Journal articles on the topic 'Natural killer cells immunotherapy chimeric antigen receptor tumor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Natural killer cells immunotherapy chimeric antigen receptor tumor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Joseph, Murphy. "Natural Killer Cells: Future Role for Cancer Immunotherapy." International Journal of Pharmaceutical and Bio-Medical Science 02, no. 06 (2022): 116–17. https://doi.org/10.5281/zenodo.6619677.
Full textZhao, Yu, and Xiaorong Zhou. "Engineering chimeric antigen receptor-natural killer cells for cancer immunotherapy." Immunotherapy 12, no. 9 (2020): 653–64. http://dx.doi.org/10.2217/imt-2019-0139.
Full textWu, Ming-Ru, Tong Zhang, and Charles Sentman. "NKp30-based chimeric antigen receptors promote T-cell effector functions and anti-tumor efficacy (53.11)." Journal of Immunology 188, no. 1_Supplement (2012): 53.11. http://dx.doi.org/10.4049/jimmunol.188.supp.53.11.
Full textHu, Yuan, Zhi-gang Tian, and Cai Zhang. "Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy." Acta Pharmacologica Sinica 39, no. 2 (2017): 167–76. http://dx.doi.org/10.1038/aps.2017.125.
Full textRobbins, Gabrielle, Kenta Yamomoto, Walker Lahr, and Joseph Skeate. "Abstract A021: Chimeric antigen receptor armored natural killer cell immunotherapy for osteosarcoma." Clinical Cancer Research 28, no. 18_Supplement (2022): A021. http://dx.doi.org/10.1158/1557-3265.sarcomas22-a021.
Full textIyoda, Tomonori, Satoru Yamasaki, Shogo Ueda, Kanako Shimizu, and Shin-ichiro Fujii. "Natural Killer T and Natural Killer Cell-Based Immunotherapy Strategies Targeting Cancer." Biomolecules 13, no. 2 (2023): 348. http://dx.doi.org/10.3390/biom13020348.
Full textZhang, Tong, Bethany A. Lemoi, and Charles L. Sentman. "Chimeric NK-receptor–bearing T cells mediate antitumor immunotherapy." Blood 106, no. 5 (2005): 1544–51. http://dx.doi.org/10.1182/blood-2004-11-4365.
Full textSt-Pierre, Frederique, Shailender Bhatia, and Sunandana Chandra. "Harnessing Natural Killer Cells in Cancer Immunotherapy: A Review of Mechanisms and Novel Therapies." Cancers 13, no. 8 (2021): 1988. http://dx.doi.org/10.3390/cancers13081988.
Full textSherpally, Deepak, and Ashish Manne. "Advancing Immunotherapy in Pancreatic Cancer: A Brief Review of Emerging Adoptive Cell Therapies." Cancers 17, no. 4 (2025): 589. https://doi.org/10.3390/cancers17040589.
Full textZhurman, V. N., and E. V. Eliseeva. "Vaccination strategies and adoptive immunotherapy for ovarian cancer. Literature review." Hirurg (Surgeon), no. 3 (June 23, 2023): 58–64. http://dx.doi.org/10.33920/med-15-2303-06.
Full textBorobova, E. A., and A. A. Zheravin. "Natural killer cels in immunotherapy for cancer." Siberian journal of oncology 17, no. 6 (2019): 97–104. http://dx.doi.org/10.21294/1814-4861-2018-17-6-97-104.
Full textFedorova, P. O. "CAR natural killer cell therapy: Natural killer cell activation and expansion." Acta Biomedica Scientifica 9, no. 5 (2024): 53–65. http://dx.doi.org/10.29413/abs.2024-9.5.6.
Full textMorimoto, Takayuki, Tsutomu Nakazawa, Ryosuke Maeoka, Ichiro Nakagawa, Takahiro Tsujimura, and Ryosuke Matsuda. "Natural Killer Cell-Based Immunotherapy against Glioblastoma." International Journal of Molecular Sciences 24, no. 3 (2023): 2111. http://dx.doi.org/10.3390/ijms24032111.
Full textSimon, Bianca, Manuel Wiesinger, Johannes März, et al. "The Generation of CAR-Transfected Natural Killer T Cells for the Immunotherapy of Melanoma." International Journal of Molecular Sciences 19, no. 8 (2018): 2365. http://dx.doi.org/10.3390/ijms19082365.
Full textVu, Binh Thanh, Dat Tan Le, and Phuc Van Pham. "Synergistic effect of chimeric antigen receptors and cytokine-induced killer cells: An innovative combination for cancer therapy." Biomedical Research and Therapy 3, no. 06 (2016): 653–65. http://dx.doi.org/10.15419/bmrat.v3i06.99.
Full textThadi, Anusha, Marian Khalili, William Morano, Scott Richard, Steven Katz, and Wilbur Bowne. "Early Investigations and Recent Advances in Intraperitoneal Immunotherapy for Peritoneal Metastasis." Vaccines 6, no. 3 (2018): 54. http://dx.doi.org/10.3390/vaccines6030054.
Full textBachiller, Mireia, Anthony M. Battram, Lorena Perez-Amill, and Beatriz Martín-Antonio. "Natural Killer Cells in Immunotherapy: Are We Nearly There?" Cancers 12, no. 11 (2020): 3139. http://dx.doi.org/10.3390/cancers12113139.
Full textAhmadnia, Ali, Saeed Mohammadi, Ahad Yamchi, et al. "Augmenting the Antitumor Efficacy of Natural Killer Cells via SynNotch Receptor Engineering for Targeted IL-12 Secretion." Current Issues in Molecular Biology 46, no. 4 (2024): 2931–45. http://dx.doi.org/10.3390/cimb46040183.
Full textQin, Vicky Mengfei, Criselle D’Souza, Paul J. Neeson, and Joe Jiang Zhu. "Chimeric Antigen Receptor beyond CAR-T Cells." Cancers 13, no. 3 (2021): 404. http://dx.doi.org/10.3390/cancers13030404.
Full textHermanson, David L., Zhenya Ni, David A. Knorr, et al. "Functional Chimeric Antigen Receptor-Expressing Natural Killer Cells Derived From Human Pluripotent Stem Cells." Blood 122, no. 21 (2013): 896. http://dx.doi.org/10.1182/blood.v122.21.896.896.
Full textZhang, Congcong, Jasmin Röder, Anne Scherer, et al. "Bispecific antibody-mediated redirection of NKG2D-CAR natural killer cells facilitates dual targeting and enhances antitumor activity." Journal for ImmunoTherapy of Cancer 9, no. 10 (2021): e002980. http://dx.doi.org/10.1136/jitc-2021-002980.
Full textRobbins, Gabrielle M., Kenta Yamamoto, Joshua Krueger, Walker Lahr, Joseph Skeate, and Branden Moriarity. "Abstract 2836: Genome engineered natural killer cell immunotherapy against osteosarcoma." Cancer Research 82, no. 12_Supplement (2022): 2836. http://dx.doi.org/10.1158/1538-7445.am2022-2836.
Full textHege, Kristen M., Keegan S. Cooke, Mitchell H. Finer, Krisztina M. Zsebo, and Margo R. Roberts. "Systemic T Cell–independent Tumor Immunity after Transplantation of Universal Receptor–modified Bone Marrow into SCID Mice." Journal of Experimental Medicine 184, no. 6 (1996): 2261–70. http://dx.doi.org/10.1084/jem.184.6.2261.
Full textShin, Min Hwa, Eunha Oh, Yunjeong Kim, et al. "Recent Advances in CAR-Based Solid Tumor Immunotherapy." Cells 12, no. 12 (2023): 1606. http://dx.doi.org/10.3390/cells12121606.
Full textShimizu, Kanako, Tomonori Iyoda, Satoru Yamasaki, Norimitsu Kadowaki, Arinobu Tojo, and Shin-ichiro Fujii. "NK and NKT Cell-Mediated Immune Surveillance against Hematological Malignancies." Cancers 12, no. 4 (2020): 817. http://dx.doi.org/10.3390/cancers12040817.
Full textLee, Maxwell Y., Yvette Robbins, Cem Sievers, et al. "Chimeric antigen receptor engineered NK cellular immunotherapy overcomes the selection of T-cell escape variant cancer cells." Journal for ImmunoTherapy of Cancer 9, no. 3 (2021): e002128. http://dx.doi.org/10.1136/jitc-2020-002128.
Full textKravchenko, Yu E., D. I. Gagarinskaya, E. I. Frolova, and S. P. Chumakov. "Chimeric antigen receptor expression in natural killer cell line NK-92 by transduction with lentiviral particles pseudotyped with the surface glycoproteins of the measles virus vaccine strain." NANOMEDICINE, no. 6 (December 31, 2018): 155–61. http://dx.doi.org/10.24075/brsmu.2018.091.
Full textTemme, Achim, and Marc Schmitz. "Chimeric antigen receptor-engineered primary natural killer cells: a tool to improve adoptive tumor immunotherapy." Immunotherapy 8, no. 9 (2016): 983–86. http://dx.doi.org/10.2217/imt-2016-0072.
Full textZhang, Jianguang, Huifang Zheng, and Yong Diao. "Natural Killer Cells and Current Applications of Chimeric Antigen Receptor-Modified NK-92 Cells in Tumor Immunotherapy." International Journal of Molecular Sciences 20, no. 2 (2019): 317. http://dx.doi.org/10.3390/ijms20020317.
Full textDella Chiesa, Mariella, Chiara Setti, Chiara Giordano, et al. "NK Cell-Based Immunotherapy in Colorectal Cancer." Vaccines 10, no. 7 (2022): 1033. http://dx.doi.org/10.3390/vaccines10071033.
Full textKusmartsev, Sergei, Johaness Vieweg та Victor Prima. "Development of human NKG2D-CD3ε chimeric antigen receptor (CAR) for T-cell-mediated cancer immunotherapy." Journal of Clinical Oncology 35, № 7_suppl (2017): 150. http://dx.doi.org/10.1200/jco.2017.35.7_suppl.150.
Full textXian, Yunjia, та Lu Wen. "CARBeyond αβ T Cells: Unleashing NK Cells, Macrophages, and γδ T Lymphocytes Against Solid Tumors". Vaccines 13, № 6 (2025): 654. https://doi.org/10.3390/vaccines13060654.
Full textSayegh, Mark, Shoubao Ma, and Jianhua Yu. "Application of natural killer immunotherapy in blood cancers and solid tumors." Current Opinion in Oncology 35, no. 5 (2023): 446–52. http://dx.doi.org/10.1097/cco.0000000000000968.
Full textFeng, Yachan, Haojie Zhang, Jiangtao Shao, et al. "Research Progress of Nanomaterials Acting on NK Cells in Tumor Immunotherapy and Imaging." Biology 13, no. 3 (2024): 153. http://dx.doi.org/10.3390/biology13030153.
Full textXiao, Jiani, Tianxiang Zhang, Fei Gao, et al. "Natural Killer Cells: A Promising Kit in the Adoptive Cell Therapy Toolbox." Cancers 14, no. 22 (2022): 5657. http://dx.doi.org/10.3390/cancers14225657.
Full textLi, Wangshu, Xiuying Wang, Xu Zhang, Aziz ur Rehman Aziz, and Daqing Wang. "CAR-NK Cell Therapy: A Transformative Approach to Overcoming Oncological Challenges." Biomolecules 14, no. 8 (2024): 1035. http://dx.doi.org/10.3390/biom14081035.
Full textGossel, Leonie D. H., Catrin Heim, Lisa-Marie Pfeffermann, et al. "Retargeting of NK-92 Cells against High-Risk Rhabdomyosarcomas by Means of an ERBB2 (HER2/Neu)-Specific Chimeric Antigen Receptor." Cancers 13, no. 6 (2021): 1443. http://dx.doi.org/10.3390/cancers13061443.
Full textKlaihmon, Phatchanat, Xing Kang, Surapol Issaragrisil, and Sudjit Luanpitpong. "Generation and Functional Characterization of Anti-CD19 Chimeric Antigen Receptor-Natural Killer Cells from Human Induced Pluripotent Stem Cells." International Journal of Molecular Sciences 24, no. 13 (2023): 10508. http://dx.doi.org/10.3390/ijms241310508.
Full textHeczey, Andras, Daofeng Liu, Amy Courtney, et al. "NKT cells as a novel platform for cancer immunotherapy with chimeric antigen receptors (P2038)." Journal of Immunology 190, no. 1_Supplement (2013): 132.9. http://dx.doi.org/10.4049/jimmunol.190.supp.132.9.
Full textWang, Yuxiao, Michele Gerber, Michael Gorgievski, et al. "Abstract 3612: Preclinical & clinical activity of autologous mRNA engineered chimeric antigen receptor monocytes for targeted cancer immunotherapy." Cancer Research 84, no. 6_Supplement (2024): 3612. http://dx.doi.org/10.1158/1538-7445.am2024-3612.
Full textWinidmanokul, Peeranut, Aussara Panya, and Seiji Okada. "Tri-specific killer engager: unleashing multi-synergic power against cancer." Exploration of Targeted Anti-tumor Therapy 5, no. 2 (2024): 432–48. http://dx.doi.org/10.37349/etat.2024.00227.
Full textRotolo, Ramona, Valeria Leuci, Chiara Donini, et al. "CAR-Based Strategies beyond T Lymphocytes: Integrative Opportunities for Cancer Adoptive Immunotherapy." International Journal of Molecular Sciences 20, no. 11 (2019): 2839. http://dx.doi.org/10.3390/ijms20112839.
Full textMorcillo-Martín-Romo, Paula, Javier Valverde-Pozo, María Ortiz-Bueno, et al. "The Role of NK Cells in Cancer Immunotherapy: Mechanisms, Evasion Strategies, and Therapeutic Advances." Biomedicines 13, no. 4 (2025): 857. https://doi.org/10.3390/biomedicines13040857.
Full textZhuang, Xiaoxuan, and Eric O. Long. "CD28 homolog is a strong activator of natural killer cells for lysis of B7H7-positive tumor cells." Journal of Immunology 202, no. 1_Supplement (2019): 134.5. http://dx.doi.org/10.4049/jimmunol.202.supp.134.5.
Full textGunduz, Mehmet, Pinar Ataca Atilla, and Erden Atilla. "New Orders to an Old Soldier: Optimizing NK Cells for Adoptive Immunotherapy in Hematology." Biomedicines 9, no. 9 (2021): 1201. http://dx.doi.org/10.3390/biomedicines9091201.
Full textSu, Yinghan, Jiang Li, Weidan Ji, et al. "Triple-serotype chimeric oncolytic adenovirus exerts multiple synergistic mechanisms against solid tumors." Journal for ImmunoTherapy of Cancer 10, no. 5 (2022): e004691. http://dx.doi.org/10.1136/jitc-2022-004691.
Full textPanagiotou, Emmanouil, Nikolaos K. Syrigos, Andriani Charpidou, Elias Kotteas, and Ioannis A. Vathiotis. "CD24: A Novel Target for Cancer Immunotherapy." Journal of Personalized Medicine 12, no. 8 (2022): 1235. http://dx.doi.org/10.3390/jpm12081235.
Full textIslam, Rasa, Aleta Pupovac, Vera Evtimov, et al. "Enhancing a Natural Killer: Modification of NK Cells for Cancer Immunotherapy." Cells 10, no. 5 (2021): 1058. http://dx.doi.org/10.3390/cells10051058.
Full textYe, Ziyun A. "The Advances and Challenges of CAR-NK Cells for Tumor Immunotherapy." E3S Web of Conferences 131 (2019): 01001. http://dx.doi.org/10.1051/e3sconf/201913101001.
Full textTamura, Hideto, Mariko Ishibashi, Mika Sunakawa, and Koiti Inokuchi. "Immunotherapy for Multiple Myeloma." Cancers 11, no. 12 (2019): 2009. http://dx.doi.org/10.3390/cancers11122009.
Full text