Dissertations / Theses on the topic 'Natural gas Gas reservoirs. Thermodynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 24 dissertations / theses for your research on the topic 'Natural gas Gas reservoirs. Thermodynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Garapati, Nagasree. "Determination of mixed hydrate thermodynamics for reservoir modeling." Morgantown, W. Va. : [West Virginia University Libraries], 2009. http://hdl.handle.net/10450/10623.
Full textTitle from document title page. Document formatted into pages; contains ix, 97 p. : ill. (some col.), col. map. Includes abstract. Includes bibliographical references.
Alp, Doruk. "Gas Production From Hydrate Reservoirs." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606241/index.pdf.
Full textgas production by depressurization method from a hydrate reservoir containing free gas zone below the hydrate zone is numerically modeled through 3 dimensional, 3 phase, non-isothermal reservoir simulation. The endothermic nature of hydrate decomposition requires modeling to be non-isothermal
hence energy balance equations must be employed in the simulation process. TOUGH-Fx, the successor of the well known multipurpose reservoir simulator TOUGH2 (Pruess [24]) and its very first module TOUGH-Fx/Hydrate, both developed by Moridis et.al [23] at LBNL, are utilized to model production from a theoretical hydrate reservoir, which is first studied by Holder [11] and then by Moridis [22], for comparison purposes. The study involves 2 different reservoir models, one with 30% gas in the hydrate zone (case 1) and other one with 30% water in the hydrate zone (case 2). These models are further investigated for the effect of well-bore heating. The prominent results of the modeling study are: &
#8226
In case 1, second dissociation front develops at the top of hydrate zone and most substantial methane release from the hydrate occurs there. &
#8226
In case 2 (hydrate-water in the hydrate zone), because a second dissociation front at the top of hydrate zone could not fully develop due to high capillary pressure acting on liquid phase, a structure similar to ice lens formation is observed. &
#8226
Initial cumulative replenishment (first 5 years) and the replenishment rate (first 3.5 years) are higher for case 2 because, production pressure drop is felt all over the reservoir due to low compressibility of water and more hydrate is decomposed. Compared to previous works of Holder [11] and Moridis [22], amount of released gas contribution within the first 3 years of production is significantly low which is primarily attributed to the specified high capillary pressure function.
Sun, Duo. "Storage of carbon dioxide in depleted natural gas reservoirs as gas hydrate." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/59341.
Full textApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Solbraa, Even. "Equilibrium and Non-Equilibrium Thermodynamics of Natural Gas Processing." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-96.
Full textThe objective of this work has been to study equilibrium and non equilibrium situations during high pressure gas processing operations with emphasis on utilization of the high reservoir pressure. The well stream pressures of some of the condensate and gas fields in the North Sea are well above 200 bar. Currently the gas is expanded to a specified processing condition, typically 40-70 bar, before it is recompressed to the transportation conditions. It would be a considerable environmental and economic advantage to be able to process the natural gas at the well stream pressure. Knowledge of thermodynamic- and kinetic properties of natural gas systems at high pressures is needed to be able to design new high pressure process equipment.
Nowadays, reactive absorption into a methyldiethanolamine (MDEA)solution in a packed bed is a frequently used method to perform acid gas treating. The carbon dioxide removal process on the Sleipner field in the North Sea uses an aqueous MDEA solution and the operation pressure is about 100 bar. The planed carbon dioxide removal process for the Snøhvit field in the Barents Sea is the use of an activated MDEA solution.
The aim of this work has been to study high-pressure effects related to the removal of carbon dioxide from natural gas. Both modelling and experimental work on high-pressure non-equilibrium situations in gas processing operations have been done.
Few experimental measurements of mass transfer in high pressure fluid systems have been published. In this work a wetted wall column that can operate at pressures up to 200 bar was designed and constructed. The wetted wall column is a pipe made of stainless steel where the liquid is distributed as a thin liquid film on the inner pipewall while the gas flows co- or concurrent in the centre of the pipe. The experiments can be carried out with a well-defined interphase area and with relatively simple fluid mechanics. In this way we are able to isolate the effects we want to study in a simple and effective way.
Experiments where carbon dioxide was absorbed into water and MDEA solutions were performed at pressures up to 150 bar and at temperatures 25 and 40°C. Nitrogen was used as an inert gas in all experiments.
A general non-equilibrium simulation program (NeqSim) has been developed. The simulation program was implemented in the object-oriented programming language Java. Effort was taken to find an optimal object-oriented design. Despite the increasing popularity of object-oriented programming languages such as Java and C++, few publications have discussed how to implement thermodynamic and fluid mechanic models. A design for implementation of thermodynamic, mass transfer and fluid mechanic calculations in an object-oriented framework is presented in this work.
NeqSim is based on rigorous thermodynamic and fluid mechanic models. Parameter fitting routines are implemented in the simulation tool and thermodynamic-, mass transfer- and fluid mechanic models were fitted to public available experimental data. Two electrolyte equations of state were developed and implemented in the computer code. The electrolyte equations of state were used to model the thermodynamic properties of the fluid systems considered in this work (non-electrolyte, electrolyte and weak-electrolyte systems).
The first electrolyte equation of state (electrolyte ScRK-EOS) was based on a model previously developed by Furst and Renon (1993). The molecular part of the equation was based on a cubic equation of state (Scwarzentruber et.al. (1989)’s modification of the Redlich-Kwong EOS) with the Huron-Vidal mixing rule. Three ionic terms were added to this equation – a short-range ionic term, a long-range ionic term (MSA) and a Born term. The thermodynamic model has the advantage that it reduces to a standard cubic equation of state if no ions are present in the solution, and that public available interaction parameters used in the Huron-Vidal mixing rule could be utilized. The originality of this electrolyte equation of state is the use of the Huron-Vidal mixing rule and the addition of a Born term. Compared to electrolyte models based on equations for the gibbs excess energy, the electrolyte equation of state has the advantage that the extrapolation to higher pressures and solubility calculations of supercritical components is less cumbersome. The electrolyte equation of state was able to correlate and predict equilibrium properties of CO2-MDEA-water solutions with a good precision. It was also able to correlate high pressure data of systems of methane-CO2-MDEA and water.
The second thermodynamic model (electrolyte CPA-EOS) evaluated in this work is a model where the molecular interactions are modelled with the CPA (cubic plus association) equation of state (Kontogeorgios et.al., 1999) with a classical one-parameter Van der Walls mixing rule. This model has the advantage that few binary interaction parameters have to be used (even for non-ideal solutions), and that its extrapolation capability to higher pressures is expected to be good. In the CPA model the same ionic terms are used as in the electrolyte ScRK-EOS.
A general non-equilibrium two-fluid model was implemented in the simulation program developed in this work. The heat- and mass-transfer calculations were done using an advanced multicomponent mass transfer model based on non-equilibrium thermodynamics. The mass transfer model is flexible and able to simulate many types of non-equilibrium processes we find in the petroleum industry. A model for reactive mass transfer using enhancement factors was implemented for the calculation of mass transfer of CO2 into amine solutions. The mass transfer model was fitted to the available mass transfer data found in the open literature.
The simulation program was used to analyse and perform parameter fitting to the high pressure experimental data obtained during this work. The mathematical models used in NeqSim were capable of representing the experimental data of this work with a good precision. From the experimental and modelling work done, we could conclude that the mass transfer model regressed to pure low-pressure data also was able to represent the high-pressure mass transfer data with an acceptable precision. Thus the extrapolation capability of the model to high pressures was good.
For a given partial pressure of CO2 in the natural gas, calculations show a decreased CO2 capturing capacity of aqueous MDEA solutions at increased natural gas system pressure. A reduction up to 40% (at 200 bar) compared to low pressure capacity is estimated. The pressure effects can be modelled correctly by using suitable thermodynamic models for the liquid and gas. In a practical situation, the partial pressure of CO2 in the natural gas will be proportional to the total pressure. In these situations, it is shown that the CO2 capturing capacity of the MDEA solution will be increased at rising total pressures up to 200 bar. However, the increased capacity is not as large as we would expect from the higher CO2 partial pressure in the gas.
The reaction kinetics of CO2 with MDEA is shown to be relatively unaffected by the total pressure when nitrogen is used as inert gas. It is however important that the effects of thermodynamic and kinetic non- ideality in the gas and liquid phase are modelled in a consistent way. Using the simulation program NeqSim – some selected high-pressure non-equilibrium processes (e.g. absorption, pipe flow) have been studied. It is demonstrated that the model is capable of simulating equilibrium- and non-equilibrium processes important to the process- and petroleum industry.
Smith, Vicky S. "Solid-fluid equilibria in natural gas systems." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/10095.
Full textTost, Brian Christopher. "Low porosity mistaken for natural gas hydrate at Alaminos Canyon, Gulf of Mexico: Implications for gas hydrate exploration in marine sediment reservoirs." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366475207.
Full textSrinivasan, Balaji S. "The impact of reservoir properties on mixing of inert cushion and natural gas in storage reservoirs." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4653.
Full textTitle from document title page. Document formatted into pages; contains vii, 88 p. : ill. (some col.), map (part col.). Includes abstract. Includes bibliographical references (p. 47-49).
Loomis, Ian Morton. "Experiments Concerning the Commercial Extraction of Methane from Coalbed Reservoirs." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/30485.
Full textPh. D.
Choi, Jong-Won. "Geomechanics of subsurface sand production and gas storage." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39493.
Full textAtilhan, Mert. "High accuracy p-rho-t measurements up to 200 MPa between 200 K and 500 K using a compact single sinker magnetic suspension densimeter for pure and natural gas like mixtures." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1903.
Full textSaurabh, Suman. "GEOMECHANICAL STATE OF ROCKS WITH DEPLETION IN UNCONVENTIONAL COALBED METHANE RESERVOIRS." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1826.
Full textOpuwari, Mimonitu. "Petrophysical evaluation of the albian age gas bearing sandstone reservoirs of the o-m field, orange basin, South Africa." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_7221_1380806808.
Full textPetrophysical evaluation of the Albian age gas bearing sandstone reservoirs of the O-M field, Offshore South Africa has been performed. The main goal of the thesis is to evaluate the reservoir potentials of the field through the integration and comparison of results from core analysis, production data and petrography studies for the evaluation and correction of key petrophysical parameters from wireline logs which could be used to generate an effective reservoir model. A total of ten wells were evaluated and twenty eight sandstone reservoirs were encountered of which twenty four are gas bearing and four are wet within the Albian age depth interval of 2800m to 3500m. Six lithofacies (A1, A2, A3, A4, A5 and A6) were grouped
according to textural and structural features and grain size from the key wells (OP1, OP2 and OP3). Facies A6 was identified as non reservoir rock in terms of reservoir rock quality and facies A1 and A2 were regarded as the best reservoir rock quality. This study identifies the different
rock types that comprise reservoir and non reservoirs. Porosity and permeability are the key parameters for identifying the rock types and reservoir characterization. Pore throat radius was estimated from conventional core porosity and permeability with application of the Winland&rsquo
s method for assessment of reservoir rock quality on the bases of pore throat radius. Results from the Winland&rsquo
s method present five Petrofacies (Mega porous, Macro porous, Meso porous, Micro porous and Nanno porous). The best Petrofacies was mega porous rock type which corresponds to lithofacies A1 and A2. The nano porous rock type corresponds to lithofacies A6 and was subsequently classified as non reservoir rock. The volume of clay model from log was taken from the gamma-ray model corrected by Steiber equations which was based on the level of agreement between log data and the x-ray diffraction (XRD) clay data. The average volume of clay determined ranged from 1 &ndash
28 %. The field average grain density of 2.67 g/cc was determined from core data which is representative of the well formation, hence 2.67 g/cc was used to estimate porosity from the density log. Reservoir rock properties are generally good with reservoir average porosities between 10 &ndash
22 %, an average permeability of approximately 60mD. The laterolog resistivity values have been invasion corrected to yield estimates of the true formation resistivity. In general, resistivities of above 4.0 Ohm-m are productive reservoirs, an average water resistivity of 0.1 Ohm-m was estimated. Log calculated water saturation models were calibrated with capillary pressure and conventional core determined water saturations, and the Simandoux shaly sand model best agree with capillary and conventional core water saturations and was used to determine field water saturations. The reservoir average water saturations range between 23 &ndash
69 %. The study also revealed quartz as being the dominant mineral in addition to abundant chlorite as the major clay mineral. The fine textured and dispersed pore lining chlorite mineral affects the reservoir quality and may be the possible cause of the low resistivity recorded in the area. The reservoirs evaluated in the field are characterized as normally pressured with an average reservoir pressure of 4800 psi and temperature of 220 º
F. An interpreted field aquifer gradient of 0.44 psi/ft (1.01 g/cc) and gas gradient of 0.09 psi/ft (0.2 g/cc) were obtained from repeat formation test measurements. A total of eight gas water contacts were identified in six wells. For an interval to be regarded as having net pay potential, cut-off values were used to distinguish between pay and non-pay intervals. For an interval to be regarded as pay, it must have a porosity value of at least 10 %, volume of clay of less than 40 %, and water saturation of not more than 65 %. A total of twenty four reservoir intervals meet the cut-off criteria and was regarded as net pay intervals. The gross thickness of the reservoirs range from 2.4m to 31.7m and net pay interval from 1.03m to 25.15m respectively. In summary, this study contributes to scale transition issues in a complex gas bearing sandstone reservoirs and serves as a basis for analysis of petrophysical properties in a multi-scale system.
Chere, Naledi. "Sedimentological and geochemical investigations on borehole cores of the Lower Ecca Group black shales, for their gas potential : Karoo basin, South Africa." Thesis, Nelson Mandela Metropolitan University, 2015. http://hdl.handle.net/10948/d1021201.
Full textKahn, Daniel Scott. "The Blake Ridge a study of multichannel seismic reflection data /." Thesis, Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-06072004-131223/unrestricted/kahn%5Fdaniel%5Fs%5F200405%5Fms.pdf.
Full textJohnson, S. Reed. "Surface and subsurface fault and fracture systems with associated natural gas production in the Lower Mississippian and Upper Devonian, Price Formation, southern West Virginia." Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4974.
Full textTitle from document title page. Document formatted into pages; contains vii, 102 p. : ill. (some col.), maps (some col.). Includes abstract. Includes bibliographical references (p. 91-94).
Chanda, Sudipta. "PRELIMINARY EXPERIMENTAL AND MODELING STUDY OF PRESSURE DEPENDENT PERMEABILITY FOR INDONESIAN COALBED METHANE RESERVOIRS." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/1224.
Full textCerna, Cinthia Kelly Quispe 1983. "Análise integrada de testes de pressão e simulação numérica para um reservatório de gás e condensado." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265915.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-25T19:13:12Z (GMT). No. of bitstreams: 1 Cerna_CinthiaKellyQuispe_M.pdf: 4891576 bytes, checksum: 1e055010e701f9aed8364c71a0e68a06 (MD5) Previous issue date: 2014
Resumo: O comportamento de um reservatório de gás e condensado durante a depleção é altamente complexo. Quando a pressão do reservatório cai abaixo da pressão de orvalho, forma-se um banco de condensado ao redor do poço, que afeta a produtividade do poço e a composição do fluido produzido. Dados experimentais e de campo evidenciam a existência de três regiões no sentido radial, desde a zona imediata ao poço até a zona mais afastada, com variação na saturação de condensado. A primeira região é aquela mais afastada do poço, onde a pressão de reservatório é maior que a pressão de orvalho, e não se tem presença de condensado. A segunda região caracteriza-se pela formação de duas fases no reservatório, embora o condensado ainda não seja móvel nesta região. Na terceira região, a saturação de condensado alcança uma saturação crítica e observa-se o início do escoamento de duas fases. O objetivo deste trabalho é caracterizar as regiões de escoamento no reservatório onde existe formação do banco de condensado e avaliar seu impacto na produtividade do poço. Adicionalmente, busca-se comparar as diferentes técnicas de avaliação deste tipo de reservatório. A análise foi baseada em dados obtidos durante a vida produtiva do poço com uso de ferramentas analíticas e numéricas. As análises dos testes transientes de pressão, em termos de pseudopressão monofásica e bifásica, foram desenvolvidas a partir de dados do período build up de dois testes de pressão utilizando o conhecimento de curvas de permeabilidade relativa. Em seguida, foi construído um modelo numérico de simulação composicional ajustado com os dados existentes dos fluidos e do reservatório, com a finalidade de modelar o comportamento do reservatório de gás condensado. A análise integrada permitiu validar os resultados e prever o comportamento do reservatório no futuro. Como resultados da avaliação foram identificadas as três regiões de escoamento, possibilitando comparar os resultados para permeabilidade, efeito de película e distribuição radial de saturação de condensado utilizando os diferentes métodos de análise. A contribuição deste trabalho reside na integração de análise de testes de poço e simulação numérica neste tipo de reservatório. Além disso, pode-se contribuir para uma melhor gestão do reservatório e procura de soluções para reduzir o efeito de condensação retrógrada
Abstract: The behavior of a gas condensate reservoir during depletion is highly complex. A bank of condensate is formed around the wellbore when the reservoir pressure drops below the dew-point pressure. As a result, the well productivity and the composition of the produced fluid are compromised. Experimental and field data have evidenced the existence of three regions in the radial direction from the zone immediately around to the wellbore to the farthest area, with variations in fluid saturations. In the first region, farthermost from the well, the reservoir pressure is higher than dew point pressure and there is no condensate drop-out. The second region is characterized by the formation of two phases in the reservoir, however the condensate is not mobile. In the third region, the condensate saturation reaches a critical saturation and is observed the beginning of the two-phase flow. This study aims to characterize the condensate bank of the reservoir where gas condensation occurs and to evaluate the condensate bank impact in the well productivity. Additionally, it seeks to compare the different techniques of evaluation of this reservoir type. The analysis was based on pressure data obtained during its productive life, through analytical and numerical tools. The analysis of pressure transient tests, in terms of single phase and two phase pseudo-pressure, were performed on build-up data using the knowledge of relative permeability curves. Further, a numerical compositional model was built and adjusted with the data of the reservoir and its fluids, with the purpose of modeling the behavior of a gas condensate reservoir. The integrated evaluation allowed us to validate the results and predict the behavior of the reservoir in the future. Based on the analysis, three flow regions were identified and it was possible to evaluate the difference on the results for effective permeability, formation damage and radial distribution of condensate saturation using different methods. The contribution of this work lies in integrating well test analysis and numerical simulation to evaluate this type of reservoir. Moreover, results can also contribute for a better reservoir management and as a base for finding solutions to reduce the effect of retrograde condensation
Mestrado
Reservatórios e Gestão
Mestra em Ciências e Engenharia de Petróleo
Rocha, Vanderlei Souza. "Modelagem do equilíbrio de fases da formação de hidratos utilizando equações volumétricas de estado." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3137/tde-24092018-103905/.
Full textGas hydrates are important for issues that include flow assurance in oil and gas industries, carbon sequestration, natural gas transport, seawater desalinization, and purification of contaminated water. To investigate those fields and applications, temperature and pressure in which hydrates are formed must be determined. This can be done through hydrate formation and/or dissociation experiments, as well as through thermodynamic models, empirical correlations, and computational methods. In this work, the performance of the PC-SAFT in modeling the fluid phase in hydrate phase equilibrium was investigated. Its results were compared to the Peng-Robinson equation of state and to the model proposed by Klauda and Sandler. For the water molecule, different association schemes were considered. For the hydrate phase, the van der Waals and Platteuw (vdWP) equation was used. The effect of additional shells in the estimation of the Langmuir constant was assessed. Finally, equations for water fugacity in hydrate phase, as a function of temperature, were proposed. These equations were intended to be used with the PC-SAFT equation of state, and both linear or quadratic equations were considered. For comparison, when possible the software CSMGem was used to compute the equilibrium conditions. The use of the PC-SAFT EOS, along with the proposed equations, resulted in a better prediction of the equilibrium pressure as a function of temperature.
Le, Van-Hoan. "Analyses de microvolumes de gaz par spectroscopie Raman : expériences quantitatives et modélisation des mélanges CO₂-CH₄-N₂." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0178.
Full textQuantitative knowledge of species trapped within fluid inclusions provides key information to better understand geological processes as well as to reconstruct the conditions of paleofluid circulation. CO₂, CH₄, and N₂ are among the most dominant gas species omnipresent in various geological environments, but their quantitative PVX calibration data are not fully established yet. Using the previously published data can therefore lead to non-quantified errors, especially when applied to geological fluids containing generally several substances at elevated pressure and density. The aim of this work is to provide accurate calibration data for the simultaneous determination of PVX properties of pure gases or any binary and ternary mixtures of CO₂, CH₄, and N₂ over 5 to 600 bars at a fixed temperature, directly from Raman spectra. For this, gas mixtures were prepared and compressed using a mixer (GasMix AlyTech) coupled with a homemade pressurization system. Raman in situ analyses of gas mixtures were performed at controlled conditions using an improved HPOC system (High-Pressure Optical Cell) with a transparent microcapillary containing the prepared gas mixtures, placed on a heating-cooling stage (Linkam CAP500). Overall, the uncertainty of the measurement of the PVX properties of fluid inclusions from our calibration equations at 22 or 32 °C is < ± 1 mol%, ~ ± 20 bars, and ~ ± 0.02 g.cm-³ for molar proportion, pressure and density, respectively. The ensuing aim of the project is to interpret the variation trends of the peak position of the CH₄ and N₂ ν1 band for an in-depth understanding. Two theoretical models, i.e., Lennard-Jones 6-12 potential energy approximation and Perturbed hard-sphere fluid model were involved to quantitatively assess the contribution of the attractive and repulsive intermolecular interaction forces to the pressure-induced frequency shifts. A predictive model was also provided to predict the variation trend of the CH₄ ν1 band over a pressure range up to 3000 bars as a function of pressure and composition. Furthermore, the applicability of our calibration data to other laboratories and apparatus and to gas mixtures that contain a small amount of other species (e.g., H2, H2S) was discussed and evaluated. New universal calibration data applicable for other laboratories were then provided. A computer program “FRAnCIs” was also developed to make the application of our calibration data as convenient as possible via a user-friendly interface
Quisefit, Jean-Paul. "Physico-chimie de l'aerosol volcanique : modelisation thermochimique du refroidissement des emanations de haute temperature." Paris 7, 1988. http://www.theses.fr/1988PA077143.
Full textDahi, Taleghani Arash. "Analysis of hydraulic fracture propagation in fractured reservoirs : an improved model for the interaction between induced and natural fractures." 2009. http://hdl.handle.net/2152/18381.
Full texttext
Mimonitu, Opuwari. "Petrophysical evaluation of the Albian Age gas bearing sandstone reservoirs of the O-M field, Orange Basin, South Africa." Thesis, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_7288_1318574708.
Full textMantilla, Ivan. "Accurate Measurements and Modeling of the PpT Behavior of Pure Substances and Natural Gas-Like Hydrocarbon Mixtures." Thesis, 2012. http://hdl.handle.net/1969.1/ETD-TAMU-2012-08-11824.
Full textBasha, Omar 1988. "Modeling of LNG Pool Spreading and Vaporization." Thesis, 2012. http://hdl.handle.net/1969.1/148176.
Full text