Journal articles on the topic 'Natural gradient descent'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Natural gradient descent.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Stokes, James, Josh Izaac, Nathan Killoran, and Giuseppe Carleo. "Quantum Natural Gradient." Quantum 4 (May 25, 2020): 269. http://dx.doi.org/10.22331/q-2020-05-25-269.
Full textRattray, Magnus, David Saad, and Shun-ichi Amari. "Natural Gradient Descent for On-Line Learning." Physical Review Letters 81, no. 24 (December 14, 1998): 5461–64. http://dx.doi.org/10.1103/physrevlett.81.5461.
Full textHeskes, Tom. "On “Natural” Learning and Pruning in Multilayered Perceptrons." Neural Computation 12, no. 4 (April 1, 2000): 881–901. http://dx.doi.org/10.1162/089976600300015637.
Full textRattray, Magnus, and David Saad. "Analysis of natural gradient descent for multilayer neural networks." Physical Review E 59, no. 4 (April 1, 1999): 4523–32. http://dx.doi.org/10.1103/physreve.59.4523.
Full textInoue, Masato, Hyeyoung Park, and Masato Okada. "On-Line Learning Theory of Soft Committee Machines with Correlated Hidden Units –Steepest Gradient Descent and Natural Gradient Descent–." Journal of the Physical Society of Japan 72, no. 4 (April 15, 2003): 805–10. http://dx.doi.org/10.1143/jpsj.72.805.
Full textZhao, Pu, Pin-yu Chen, Siyue Wang, and Xue Lin. "Towards Query-Efficient Black-Box Adversary with Zeroth-Order Natural Gradient Descent." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 6909–16. http://dx.doi.org/10.1609/aaai.v34i04.6173.
Full textYang, Howard Hua, and Shun-ichi Amari. "Complexity Issues in Natural Gradient Descent Method for Training Multilayer Perceptrons." Neural Computation 10, no. 8 (November 1, 1998): 2137–57. http://dx.doi.org/10.1162/089976698300017007.
Full textPark, Hyeyoung, and Kwanyong Lee. "Adaptive Natural Gradient Method for Learning of Stochastic Neural Networks in Mini-Batch Mode." Applied Sciences 9, no. 21 (October 28, 2019): 4568. http://dx.doi.org/10.3390/app9214568.
Full textMUKUNO, Jun-ichi, and Hajime MATSUI. "Natural Gradient Descent of Complex-Valued Neural Networks Invariant under Rotations." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E102.A, no. 12 (December 1, 2019): 1988–96. http://dx.doi.org/10.1587/transfun.e102.a.1988.
Full textNeumann, K., C. Strub, and J. J. Steil. "Intrinsic plasticity via natural gradient descent with application to drift compensation." Neurocomputing 112 (July 2013): 26–33. http://dx.doi.org/10.1016/j.neucom.2012.12.047.
Full textZhuo, Li’an, Baochang Zhang, Chen Chen, Qixiang Ye, Jianzhuang Liu, and David Doermann. "Calibrated Stochastic Gradient Descent for Convolutional Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 9348–55. http://dx.doi.org/10.1609/aaai.v33i01.33019348.
Full textZhao, Junsheng, Haikun Wei, Chi Zhang, Weiling Li, Weili Guo, and Kanjian Zhang. "Natural Gradient Learning Algorithms for RBF Networks." Neural Computation 27, no. 2 (February 2015): 481–505. http://dx.doi.org/10.1162/neco_a_00689.
Full textSchraudolph, Nicol N. "Fast Curvature Matrix-Vector Products for Second-Order Gradient Descent." Neural Computation 14, no. 7 (July 1, 2002): 1723–38. http://dx.doi.org/10.1162/08997660260028683.
Full textAl-batah, Mohammad Subhi, Mutasem Sh Alkhasawneh, Lea Tien Tay, Umi Kalthum Ngah, Habibah Hj Lateh, and Nor Ashidi Mat Isa. "Landslide Occurrence Prediction Using Trainable Cascade Forward Network and Multilayer Perceptron." Mathematical Problems in Engineering 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/512158.
Full textYang, Howard Hua, and Shun-ichi Amari. "Adaptive Online Learning Algorithms for Blind Separation: Maximum Entropy and Minimum Mutual Information." Neural Computation 9, no. 7 (October 1, 1997): 1457–82. http://dx.doi.org/10.1162/neco.1997.9.7.1457.
Full textNitta, Tohru. "Learning Dynamics of a Single Polar Variable Complex-Valued Neuron." Neural Computation 27, no. 5 (May 2015): 1120–41. http://dx.doi.org/10.1162/neco_a_00729.
Full textDa Costa, Lancelot, Thomas Parr, Biswa Sengupta, and Karl Friston. "Neural Dynamics under Active Inference: Plausibility and Efficiency of Information Processing." Entropy 23, no. 4 (April 12, 2021): 454. http://dx.doi.org/10.3390/e23040454.
Full textBoffi, Nicholas M., and Jean-Jacques E. Slotine. "Implicit Regularization and Momentum Algorithms in Nonlinearly Parameterized Adaptive Control and Prediction." Neural Computation 33, no. 3 (March 2021): 590–673. http://dx.doi.org/10.1162/neco_a_01360.
Full textClémençon, Stephan, Patrice Bertail, Emilie Chautru, and Guillaume Papa. "Optimal survey schemes for stochastic gradient descent with applications to M-estimation." ESAIM: Probability and Statistics 23 (2019): 310–37. http://dx.doi.org/10.1051/ps/2018021.
Full textDuan, Xiaomin. "A Natural Gradient Descent Algorithm for the Solution of Lyapunov Equations Based on the Geodesic Distance." Journal of Computational Mathematics 32, no. 1 (June 2014): 93–106. http://dx.doi.org/10.4208/jcm.1310-m4225.
Full textWu, Jiann-Ming. "Natural Discriminant Analysis Using Interactive Potts Models." Neural Computation 14, no. 3 (March 1, 2002): 689–713. http://dx.doi.org/10.1162/089976602317250951.
Full textDuan, Xiaomin, Huafei Sun, Linyu Peng, and Xinyu Zhao. "A natural gradient descent algorithm for the solution of discrete algebraic Lyapunov equations based on the geodesic distance." Applied Mathematics and Computation 219, no. 19 (June 2013): 9899–905. http://dx.doi.org/10.1016/j.amc.2013.03.119.
Full textWibisono, Andre, Ashia C. Wilson, and Michael I. Jordan. "A variational perspective on accelerated methods in optimization." Proceedings of the National Academy of Sciences 113, no. 47 (November 9, 2016): E7351—E7358. http://dx.doi.org/10.1073/pnas.1614734113.
Full textMovellan, Javier R. "A Learning Theorem for Networks at Detailed Stochastic Equilibrium." Neural Computation 10, no. 5 (July 1, 1998): 1157–78. http://dx.doi.org/10.1162/089976698300017395.
Full textGRUNDSTROM, ERIC L., and JAMES A. REGGIA. "LEARNING ACTIVATION RULES RATHER THAN CONNECTION WEIGHTS." International Journal of Neural Systems 07, no. 02 (May 1996): 129–47. http://dx.doi.org/10.1142/s0129065796000117.
Full textGelenbe, Erol, and Stelios Timotheou. "Random Neural Networks with Synchronized Interactions." Neural Computation 20, no. 9 (September 2008): 2308–24. http://dx.doi.org/10.1162/neco.2008.04-07-509.
Full textBautembach, Dennis, Iason Oikonomidis, and Antonis Argyros. "Filling the Joints: Completion and Recovery of Incomplete 3D Human Poses." Technologies 6, no. 4 (October 30, 2018): 97. http://dx.doi.org/10.3390/technologies6040097.
Full textSUN, YIJUN, SINISA TODOROVIC, and JIAN LI. "REDUCING THE OVERFITTING OF ADABOOST BY CONTROLLING ITS DATA DISTRIBUTION SKEWNESS." International Journal of Pattern Recognition and Artificial Intelligence 20, no. 07 (November 2006): 1093–116. http://dx.doi.org/10.1142/s0218001406005137.
Full textGrüning, André. "Elman Backpropagation as Reinforcement for Simple Recurrent Networks." Neural Computation 19, no. 11 (November 2007): 3108–31. http://dx.doi.org/10.1162/neco.2007.19.11.3108.
Full textFominyh, Аlexander V. "Method for finding a solution to a linear nonstationary interval ОDЕ system." Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes 17, no. 2 (2021): 148–65. http://dx.doi.org/10.21638/11701/spbu10.2021.205.
Full textGamal, Donia, Marco Alfonse, El-Sayed M. El-Horbaty, and Abdel-Badeeh M. Salem. "Analysis of Machine Learning Algorithms for Opinion Mining in Different Domains." Machine Learning and Knowledge Extraction 1, no. 1 (December 8, 2018): 224–34. http://dx.doi.org/10.3390/make1010014.
Full textPal, Dipan K., and Marios Savvides. "Non-Parametric Transformation Networks for Learning General Invariances from Data." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4667–74. http://dx.doi.org/10.1609/aaai.v33i01.33014667.
Full textIbrahim, Syahira, Norhaliza Abdul Wahab, Fatimah Sham Ismail, and Yahaya Md Sam. "Optimization of artificial neural network topology for membrane bioreactor filtration using response surface methodology." IAES International Journal of Artificial Intelligence (IJ-AI) 9, no. 1 (March 1, 2020): 117. http://dx.doi.org/10.11591/ijai.v9.i1.pp117-125.
Full textGuttenberg, Nicholas, Nathaniel Virgo, and Alexandra Penn. "On the Potential for Open-Endedness in Neural Networks." Artificial Life 25, no. 2 (May 2019): 145–67. http://dx.doi.org/10.1162/artl_a_00286.
Full textSu, Fang, Hai-Yang Shang, and Jing-Yan Wang. "Low-Rank Deep Convolutional Neural Network for Multitask Learning." Computational Intelligence and Neuroscience 2019 (May 20, 2019): 1–10. http://dx.doi.org/10.1155/2019/7410701.
Full textHartman, Eric, and James D. Keeler. "Predicting the Future: Advantages of Semilocal Units." Neural Computation 3, no. 4 (December 1991): 566–78. http://dx.doi.org/10.1162/neco.1991.3.4.566.
Full textDuong, Tuan A., Margaret A. Ryan, and Vu A. Duong. "Space Invariant Independent Component Analysis and ENose for Detection of Selective Chemicals in an Unknown Environment." Journal of Advanced Computational Intelligence and Intelligent Informatics 11, no. 10 (December 20, 2007): 1197–203. http://dx.doi.org/10.20965/jaciii.2007.p1197.
Full textMaillard, Jean, Stephen Clark, and Dani Yogatama. "Jointly learning sentence embeddings and syntax with unsupervised Tree-LSTMs." Natural Language Engineering 25, no. 4 (July 2019): 433–49. http://dx.doi.org/10.1017/s1351324919000184.
Full textDiao, Huabin, Yuexing Hao, Shaoyun Xu, and Gongyan Li. "Implementation of Lightweight Convolutional Neural Networks via Layer-Wise Differentiable Compression." Sensors 21, no. 10 (May 16, 2021): 3464. http://dx.doi.org/10.3390/s21103464.
Full textPetrov, Petr V., and Gregory A. Newman. "Estimation of seismic source parameters in 3D elastic media using the reciprocity theorem." GEOPHYSICS 84, no. 6 (November 1, 2019): R963—R976. http://dx.doi.org/10.1190/geo2018-0283.1.
Full textRoman, Muhammad, Abdul Shahid, Muhammad Irfan Uddin, Qiaozhi Hua, and Shazia Maqsood. "Exploiting Contextual Word Embedding of Authorship and Title of Articles for Discovering Citation Intent Classification." Complexity 2021 (April 3, 2021): 1–13. http://dx.doi.org/10.1155/2021/5554874.
Full textDong, Yi, Stefan Mihalas, Alexander Russell, Ralph Etienne-Cummings, and Ernst Niebur. "Estimating Parameters of Generalized Integrate-and-Fire Neurons from the Maximum Likelihood of Spike Trains." Neural Computation 23, no. 11 (November 2011): 2833–67. http://dx.doi.org/10.1162/neco_a_00196.
Full textSaxena, Anshul, Peter McGranaghan, Muni Rubens, Joseph Salami, Raees Tonse, Amanda Lindeman, Michelle Keller, Paul Lindeman, and Emir Veledar. "Natural language processing (NLP) and machine learning (ML) model for predicting CMS OP-35 categories among patients receiving chemotherapy." Journal of Clinical Oncology 39, no. 15_suppl (May 20, 2021): e13591-e13591. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e13591.
Full textKim, Youngjun, Paul M. Heider, Isabel RH Lally, and Stéphane M. Meystre. "A Hybrid Model for Family History Information Identification and Relation Extraction: Development and Evaluation of an End-to-End Information Extraction System." JMIR Medical Informatics 9, no. 4 (April 22, 2021): e22797. http://dx.doi.org/10.2196/22797.
Full textGarg, Raghu, Himanshu Aggarwal, Piera Centobelli, and Roberto Cerchione. "Extracting Knowledge from Big Data for Sustainability: A Comparison of Machine Learning Techniques." Sustainability 11, no. 23 (November 25, 2019): 6669. http://dx.doi.org/10.3390/su11236669.
Full textElzeki, Omar M., Mahmoud Shams, Shahenda Sarhan, Mohamed Abd Elfattah, and Aboul Ella Hassanien. "COVID-19: a new deep learning computer-aided model for classification." PeerJ Computer Science 7 (February 18, 2021): e358. http://dx.doi.org/10.7717/peerj-cs.358.
Full textDelfin, Leandro Morera, Raul Pinto Elias, Humberto de Jesus Ochoa Dominguez, and Osslan Osiris Vergara Villegas. "Driving Maximal Frequency Content and Natural Slopes Sharpening for Image Amplification with High Scale Factor." Current Medical Imaging Formerly Current Medical Imaging Reviews 16, no. 1 (January 6, 2020): 36–49. http://dx.doi.org/10.2174/1573405614666180319160045.
Full textCuriel, D. T., C. Vogelmeier, R. C. Hubbard, L. E. Stier, and R. G. Crystal. "Molecular basis of alpha 1-antitrypsin deficiency and emphysema associated with the alpha 1-antitrypsin Mmineral springs allele." Molecular and Cellular Biology 10, no. 1 (January 1990): 47–56. http://dx.doi.org/10.1128/mcb.10.1.47.
Full textCuriel, D. T., C. Vogelmeier, R. C. Hubbard, L. E. Stier, and R. G. Crystal. "Molecular basis of alpha 1-antitrypsin deficiency and emphysema associated with the alpha 1-antitrypsin Mmineral springs allele." Molecular and Cellular Biology 10, no. 1 (January 1990): 47–56. http://dx.doi.org/10.1128/mcb.10.1.47-56.1990.
Full textNitta, Tohru. "Natural Gradient Descent for Training Stochastic Complex-Valued Neural Networks." International Journal of Advanced Computer Science and Applications 5, no. 7 (2014). http://dx.doi.org/10.14569/ijacsa.2014.050729.
Full text