Fasern anstieg, signifikant in Bezug auf die Steifigkeit bei einer erhöhten Verdichtung der Fasern. Die 4x4 flachfasergewebten (4-Schussfaden-Windung und 4-Kettfaden-Windung) verstärkten Bioverbundwerkstoffe zeigten die höchste Festigkeit und Steifigkeit im Vergleich zu den anderen textilen Bioverbundwerkstoffen und dem puren PBAT. Dieses Resultat wurde der Beschaffenheit der 4x4-flachfasergewebten Webart zugewiesen. Das Aminopropyltriethoxysilan beeinträchtigte die mechanischen Eigenschaften und Wasseraufnahme der entstandenen Verbundlaminate durch Oberflächenkompatibilität zwischen der Flachsfaser und dem PBAT. HYBRIDE VERBUNDWERKSTOFFE Polyethylen/Nanopartikel, natürliche und tierische Verbundwerkstoffe Binäre und ternäre Verbundwerkstoffe, bestehend aus hoch dichtem Polyethylen (HDPE), Böhmit Aluminumoxid (BA) und verschiedenen natürlichen und tierischen Fasern wie Flachs, Schwammgurke (SG), Palmfaser und Schweinehaar (PH), wurden im Pressverfahren hergestellt. Vorbereitend wurden wasserhaltige BA-Suspensionen auf die HDPE/Flachsmatte gesprüht um nanopartikel/naturfaserverstärkte ternäre Polymer-Verbundwerkstoffe nach dem Trocknen zu erhalten. Die Verteilung der Natur-,Tierfasern und der BA-Partikel in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop untersucht und diskutiert. Die thermomechanischen und Spannungsrelaxation-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in der thermogravimetrischen Analyse (TGA), der dynamisch mechanischen Thermoanalyse (DMTA) und dem Kurzzeit-Stressrelaxationstest (bei unterschiedlichen Temperaturen durchgeführt) bestimmt. Die HDPE-basierten Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Es wurde festgestellt, dass alle Verbundwerkstoffsysteme eine Erhöhung der Steifigkeit und Spannungsrelaxation und eine Verminderung der Kerbschlagzähigkeit aufzeigten. Die Spannungsrelaxations-Steifigkeit von Naturfaser-, Tierfaserverbundwerkstoffen war größer im Vergleich zu reinem HDPE. Diese Steifigkeit steig deutlich an mit der Einbindung von BA. Die Hauptkurven der Relaxation wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Die Umkehrung des Findley Potenzgesetzes konnte gut für die Beschreibung der Relaxations-Steifigkeit vs. Zeitüberwachung in allen untersuchten Systemen angewendet werden. Die Einbindung der BA-Partikel erhöhte den Wärmewiderstand, welcher bei höherer Temperatur zu sinken begann im Vergleich zu HDPE/Flachsmatten-Verbundwerkstoff. Der HDPE/Flachsmatte/BA-Verbundwerkstoff konnte die Wasseraufnahme verringern. Polyethylen/Flachs/SiO Verbundwerkstoffe Verbundwerkstoffe bestehend aus hoch dichtem Polyethylen (HDPE), Flachsfasertextilgewebe (Flachsgewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Siliziumdioxid (SiO2) wurden im Pressverfahren mit Nanospritztechnik hergestellt. Die SiO2 Schlämme wurden auf beide Oberflächen des Flachsfasergewebes per Hand gesprüht. Die HDPE/ Flachsfasergewebe-Verbundwerkstoffe wurden in einer Laborpresse im Pressverfahren mit und ohne Nanospritztechnik hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Der Wärmewiderstand, Steifigkeit- und Zugfestigkeit-Eigenschaften der jeweiligen Verbundwerkstoffe wurden in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA) und Zugversuchen bestimmt. Es zeigte sich, dass die Aufprallenergie und Steifigkeitswerte der HDPE/Flachs-Verbundwerkstoffe deutlich höher als die des HDPE waren aber die Effekte von Verbundwerkstoffen mit Flachsinhalt widerspiegeln. Die Einbindung von SiO2-Partikeln erhöhte den Widerstand von thermischer Degradierung. Es wurde bestimmt, das das Prinzip der linear viskoelastischen Werkstoffe gut anwendbar auf die Umwandlung der Steifigkeit zu Kriechneigungsergebnissen ist. Modifizierte und nicht modifizierte Polylactid (PLA)/Flachsfasergewebe-Verbundwerkstoffe Hybride Verbundwerkstoffe aus Polypropylen (PP) oder hoch-dichtem Polyethylen (HDPE), verschiedenen Flachsfasern (unidirektional, biaxial und 2x2 Körper) und Siliziumdioxid (SiO2) wurden im Pressverfahren hergestellt. Der ternäre Polymer-Verbundwerkstoff wurde wirkungsvoll durch das Aufbringen von SiO2 Lösemitteln auf die Oberfläche der Flachsfaser hergestellt. Die Verteilung der SiO2-Partikel und des Flachs in den Verbundwerkstoffen wurde unter dem Rasterelektronenmikroskop (SEM) untersucht. Die ähnlichen PP- und HDPE-basierten Verbundwerkstoffe wurden dem instrumentalisierten Fallgewichtsschlagzähigkeitstest unterzogen. Die thermischen und mechanischen Eigenschaften der respektiven Verbundwerkstoffe wurde in thermogravimetrischen Analysen (TGA), dynamisch mechanischen Thermoanalysen (DMTA), Kriech- und Spannungsrelaxations-Tests bestimmt. Es zeigte sich, dass die thermische Zersetzungstemperatur der PP oder HDPE/Flachs-Verbundwerkstoffe durch das Auftragen der SiO2-Partikel ansteigt. Die Aufprallenergie-, Steifigkeit-, Kriechbeständigkeit- und Relaxation-Steifigkeitn-Werte aller Flachs-Verbundwerkstoffe stiegen deutlich an im Vergleich zur PP und HDPE Matrix. Die Zeit-Temperatur-Überlagerung (TTS) wurde angewandt um die Kriech- und Relaxation-Steifigkeit für die Verbundwerkstoffe als Funktion der Zeit in Form einer Hauptkurve zu schätzen. Die Aktivierungsenergien aller untersuchten PP und HDPE-Verbundwerkstoffsysteme wurden mit der Arrhenius Gleichung errechnet. Das generalisierte Maxwell Model war gut auf die Spannungsrelaxationsergebnisse anwendbar. Polylactide (PLA)/Flachsfasertextilgewebe/Böhmit Aluminiumoxid (BA)-Verbundwerkstoffe Verbundwerkstoffe bestehend aus Polylactid (PLA), Flachfasertextilgewebe (Gewebeform 2x2 Körper und 4x4 Gewebe mit Leinwandbindung) und Böhmit Aluminium (BA) wurden im Pressverfahren hergestellt. Für die Vordispergierung der Aluminiumoxid-Nanopartikel wurde die Spritztechnik angewendet. Die wasserhaltigen Aluminiumoxid-Schlämme wurden durch das Vermischen von Wasser mit wasserdispergierbarem Aluminiumoxid hergestellt. Die Verteilung der Flachsstrukturen und Aluminiumoxid-Partikeln in den Verbundwerkstoffen wurde mit einem Rasterelektronenmikroskop (SEM) untersucht. Die PLA-Verbundwerkstoffe wurden Wasseraufnahme- und instrumentalisierten Fallgewichtsschlagzähigkeitstests unterzogen. Die Kriech- und thermomechanischen Eigenschaften der jeweiligen Verbundwerkstoffe wurden in Kurzzeit-Kriechversuchen (bei unterschiedlichen Temperaturen durchgeführt), thermogravimetrischen Analysen (TGA) und dynamisch mechanischen Thermoanalysen (DMTA) bestimmt. Es zeigte sich, dass das Einbringen der Aluminiumoxid-Partikel die Wasseraufnahme im Vergleich zu PLA/Flachs-Gemischen reduziert. Die Aufprallenergie- und Steifigkeitswerte der PLA/Flachs-Gemische waren signifikant höher als die des PLA aber spiegelten die Effekte von Verbundwerkstoffstrukturen wieder. Das Einbringen von Aluminiumoxid-Partikeln verbesserte die Lagerungs-Steifigkeit und die Kriechbeständigkeit im Vergleich zu PLA/Flachs-Gemischen, erhöhte allerdings leicht den Wärmewiderstand bei hohen Temperaturen. Kein klarer Trend in der Flachswebart konnte dem Temperaturverhalten zugeordnet werden. Die Kriech-Hauptkurven wurden mit dem Zeit-Temperatur-Überlagerung (TTS) Prinzip aufgestellt. Das Findley Potenzgesetz konnte zufriedenstellend die Kriechneigung vs. Zeitüberwachung für alle untersuchten Systeme beschreiben. Poly(Hydroxybutyrat-Co-Hydroxyvalerat)/Natursisalfaser/Ton-Verbundwerkstoffe Poly(Hydroxybutyrat-Co-Hydroxyvalerat) (PHBV) Bioverbundwerkstoffe die Sisalfasern in Längen von 0,25 und 5 mm und Ton-Partikeln enthalten wurden im Heißpressverfahren hergestellt. Die Silan (Bis(Trithoxysilylpropyl)Tetrasulfide) Behandlung wurde für die Modifizierung verwendet um die Eigenschaften von ähnlichen hybriden Verbundwerkstoffen zu verbessern. Alle Verbundwerkstoffe wurden dem Wasseraufnahmetest unterzogen. Die mechanischen Eigenschaften der jeweiligen hybriden Verbundwerkstoffe wie Zugsteifigkeit und Festigkeit, Zähigkeit und Härte wurden in Zugversuchen, Schlagtests und Härteprüfungen bestimmt. Es zeigte sich, dass die Zugfestigkeit, Steifigkeit und Schlagzähigkeit von langen Sisalfasern sich mit der Erhöhung des Fasergehalts verbessert. Behandeltes Silan von langen Fasern mit 20 wt.% Belastung zeigte eine Verbesserung der Faser-Zugfestigkeit um 10% und Schlagzähigkeit von 750% im Vergleich zu reinem PHBV. Diese Besonderheit wurde auch von einem Rasterelektronenmikroskop bestätigt. Weiterhin ist die Härte und Wasserbeständigkeit in PHBV/Sisal-Verbundwerkstoffen durch das Einbringen von Ton-Partikeln angestiegen. Die Diffusionskoeffizienten für die untersuchten PHBV- und hybriden Verbundwerkstoffsysteme wurden auch errechnet
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Bing. "Thermoplastic and Thermoset Natural Fiber Composite and Sandwich Performance." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc500002/.

Full text
Abstract:
The objective of this thesis is to investigate the effects of adding natural fiber (kenaf fiber, retted kenaf fiber, and sugarcane fiber) into polymer materials. The effects are obtained by considering three main parts. 1. Performance in thermoplastic composites. The effect of fiber retting on polymer composite crystallization and mechanical performance was investigated. PHBV/PBAT in 80/20 blend ratio was modified using 5% by weight kenaf fiber. Dynamic mechanical analysis of the composites was done to investigate the glass transition and the modulus at sub-ambient and ambient temperatures. ESEM was conducted to analyze fiber topography which revealed smoother surfaces on the pectinase retted fibers. 2. Performance in thermoset composites. The effect of the incorporation of natural fibers of kenaf and of sugarcane combined with the polyester resin matrix is investigated. A comparison of mechanical properties of kenaf polyester composite, sugarcane polyester composite and pure polyester in tensile, bending, dynamic mechanical thermal analysis (DMA) and moisture test on performance is measured.. 3. Performance in sandwich composites. The comparison of the performance characteristics and mechanical properties of natural fiber composites panels with soft and rigid foam cores are evaluated. A thorough test of the mechanical behavior of composites sandwich materials in tensile, bending and DCB is presented here.
APA, Harvard, Vancouver, ISO, and other styles
4

Kalyankar, Rahul R. "Natural fiber reinforced structural insulated panels for panelized construction." Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2010r/kalyankar.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Marklund, Erik. "Micromechanism based material models for natural fiber composites /." Luleå : Luleå University of Technology, 2005. http://epubl.luth.se/1402-1757/2005/84.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marklund, Erik. "Modeling the mechanical performance of natural fiber composites." Doctoral thesis, Luleå : Department of Applied Physics and Mechanical Engineering, Division of Polymer Engineering, Luleå University of Technology, 2007. http://epubl.ltu.se/1402-1544/2007/73/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Garbis, Leonidia Maria. "Natural fiber reinforced aerated concrete : an experimental investigation." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82813.

Full text
Abstract:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 51-52).
The purpose of this study is to compare existing research with aerated concrete and fiber reinforcement to original experiments completed investigating the benefits of adding natural fiber tensile reinforcement to aerated concrete. Concrete is a great composite material which can be created in various proportions and with various materials to alter its strength, density and porosity, amongst other properties. Concrete which is used commonly in construction of columns, beams, and slabs acts well in compression but fails under tension. The common solution is to reinforce the structure in areas where it experiences tension with steel. There are other materials besides steel which also take tension well. Natural fibers for example come in various strengths and types and would create lighter and perhaps more sustainable beam designs. Natural fibers have been used for their availability, workability, and high tensile strengths for centuries. This research discovers that the compressive strength of this cellular material can support the construction of a small structure, assuming accuracy of previous experimental results. These previous experiments discover how the natural fibers distribute within the mixture and how they affect the aeration of the concrete, as well as how they affect the strength. Multiple samples are cured with different fiber types and in different proportions within the mixture. Furthermore, similar experimentation is conducted to discover an ideal ratio of aggregate to aerated concrete mix. The aggregate gives the concrete greater strength and economy, but could negatively affect the aeration. The various concrete mixes are poured and allowed to cure to maximum strength before indirect tensile tests and compression tests are conducted. The effects of creating smooth aerated concrete molds are also investigated. All experiments conducted are precursory to an ultimate tensile reinforced aerated concrete beam design with an aggregate mix and smooth surfaces.
by Leonidia Maria Garbis.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
8

Anthireddy, Prasanna Kumar. "Development of a Natural Fiber Mat Plywood Composite." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011815/.

Full text
Abstract:
Natural fibers like kenaf, hemp, flax and sisal fiber are becoming alternatives to conventional petroleum fibers for many applications. One such applications is the use of Non-woven bio-fiber mats in the automobile and construction industries. Non-woven hemp fiber mats were used to manufacture plywood in order to optimize the plywood structure. Hemp fiber mats possess strong mechanical properties that comparable to synthetic fibers which include tensile strength and tensile modulus. This study focuses on the use of hemp fiber mat as a core layer in plywood sandwich composite. The optimization of fiber mat plywood was done by performing a three factor experiment. The three factors selected for this experiment were number of hemp mat layers in the core, mat treatment of the hemp mat, and the glue content in the core. From the analysis of all treatments it was determined that single hemp mat had the highest effect on improving the properties of the plywood structure.
APA, Harvard, Vancouver, ISO, and other styles
9

Sgriccia, Nikki. "Microwave and thermally cured natural fiber epoxy composites." Diss., Connect to online resource - MSU authorized users, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Markevicius, Gediminas. "Pressure Variation Assisted Fiber Extraction and Development of High Performance Natural Fiber Composites and Nanocomposites." OpenSIUC, 2010. https://opensiuc.lib.siu.edu/dissertations/117.

Full text
Abstract:
It is believed, that due to the large surface areas provided by the nano scale materials, various composite properties could be enhanced when such particles are incorporated into a polymer matrix. There is also a trend of utilizing natural resources or reusing and recycling materials that are already available for the fabrication of the new composite materials. Cellulose is the most abundant natural polymer on the planet, and therefore it is not surprising to be of interest for composite fabrication. Basic structures of cellulose, comprised of long polysaccharide chains, are the building blocks of cellulose nano fibers. Nano fibers are further bound into micro fibrils and macro fibers. Theoretically pure cellulose nano fibers have tremendous strengths, and therefore are some of the most sought after nano particles. The fiber extraction however is a complex task. The ultrasound, which creates pressure variation in the medium, was employed to extract nano-size cellulose particles from microcrystalline cellulose (MCC). The length and the intensity of the cavitations were evaluated. Electron microscopy studies revealed that cellulose nanoparticles were successfully obtained from the MCC after ultrasound treatment of just 30 minutes. Structure of the fractionated cellulose was also analyzed with the help of X-ray diffraction, and its thermal properties were evaluated with the help of differential scanning calorimetry (DSC). Ultrasound treatment performed on the wheat straw, kenaf, and miscanthus particles altered fiber structure as a result of the cavitation. The micro fibers were generated from these materials after they were subjected to NaOH treatment followed by the ultrasound processing. The potential of larger than nano-sized natural fibers to be used for composite fabrication was also explored. The agricultural byproducts, such as wheat or rice straw, as well as other fast growing crops as miscanthus or kenaf, are comprised of three basic polymers. Just like in wood the polymers are: cellulose, hemicelluloses, and lignin. When subjected to elevated pressures and temperatures, we are able to get access to some of these natural polymers and use them as a matrix material for composite fabrication. Therefore, fabrication of composite materials without addition of synthetic polymers is possible. Thermal and mechanical properties of such composites are evaluated with the help of electron microscopy, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and flexural strength measurements. The chemical changes in the composites are also probed with the help of Fourier transform infrared (FTIR) analysis. Various additives introduced into composite materials provide different properties. The addition of small amounts of synthetic polymers further enhances the properties of natural fiber composites and do not require high fabrication pressures. Calcium sulfite crystals, which are one of the coal combustion products, were combined with the natural fibers and recycled HDPE polymer to form wood substitute composites. The introduction of these additives resulted in composites with the properties similar to those of the natural wood. Coal combustion products, often used in composite material fabrication, contain mercury which may be rereleased during composite fabrication. Mercury behavior under composite fabrication conditions, such as elevated pressures and temperatures were evaluated. Sulfite rich scrubber material, generated during the flue gas desulphurization process was the main target of the study. It was observed that the release of the mercury is highly dependent on the composite fabrication pressure as well as the temperature.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Natural fiber"

1

Sinha, Shishir, and G. L. Devnani. Natural Fiber Composites. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Siengchin, Suchart. Natural fiber reinforced thermoplastics. Chemnitz: Universitätsverlag Chemnitz, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mohammed, Fahim, Institute of Materials, Minerals, and Mining, and Woodhead publishing online, eds. Tribology of natural fiber composites. Cambridge, England: Woodhead Publishing, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Salmon, Margaret Belais. A professional dietitian's natural fiber diet. [S.l.]: Xlibris, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Salmon, Margaret Belais. A professional dietitian's natural fiber diet. [S.l.]: Xlibris, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Street, Myra. The fiber-plan cookbook. Secaucus, N.J: Chartwell Books, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stokke, Douglas D., Qinglin Wu, and Guangping Han. Introduction to Wood and Natural Fiber Composites. Chichester, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9780470711804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

K, Mohanty Amar, Misra Manjusri, and Druzal Lawrence T, eds. Natural fibers, biopolymers, and biocomposites. Boca Raton, FL: CRC Press, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Elseify, Lobna A., Mohamad Midani, Ayman El-Badawy, and Mohammad Jawaid. Manufacturing Automotive Components from Sustainable Natural Fiber Composites. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83025-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Muthukumar, Chandrasekar, Senthilkumar Krishnasamy, Senthil Muthu Kumar Thiagamani, and Suchart Siengchin, eds. Aging Effects on Natural Fiber-Reinforced Polymer Composites. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8360-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Natural fiber"

1

Haverhals, Luke M., David P. Durkin, and Paul C. Trulove. "Natural Fiber Welding." In Green Chemistry and Sustainable Technology, 211–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35245-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dalir, Hamid, Siddharth Bhaganagar, Nicholas Frimas, and Seyedeh Fatemah Nabavi. "Natural Fiber Composites." In Design, Analysis, and Manufacturing of Lightweight Composite Structures, 112–24. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003429197-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

El Messiry, Magdi. "Natural Fiber Properties." In Natural Fiber Textile Composite Engineering, 29–75. Toronto : Apple Academic Press, 2017.: Apple Academic Press, 2017. http://dx.doi.org/10.1201/9781315207513-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fatibene, Lorenzo, and Mauro Francaviglia. "Fiber Bundles." In Natural and Gauge Natural Formalism for Classical Field Theorie, 9–51. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-2384-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jaiswal, Deeksha, and G. L. Devnani. "Extraction of Natural Fibers." In Natural Fiber Composites, 69–95. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Srivastava, Ishan, G. L. Devnani, and Shishir Sinha. "Fabrication of Composites." In Natural Fiber Composites, 175–93. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tyagi, Manan, G. L. Devnani, and Raj Verma. "Thermo Polymer Matrix–Based Natural Fiber Composite." In Natural Fiber Composites, 255–77. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pal, Dharam, Manash Protim Mudoi, Santosh bahadur Singh, and Shishir Sinha. "Applications of Natural Fibers–Reinforced Composites (II)." In Natural Fiber Composites, 353–65. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shukla, Nidhi. "Surface Treatment of Natural Fibers (Chemical Treatment)." In Natural Fiber Composites, 123–55. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kushwaha, Ayushi. "Thermoset Polymer Matrix–Based Natural Fiber Composites." In Natural Fiber Composites, 227–54. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003201724-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Natural fiber"

1

Mugarura, Isaac, and Mehmet Çevik. "Natural Fibers in Uganda Suitable for Sustainable Natural Fiber Reinforced Composites." In 7th International Students Science Congress. Izmir International guest Students Association, 2023. http://dx.doi.org/10.52460/issc.2023.040.

Full text
Abstract:
The use of natural fibers in composite polymers has grown rapidly and has gained popularity in various areas. Most of these natural fibers can also be found in Uganda. Many sectors are currently shifting to “green technologies” that are environmentally friendly in order to reduce synthetic plastic wastes and pollutions. Natural fibers are at low-cost with high specific properties and low densities. Based on these factors, most developing countries already begun using natural fibers to produce good quality products that are effective and economical. Countries like Uganda are the future source of many known and many unknown natural fibers. One of the uses of natural fiber reinforced composites is the automotive industry; Uganda is a promising country in this sense. In this study, we will review the natural fibers in Uganda suitable for natural fiber reinforced composites. These are, namely, mutuba tree (ficus natalensis), rice and coffee husk, cotton, Sansevieria trifasciata, banana fibers, sisal fibers, marsh grass and bamboo fibers. These plants are found in many other countries; however, a combined investigation is presented in our study. These fibers are mainly used in textiles, automotive industry, and lightweight items. Their future use as structural parts of low to medium strength are evaluated.
APA, Harvard, Vancouver, ISO, and other styles
2

Kooshki, Pantea, and Tsz-Ho Kwok. "Review of Natural Fiber Reinforced Elastomer Composites." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-86042.

Full text
Abstract:
This paper is a review on mechanical characteristics of natural fibers reinforced elastomers (both thermoplastics and thermosets). Increasing environmental concerns and reduction of petroleum resources attracts researchers attention to new green eco-friendly materials. To solve these environmental related issues, cellulosic fibers are used as reinforcement in composite materials. These days natural fibers are at the center of attention as a replacement for synthetic fibers like glass, carbon, and aramid fibers due to their low cost, satisfactory mechanical properties, high specific strength, renewable resources usage and biodegradability. The hydrophilic property of natural fibers decreases their compatibility with the elastomeric matrix during composite fabrication leading to the poor fiber-matrix adhesion. This causes low mechanical properties which is one of the disadvantages of green composites. Many researches have been done modifying fiber surface to enhance interfacial adhesion between filler particles and elastomeric matrix, as well as their dispersion in the matrix, which can significantly affect mechanical properties of the composites. Different chemical and physical treatments are applied to improve fiber/matrix interlocking.
APA, Harvard, Vancouver, ISO, and other styles
3

Ghanwat, Vikas, Jivan Mule, Saurabh Telore, Vijay Bhosale, and Sudarshan Patale. "Mechanical Behavior of Natural Fiber Composite Material." In National Conference on Relevance of Engineering and Science for Environment and Society. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.118.23.

Full text
Abstract:
The use of natural fibers as reinforcement in polymeric composites is increasing thanks to the improvements in properties that fibers can provide to the merchandise. Composites materials were prepared by compression molding technique with hand layup process. Treatment of fiber with 2% NaOH was carried out in order to improve the interfacial bonds between fiber and matrix leading to better mechanical properties of the spathe-fiber-reinforced composite laminates. Filler loading as 5% by volume of coir fiber or epoxy resin composites have been formulated. The fiber length was chosen as 5mm, 10mm & 15mm and the ratio of epoxy resin: hardener was maintained as 10:0.8. A total three plates with dimension as 300 mm х 300 mm х 4 mm were produced and specimens as per the varied ASTM standard were tested to determine the ultimate tensile strength, strain energy, flexural strength, strain energy and micro hardness value for different configuration. It was observed that the lastingness of epoxy resin/ coir fiber composites was maximum at 15mm fiber length (16.27 N/mm2). The charpy notch impact strength was also maximum at 15mm fiber length (10.87 kJ/m2). The results show good mechanical properties and hint us as a replacement for conventional materials in industrial applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Malkapuram, Devaiah. "Development of Hybrid Natural Fiber Reinforced Composite Material for Automotive Applications." In International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-28-0131.

Full text
Abstract:
<div class="section abstract"><div class="htmlview paragraph">Industrialization concerns are stimulating research in development of new materials for automotive industries. Natural fibers which are available abundantly can be extracted naturally from environment. Preventing further pollutants on environment from depleting dwindling wood resources from forests and earth surface.</div><div class="htmlview paragraph">Natural fibers are derived from renewable sources, making them environmentally friendly. Their use in composites reduces dependence on non-renewable resources and helps lower the carbon footprint of automobiles. Natural fibers, such as hemp, jute, and flax are lightweight materials. By incorporating them into polymer composites, the overall weight of automobile components can be reduced, leading to improved fuel efficiency and lower emissions. Natural fibers are generally less expensive than synthetic fibers, incorporating natural fibers into polymer composites can help reduce material costs in automobile manufacturing. Natural fiber polymer composites can be recycled at the end of their life cycle, contributing to a more sustainable automotive industry.</div><div class="htmlview paragraph">In this project work, we have opted Hemp and Short carbon as fiber composite and prepared three composites of Hemp, Short Carbon and hybrid composite of both fibers. The composites are prepared by employing Hand Lay-up technique and evaluated the Density, Water Absorption Tensile Strength, Flexural Strength of the Hemp, Short Carbon and Hemp/Short Carbon fiber reinforced polymer matrix composites.</div></div>
APA, Harvard, Vancouver, ISO, and other styles
5

Menezes, Pradeep L., Pradeep K. Rohatgi, and Michael R. Lovell. "Tribology of Natural Fiber Reinforced Polymer Composites." In ASME/STLE 2011 International Joint Tribology Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ijtc2011-61221.

Full text
Abstract:
In recent years, significant academic and industrial research and development has explored novel methods of creating green and environmentally friendly materials for commercial applications. Natural fibers offer the potential to develop lower cost products with better performance, sustainability, and renewability characteristics than traditional materials, particularly in the automotive industry. In this respect, natural fiber reinforced polymer composites have emerged as an environmentally friendly and cost-effective option to synthetic fiber reinforced composites. Hence, in this study, a review of the tribological behavior of natural fiber reinforced polymer composites has been undertaken to better understand their usability for various automotive applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Xue, Yibin, Scott A. Fletcher, and Kunpeng Wang. "Micromechanical Simulations on Waving and Kinked Natural Fiber-Reinforced Plastic Composites." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67462.

Full text
Abstract:
Micromechanics-based simulations were conducted to evaluate the linear and nonlinear properties of natural fiber-reinforced plastic composites with fibers in various waving and kinked forms. Natural fibers, such as woodfibers and fibers from plants, have length-aspect ratio of longitudinal and transverse at or greater than 20. At such high aspect ratio, the natural fiber normally presents in waving, bending, twisting, kinking morphology in the composites. This paper presents a series of micromechanical simulations to predict the elastic and nonlinear elastic behaviors of natural fiber-reinforced plastic composites (NF-PCs) considering the effects of fiber kinking, waving, and arrangements on the stress-strain relationship. A set of three-dimensional unit cells (UC) were developed to mimic various fiber morphologies with the fiber volume fraction of fifty percent, a typical fiber volume fraction for the natural fiber plastic composites. Periodic displacement boundary conditions were implemented on the UC to simulate a unidirectional strain field. The homogenized anisotropic stress-strain relations for NF-PCs were predicted by postulating nonlinear behavior of plastic matrix and perfect and imperfect interface between the NF and the matrix. Stress distributions in the natural fiber were presented as a function of the fiber aspect ratio and the fiber waving and kinking forms. Even though, the high fiber aspect ratio provides relatively high elastic modulus and nonlinear hardening, it also induces high stresses or stress concentration in the fiber that may result in earlier failure of the fiber when the composites undergone a relatively large deformations (&gt; 4%).
APA, Harvard, Vancouver, ISO, and other styles
7

LANGHORST, AMY, ANSHUL SINGHAL, DEBORAH MIELEWSKI, MIHAELA BANU, and ALAN TAUB. "NANOPARTICLE MODIFICATION OF NATURAL FIBERS FOR STRUCTURAL COMPOSITES." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35868.

Full text
Abstract:
Natural fibers are a lightweight, carbon negative alternative to synthetic reinforcing agents in polymer composites. However, natural fibers typically exhibit lower mechanical performance than glass fibers due to weak interfacial adhesion between plant cells in the fiber and damage to the fibers during extraction from a plant stem. However, improvement of natural fiber mechanical performance could enable their wide-scale incorporation in structural composite applications, significantly reducing composite weight and carbon footprint. This study seeks to develop a novel, cost-effective method to significantly improve natural fiber stiffness via repair of damage caused by extraction and/ or stiffening of the weak cellular interfaces within a natural fiber. Supercritical fluids have been shown to be capable of swelling and plasticizing amorphous polymers, increasing additive absorption. In this work. supercritical-carbon dioxide (scCO2) was used as a solvent to assist with infusion of nanoparticles into flax fibers at pressures ranging from 1200-4000psi. Fiber analysis with Plasma Focused Ion Beam-Scanning Electron Microscopy (PFIB-SEM) showed that nanoparticles were capable of penetrating and bridging openings between cells, suggesting the ability for nanoparticle treatment to assist with crack repair. Additionally, treated fibers contained uniform surface coatings of nanoparticles, potentially reducing fiber porosity and modifying interfacial properties when embedded in a polymer matrix. Overall, this method of nanoparticle reinforcement of natural fibers could enable development of high-performance lightweight, low-carbon footprint composites for transportation or industrial applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Song, Young Seok, Jung Tae Lee, Jae Ryoun Youn, A. D’Amore, Domenico Acierno, and Luigi Grassia. "Natural Fiber Reinforced PLA Composites." In V INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2010. http://dx.doi.org/10.1063/1.3455601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Maranon, Alejandro, Yan Sanabria, Mari´a F. Contreras, and Wilson Hormaza. "Impact Performance of Natural Fique-Fiber Reinforced Composites." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67518.

Full text
Abstract:
Laminated composites made of natural fiber and polymeric resins have a strong potential for engineering applications as they offer an attractive combination of mechanical and physical properties together with their environmental friendly character. Among structural applications, hybrid ballistic systems made of natural fiber composites have attracted the attention of engineers and scientists because of their excellent energy absorption compared to mild steel. In this paper, the impact and tensile properties of fique fibers (fucraea) reinforced composites are investigated. Plain woven fique-fabrics were embedded in polyester resin to produce five ply laminated panels. It was found that fique composites exhibited similar energy absorption than other natural composites reported in the literature.
APA, Harvard, Vancouver, ISO, and other styles
10

Malkapuram, devaiah. "Thermal Properties of Hybrid Natural Fiber Reinforced Polymer Matrix Composites with SiC as Filler." In International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-28-0460.

Full text
Abstract:
<div class="section abstract"><div class="htmlview paragraph">Scientists and technologists attracted towards natural fibers like banana, cotton, coir, sisal, hemp and jute for the application civil structures and consumer goods. It was identified the electrical resistance, thermal and acoustic insulating properties for possessing of these natural fibers in composites. Natural fibers have many benefits compared to artificial fibers, as an example less density, less weight; low cost, specific properties and they are recyclable and biodegradable. There aren’t any skin effects because of high strength and stiffness, renewable. In alternative manner, there also are some limitations, as an example less thermal stability and wetness uptake. several of them studied a major improvement in properties of hybrid composites with reinforced with glass fiber in resin content however it’s naturally hazard with usage of this glass fiber content. There are many publications on review of fiber reinforced composites, a notable research has been done on natural fiber polymer composites but research on jute, hemp, hybrid of jute fiber and hemp fiber, hybrid (jute/hemp) fiber with SiC particulates as filler at specific extent fractions primarily.</div><div class="htmlview paragraph">In this paper, hybrid (hemp and jute) fiber reinforced epoxy matrix composites were fabricated by using hand lay-up technique of different weight percentage of hybrid fiber and SiC particulates as filler have been studied and their thermal properties such as density, Thermal gravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) by which we can know thermal stability of the composites.</div></div>
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Natural fiber"

1

Westman, Matthew P., Leonard S. Fifield, Kevin L. Simmons, Sachin Laddha, and Tyler A. Kafentzis. Natural Fiber Composites: A Review. Office of Scientific and Technical Information (OSTI), March 2010. http://dx.doi.org/10.2172/989448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Taylor. L51724 Fiber Optic Pressure Sensor Development. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1995. http://dx.doi.org/10.55274/r0010368.

Full text
Abstract:
Fiber optic sensors have been under development in industrial and government laboratories around the world for over a decade The commercial market for fiber sensors for measuring parameters such as temperature, displacement, and liquid level is now estimated to exceed $50 M/year Aside from the commercial interest, the U S. Department of Defense has vigorously pursued the development of fiber gyroscopes and hydrophones In spite of the high level of research and devleopment activity, however, fiber sensors were not successfully applied in the relatively harsh environment of engine combustion chambers prior to 1991. The goal of this development is to demonstrate the utilization of a new fiber optic sensor technology in engines used for natural gas transmission. Presently, there is no way to continuously measure pressure in these engines over extended periods of operation. Reliable fiber optic sensor networks supplying data to computerized control systems for on-line engine balancing could lead to major reductions in the emission of NO, and other harmful combustion products. Fuel economies in the millions of dollars per year for companies in the natural gas transmission industry could also be realized.
APA, Harvard, Vancouver, ISO, and other styles
3

Rocky, AMK Bahrum Prang, and Amanda J. Thompson. Production of Ecofriendly Natural Bamboo Bast Fiber and Assessment of Antibacterial Activity. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Taylor. NR199202 Fiber Optic Fabry-Perot Sensors for Combustion Chamber Monitor. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 1992. http://dx.doi.org/10.55274/r0011145.

Full text
Abstract:
Presently, there is no way to continuously measure pressure and temperature in engines over extended periods of operation. Reliable fiber optic sensor networks supplying data to computerized engine control systems could lead to fuel economies in the millions of dollars per year. The goal of this project is to demonstrate the utilization of a new fiber optic sensor technology in engines used for the pumping of natural gas.
APA, Harvard, Vancouver, ISO, and other styles
5

Powell, McKenna J., Kenneth J. Prusa, Joseph G. Sebranek, and Rodrigo Tarte. Evaluation of Citrus Fiber as a Natural Alternative to Sodium Tripolyphosphate in Alternatively-cured Pork Bologna. Ames (Iowa): Iowa State University, January 2018. http://dx.doi.org/10.31274/ans_air-180814-327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Iyer, Ananth V., Samuel Labi, Steven Dunlop, Thomas Brady Jr., and Eki Amijaya. Cost and Benefit Analysis of Installing Fiber Optics on INDOT Projects. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317131.

Full text
Abstract:
The Indiana Department of Transportation (INDOT) is tasked with the stewardship of billions of dollars’ worth of public invested highway infrastructure. Not only does INDOT continually seek design and operational policies that foster cost effective project delivery and procurement, they also seek opportunities for revenue generation. Due to population growth and the increased demand for online connectivity and global information transmission, the fiber-optic cable industry has experienced rapid growth over the past few years. Information and communication technology (ICT) companies have long sought to achieve higher economic productivity by installing fiber-optic cables in the right of way (ROW) of access-controlled highways. Based on these developments, an experiment was conducted to measure the economic impact in Indiana. To determine this impact, a database was developed by compartmentalizing the analysis into (1) GDP per county per industry type, (2) the natural growth of GDP as a factor, and (3) the extent of contribution of broadband in the growth of GDP. A general formula was developed to incorporate the adjusted median income on both the industry and county levels, along with a broadband contribution factor. This formula was employed to determine policies that can produce optimum economic outcome by leveraging the Pareto method.
APA, Harvard, Vancouver, ISO, and other styles
7

Tanaka, Eri, Regina Schwerd, Wolfgang Hofbauer, and Daniel Zirkelbach. Laboratory tests on decay of natural fibre insulation materials suggest a more differentiated evaluation and higher RH thresholds. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541651346.

Full text
Abstract:
To reduce CO2 emissions and save grey energy, natural materials like wood and wooden materials are becoming more and more important. However, these products are particularly sensitive to moisture, as they can be attacked by mould or decay fungi. In contrast to mould growth, which typically is associated with visual impairment and health problems, the growth of decay fungi may result in structural defects which clearly must be excluded. Up to now it is mostly assumed that wooden materials are more sensitive to such attack than solid wood. Therefore, different wood fibre insulation materials were inoculated with decay fungi and exposed to different climates to determine the requirements for the decay process and to compare them with the requirements of decay by the same fungi of solid wood. The results prove that some natural fibre materials are equally or even more resistant to decay fungi than solid wood, while others are less. The resistant products can therefore be assessed like solid wood – for which already temperature dependent thresholds and in part also transient decay prediction models are available. Maybe even specific higher moisture levels can be acceptable. However, the results also suggest a differentiated view on natural fibre insulations, as they have a very different susceptibility to wood decay. Uniform and significantly lower limits than for solid wood are not justified.
APA, Harvard, Vancouver, ISO, and other styles
8

Kwon, Heeseo Rain, HeeAh Cho, Jongbok Kim, Sang Keon Lee, and Donju Lee. International Case Studies of Smart Cities: Orlando, United States of America. Inter-American Development Bank, June 2016. http://dx.doi.org/10.18235/0007015.

Full text
Abstract:
This case study is one of ten international studies developed by the Korea Research Institute for Human Settlements (KRIHS), in association with the Inter-American Development Bank (IDB), for the cities of Anyang, Medellin, Namyangju, Orlando, Pangyo, Rio de Janeiro, Santander, Singapore, Songdo, and Tel Aviv. At the IDB, the Competitiveness and Innovation Division (CTI), the Fiscal and Municipal Management Division (FMM), and the Emerging and Sustainable Cities Initiative (ESCI) coordinated the study. This project was part of technical cooperation ME-T1254, financed by the Knowledge Partnership Korean Fund for Technology and Innovation of the Republic of Korea. At KRIHS, the National Infrastructure Research Division coordinated the project and the Global Development Partnership Center provided the funding. As an international destination for theme parks, sporting events and conventions, Orlando approaches the smart city operation through Orlando Operations Center (OOC), an integrated facility established in 2001 by the Mayor after the 1997 hurricane. The major features of the integrated operation include the sharing of fiber optic networks and CCTV cameras, and close cooperation between transport, police and fire departments for road, criminal and disaster incident, and the emergency operation center within the OOC taking the lead in case of special event management and large-scale natural disasters. Along with the OOC, the city hall also utilizes smart city functions such as red light violation enforcement through detectors, bus management through AVL technology, GPS garbage truck tracking, and GIS water management. Orlando has experienced significant benefits in terms of shortened decision-making and response time, reduced operation cost, and improved environmental impacts, as well as enhanced service quality and communication with citizen.
APA, Harvard, Vancouver, ISO, and other styles
9

Lewis, Randolph. X-ray Diffraction and Neutron Scattering Analysis of Natural and Synthetic Spider Silk Fibers. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1104739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beckman, Ivan. Development of alternative air filtration materials and methods of analysis. Engineer Research and Development Center (U.S.), June 2023. http://dx.doi.org/10.21079/11681/47188.

Full text
Abstract:
Development of high efficiency particulate air (HEPA) filters demonstrate an effort to mitigate dangerous aerosol hazards at the point of production. The nuclear power industry installs HEPA filters as a final line of containment of hazardous particles. An exploration of analytical, experimental, computational, and machine learning models is presented in this dissertation to advance the science of air filtration technology. This dissertation studies, develops, and analyzes alternative air filtration materials and methods of analysis that optimize filtration efficiency and reduce resistance to air flow. Alternative nonwoven filter materials are considered for use in HEPA filtration. A detailed review of natural and synthetic fibers is presented to compare mechanical, thermal, and chemical properties of fibers to desirable characteristics for air filtration media. Digital replication of air filtration media enables coordination among experimental, analytical, machine learning, and computational air filtration models. The value of using synthetic data to train and evaluate computational and machine learning models is demonstrated through prediction of air filtration performance, and comparison to analytical results. This dissertation concludes with discussion on potential opportunities and future work needed in the continued effort to advance clean air technologies for the mitigation of a global health and safety challenge.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography