Dissertations / Theses on the topic 'Nätverks-RTK'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 27 dissertations / theses for your research on the topic 'Nätverks-RTK.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Allenby, Patrick. "Enkelstations-RTK eller Nätverks-RTK : I Naturvårdsuppdrag." Thesis, Karlstads universitet, Institutionen för geografi, medier och kommunikation, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-33997.
Full textAhrenberg, Magnus, and Andreas Olofsson. "En nogrannhetsjämförelse mellan Nätverks-Rtk Och Nätverks-DGPS." Thesis, University West, Department of Technology, Mathematics and Computer Science, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-704.
Full textBjarneskär, Anneli, and Eva Eriksson. "GPS : Nätverks-RTK eller RTK med Fast referensstation i Vänersborgs kommun." Thesis, University West, Department of Technology, Mathematics and Computer Science, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-698.
Full textMorén, Lena, and Matilda Stenbacka. "Fördröjning och bortfall av nätverkskorrektioner : osäkerhetskällor för nätverks-RTK." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-16565.
Full textNätverks-RTK är en realtidsteknik för noggrann positionering med hjälp av Global Navigation Satellite Systems (GNSS). Tekniken innebär att användaren utnyttjar korrektionsdata från ett nätverk av GNSS-mottagare med kända positioner (referensstationer) för att minska osäkerheten i positionen för den egna GNSS-mottagaren (rover). Detta ställer dock krav på att korrektionsdata kan överföras problemfritt till användaren i realtid. Vanligen sker den överföringen via mobiltelefoni. Lantmäteriet driver en rikstäckande nätverks-RTK-tjänst, där användarna kan erhålla korrektionsdata via GSM eller mobilt Internet (GPRS). Nätverks-RTK-tjänsten baseras på ett rikstäckande nät av fasta referensstationer för GNSS, SWEPOS, vilket också används för andra tillämpningar. Syftet med studien är att undersöka hur fördröjning och bortfall i överföringen av nätverkskorrektioner påverkar mätning med SWEPOS nätverks-RTK-tjänst. För det ändamålet användes tre mottagare av fabrikaten Leica, Trimble och Topcon som parallellt tog emot signaler via en fast extern GNSS-antenn under mycket goda mottagningsförhållanden. En särskild programvara användes för att skapa fördröjningar och bortfall av korrektionsdata till de tre mottagarna. Resultaten visade att tröskelvärdet, där fördröjning och bortfall gör att mottagarna inte längre kan beräkna en noggrann position, varierade mellan fabrikaten. Leica var mest känslig för bortfall, Trimble för fördröjningar, medan Topcon stod sig bra för båda. Vid ny initialisering av fixlösning krävdes att databortfall och fördröjning inte var för stora för någon av fabrikaten. Positionsavvikelserna beroende på bortfall och fördröjning av korrektionsmeddelanden visar på en signifikant skillnad mellan radiella planavvikelser och höjdavvikelser, speciellt vid höga bortfall. Fördröjningar på 0–4 s och olika bortfall har generellt liten påverkan på standardosäkerheternas värden i latitud- och longitudled. I höjdled är genomgående standardosäkerheten 1,5–2 gånger större än vad den är i planled. Baslinjelängdens betydelse är inte så stor, en marginell ökning av standardosäkerheten kunde ses vid ökning från 10 km till 30 km.
Johansson, Daniel, and Sören Persson. "Kommunikationsalternativ för nätverks-RTK : - virtuell referensstation kontra nätverksmeddelande." Thesis, Högskolan i Gävle, Institutionen för teknik och byggd miljö, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-3769.
Full textWhen using network RTK the control centre needs to communicate with the user's GNSS receivers in an efficient manner regardless of the brand of equipment. For this reason, a standardized format for transmission of data has been developed by RTCM (the Radio Technical Commission for Maritime Services). In 2006 the version 3.1 was released which supports broadcasting of network RTK messages which means that the compressed observation data are sent to the rover for calculation of corrections. Today the most used concept to determine the position of the rover is VRS (Virtual Reference Station). SWEPOS, which provides a network RTK service in Sweden, is based on the VRS concept. The concept requires that the position of the rover should be sent to the control centre, where most of the calculations are made. Network RTK messages have not been found in earlier versions of the RTCM standard, but their introduction means that corrections can be sent with one-way communication and that most of the calculations can be made in the rover. The purpose of the study is to make comparisons between the VRS and RTCM 3.1 network RTK messages regarding the measurement quality and the time for initialization. The study also included to examine the need for network RTK messages and how the technology works while continuously moving the rover. The study used GNSS receivers from Leica and Trimble to make repeated measurements with VRS and with RTCM 3.1 with automatic and static configurations. Static configuration was used in two different networks, one in which the SWEPOS station Gävle and one in which the SWEPOS station Leksand was used as master station. Totally 1200 measurements were carried out on three known points in 12 days. At each measurement the time for initialization and the measured position was registered. The results were then processed and analysed using statistical methods. The results showed that the times for initialization regarding network RTK messages are slightly longer than for VRS and that there is no obvious difference in quality between the VRS and network RTK messages. The difference between the automatic network and the static network is not noticeable either. 95th percentile discrepancies were 25 mm horizontally and 45 mm vertically. The only results that clearly differed from the rest of the measurements were those with Leica in the static network with Leksand as master station, where Leica had problems to resolve the ambiguities.
Andersson, Hanna-Mia, and Elinor Persson. "Kvalitetsutvärdering av höjdbestämning med GNSS-teknik : Variansanalys av enkelstations-RTK och nätverks-RTK." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-84689.
Full textA quality survey was performed on the position accuracy of two GNSS-methods (single station-RTK and network-RTK) for height determination, and a one-way analysis of variance (ANOVA) was used for statistical investigation of differences in the spread of height deviations. The GNSS-methods were applied on a reference point, which was determined prior with leveling, and measured with 20 minutes observation time and 30 minutes time separation, resulting in 5 series containing 400 observations each from respective method. The ANOVA test was performed by grouping the height deviations with respect to the measurement series, as well as the mean deviations with respect to the methods. Height determination with the ERTK method showed a total positional uncertainty of 22 mm (13-28 mm between the series) and a measurement uncertainty of 32 mm (2σ). Results obtained with NRTK showed a total positional uncertainty of 14 mm (9-14 between the series) and a total measurement uncertainty of 24 mm (2σ). The statistical tests showed that the differences between the measurement series for individual methods were significant (p = 0,000) but that the mean deviations between the methods were not (p = 0,115). NRTK obtained a lower positional uncertainty than ERTK measurements in this study, and the ANOVA test showed that there was no significant difference in the distribution of the mean deviations between the measurement methods. This study is important with regard to quality evaluation of different GNSS-methods and can be used as a basis for deciding on the applied measurement method.
Lundell, Rebecka. "Undersökning av nätverks-RTK-meddelande tillsammans med olika GNSS-mottagare : vid nätverks-RTK-mätning i SWEPOS®-nät av fasta referensstationer." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-12395.
Full textNetwork RTK (Real-Time Kinematic) is a method of positioning with Global Navigation Satellite System (GNSS) in real-time. The method requires that a control centre can communicate with the GNSS receiver, which is using the reference station network, for example to send out corrected GNSS data. In Sweden, SWEPOS, which is a network of permanent reference stations for GNSS, offers a service for Network RTK measurement. This is expected to give an uncertainty of less than 15 mm in plane and 25 mm in (ellipsoidal) height (with the coverage factor k = 1 in both cases). The technology currently used by SWEPOS, to perform positioning of a GNSS receiver, is Virtual Reference Station (VRS). VRS requires two-way communication because the receiver submits its navigated location to the control centre, where the calculations of correction data are made, before they are sent back to the receiver. Another alternative is Network RTK messages which make use of one-way communication. Then the observation data are transmitted to the receiver, which performs determination of its position. The purpose of this thesis was to investigate the network RTK messages with GNSS receivers from three different manufacturers with regard to time to fix ambiguities, measurement uncertainty and its dependence on the distance from the master station, and GLONASS satellites presence in the positioning. Also included in the study was the performance of comparative measurements with VRS. The investigations were conducted through repeated network RTK measurements with GNSS receivers from Leica Geosystems, Trimble and Topcon, at three known points south-east of Gävle. Three methods were used, network RTK message with automatic and static networks, and VRS. The three measurement points were chosen so that the distance to the reference station that was used as the so-called master station, varied. The study showed that the time to fix ambiguities differed between the three brands. One reason for this was that each receiver was reinitialized from different steps in the initialization process. In general, the uncertainty in the measurement was slightly higher for the static network. The uncertainty was about 11 mm in plane and 19 mm in height with the automated network, and 13 mm and 22 mm respectively in the static network. Leica and Trimble were at the same level, while Topcon had general problems for the static network, which there was no possibility to closer investigate the reason for. The results also showed that the uncertainty is influenced by the distance to used master station. In some cases, this relationship is linear. On some occasions, GLONASS satellites were not included in the positioning.
Wallerström, Mattias, and Fredrik Johnsson. "En nätverks-RTK-jämförelse mellan GPS och GPS/GLONASS." Thesis, University of Gävle, Department of Technology and Built Environment, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-130.
Full textFrån den 1 april 2006 har SWEPOS kompletterat den befintliga nätverks-RTK-tjänsten, som dittills levererat RTK-data för GPS, med ett alternativ där RTK-data för GPS/GLONASS levereras. En del användare har rapporterat att de upplever att GPS/GLONASS inte tillför något och även att det ibland kan ta längre tid att få fixlösning. Andra användare hävdar att de nu kan använda nätverks-RTK på platser där de tidigare inte kunde mäta och är mycket positiva till GPS/GLONASS.
Syftet med detta examensarbete var att undersöka hur tillgängligheten för satellitmätning, positionsnoggrannheten och initialiseringstiden påverkades i öppna respektive störda miljöer med GPS/GLONASS jämfört med enbart GPS vid användandet av nätverks-RTK-tjänsten. Undersökningen har utförts med tre olika fabrikat av GNSS-mottagare (Leica, Topcon och Trimble), vilket även medger att en jämförelse mellan dessa till viss utsträckning kan göras.
I studien gjordes totalt 1 440 mätningar på sex punkter med kända positioner och med olika grad av sikthinder. Fixlösning uppnåddes inte inom 180 sekunder för 206 (77 för GPS/GLONASS och 129 för GPS) av de 1 440 mätningarna.
De extra GLONASS-satelliterna tillför en klar fördel när det gäller möjligheten att mäta i störda miljöer. När det gäller initialiseringstid så är dessa kortare för GPS/GLONASS. GLONASS-satelliterna ger ingen förbättring av positionsnoggrannheten. Det är till och med så att GPS får något bättre kvalitetstal i både plan och höjd i denna studie (1-3 mm bättre). För de olika fabrikaten kan det konstateras att precision och noggrannhet är likvärdiga i både plan och höjd för alla tre märken.
On the 1st of April 2006, SWEPOS complemented the existing network RTK service with corrections for the Russian satellite system GLONASS. The service had so far only provided corrections for GPS. Some users have claimed that GPS/GLONASS do not contribute at all and also that the time for initialization sometimes can be longer. However, other users insist on that they now can use network RTK in areas that earlier were impossible and they are very favourable of GPS/GLONASS.
The purposes of this diploma work were to study and examine measurements using GPS and GPS/GLONASS in areas with different degrees of visual obstacles. Corrections were provided by SWEPOS Network RTK service and availability of satellites, accuracy of position and time for initialization were evaluated. The study has been conducted with three different brands of GNSS receivers (Leica, Topcon and Trimble), which also to some extent makes a comparison between the three brands possible.
A total number of 1 440 field measurements were made on six well-known points with different degrees of visual obstacles. A fixed solution was not accomplished within 180 seconds for 206 (77 for GPS/GLONASS and 129 for GPS) of the 1 440 measurements.
The additional GLONASS satellites provide an apparent advantage regarding the possibility to measure in disturbed environments. The time for initialization is shorter for GPS/GLONASS. The GLONASS satellites do not give any improvement in accuracy of position. On the contrary, GPS receives slightly better accuracy numbers in quality for both horizontal and vertical readings (1-3 mm better). Regarding the different brands, it was found that the precision and accuracy were similar in both plane and height for all three brands.
Johansson, Stefan, and Petter Tysk. "Galileos påverkan vid Nätverks-RTK satellitpositionering i svåra miljöer." Thesis, Högskolan i Gävle, Samhällsbyggnad, GIS, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-24701.
Full textSedell, Daniel. "Network-RTK - A comparative study of service providers currently active in Sweden." Thesis, KTH, Geodesi och satellitpositionering, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179062.
Full textNätverks-RTK är en metod för relativ mätning med hjälp av GNSS som ger användare istora områden ett enkelt sätt att förbättra osäkerheterna i sina mätningar. I början av2000 talet då frågan om alternativa lösningar till stomnät på marken aktualiseradesuppfyllde inte tillgängliga nätverks-RTK-lösningar Trafikverkets (TrV) krav påmätningar när det gäller dess större och/eller mer komplexa projekt. Något som leddetill att konceptet projektbaserad nätverks-RTK infördes i Sverige av TrV i samarbetemed tjänsteleverantören SWEPOS 2004. Detta koncept förbättrar vanlig nätverks-RTKgenom att minska osäkerheterna ytterligare och öka tillförlitligheten inom ett mindreprojektområde. SWEPOS har sedan detta samarbete 2004 levererat projektbaseradenätverks-RTK tjänster till TrV.Marknaden är inte samma dag som den var 2004 och det finns fler verksammatjänsteleverantörer i Sverige. Detta examensarbete avser att ta reda på om denna nyamarknad innebär att det finns andra alternativ till SWEPOS med avseende på de kravTrV har på projektbaserad nätverks-RTK. Något som sker genom en teknisk jämförelseav de olika tjänsteleverantörernas mätosäkerheter och deras noggrannheter samt enjämförelse av deras omgivande infrastruktur och den subjektiva användarupplevelsen.Liknande studier har gjorts tidigare (Edwards et al., 2010) (Martin och MacGovern2012) (Saeidi, 2012), men aldrig i Sverige och med SWEPOS som ett avjämförelseobjekten. De har inte heller haft fokus på mätosäkerheter och noggrannheterunder projektbaserade nätverks-RTK förhållanden. De har alla haft samma slutsats: attdet inte finns några signifikanta skillnader mellan de jämförda tjänsteleverantörerna.För den tekniska jämförelsen har mätningar utförts på fyra platser: två inom ettbefintligt TrV projektområde, en i det ordinarie nätet och den sista utanför hela nätet,där den insamlade datamängden varierar för de olika platserna. Fem olika GNSSmottagareav olika märken användes för att göra mätningarna så allmänna som möjligt.Resultaten visar att det finns små osäkerhetsskillnader i höjd, men för att avgöra omdessa skillnader är signifikanta eller ej så skulle en fullständig korrelationsanalys av deolika tjänsteleverantörerna behövas, något som inte ryms inom detta arbete. Det verkarinte heller finnas några signifikanta skillnader i noggrannhet hos tjänsteleverantören.Några av platser med mindre mängd insamlad data uppvisar motsägande resultat, mendetta bedöms bero mer på andra faktorer än tjänsteleverantörer i sig, såsom mänskligpåverkan etc.Användarupplevelsen och tjänsteleverantörernas omgivande infrastruktur uppvisarstörre skillnader, där SWEPOS för tillfället har ett klart övertag. Detta tros bero påSWEPOS främst är en tjänsteleverantör av nätverks-RTK och därmed har merdedikerade resurser och personal, men de andra tjänsteleverantörerna även agerarleverantörer/försäljare av utrustning.En kombination av de två jämförelsedelarna leder till en mer generell slutsats att medalla tjänsteleverantörer i sina nuvarande tillstånd alternativt utan en eventuellomformulering av TrVs krav, är enbart SWEPOS ett alternativ som leverantör avprojektbaserad nätverks-RTK lösningar till TrV. Men detta är något som kan förändrasmed relativ snabbt beroende på om andra tjänsteleverantörerna avsätter mer resursereller om kraven formuleras om.
Jansson, Jakob. "Undersökning av mätosäkerheten i det förtätade SWEPOS®-nätet i Stockholmsområdet : vid mätning med nätverks-RTK." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-10512.
Full textFredriksson, Annika, and Madeleine Olsson. "Jämförelse av höjdmätning med olika GNSS-mottagare i SWEPOS nätverks-RTK-tjänst." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-18549.
Full textThere are currently many different brands of equipment for measurements with GNSS on the Swedish market and these instruments have different properties. To be able to obtain a position in height with low measurement uncertainty Lantmäteriet’s, the Swedish mapping, cadastral and land registration authority, support system for satellite positioning called SWEPOS and their network RTK service is used. The aim of this thesis was to investigate whether SWEPOS network RTK service provides similarly height values when measuring with various GNSS receivers and different distances to the nearest physical reference station, as well as the measurement uncertainty in the measurements. It is important to verify that the equipment on the user side is working correctly so that such a low measurement uncertainty as possible can be achieved in the final result. The field work with network RTK took place over three weeks in Gävle on Lantmäteriet’s antenna calibration field. Four different equipment were used to perform the comparison. Each series of measurements lasted for two hours where an epoch was one second. Nearest physical reference station was varied between two stations at different distances, 40 m and 30 km, to be able to see how the measurement uncertainty was affected. The data obtained was compiled and analysed in Microsoft Excel. The study shows that one equipment continuously gave weaker measurement uncertainty than the others who kept a steady level. It also shows a significant difference in measurement uncertainty if the baseline between the receiver and nearest physical reference station is longer. For 2–3 of the equipment, the height value decreases with about a couple of centimetres and the deviance is getting larger when the nearest physical reference station is switched from the closest one to the one further away. These equipment gave however individually a similarly result as long as the same reference station was the nearest.
Andersson, Olle, and Ann-Charlott Bergstrand. "Höjdbestämningsmetoder vid upprättande av nybyggnadskartor : Jämförelse mellan nätverks-RTK och trigonometrisk höjdmätning." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-47003.
Full textRoos, Kristoffer, and David Östh. "Analys av lägesavvikelser i delar av Gävle kommuns plana stomnät med nätverks-RTK." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-20043.
Full textGrötte, Louise, and Olov Häggmark. "Unmanned Aircraft System (UAS) för modellering och 3D-dokumentation av byggnader." Thesis, Högskolan i Gävle, Samhällsbyggnad, GIS, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-23340.
Full textAlmstedt, Åsa, and Niclas Peterson. "Lägesosäkerhet vid nätverks-RTK-mätning med inbyggd lutningskompensator: en undersökning av Leica GS18 T." Thesis, Högskolan i Gävle, Samhällsbyggnad, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-30505.
Full textA recently introduced GNSS instrument on the market is Leica GS18 T with tilt compensation, based on GNSS/Inertial Navigation Systems (INS) integration, with no need to centre the survey pole with the GNSS instrument over the target point being measured. Besides making surveying faster, the tilt compensation technique enables measuring of hidden points where the use of conventional GNSS measuring normally is not possible without more time-consuming methods. The instrument also has advanced GNSS signal tracking which makes surveying in challenging environments possible. In this study, the Leica GS18 T has on behalf of Lantmäteriet been tested through studying the measurement uncertainty in network RTK measurement with tilted survey pole in three different situations: with the survey pole tilted in various degrees in both favourable and challenging survey environments; with tilt towards north, east, south and west to test if the tilt direction would affect the result; and for surveying of building corners as a possible field of application. In the latter case, the result was compared with what can be achieved with the conventional hidden point method using intersection of distances. The analysis of the measurement uncertainty was based on calculations of standard uncertainty, RMS (Root Mean Square) and mean deviation. The measurement uncertainty from the first part of the test was on cm-level horizontally, both in favourable and challenging survey environments, and in height on mm-level in favourable survey environment and on cm-level in challenging survey environment. Further, the results indicate that the tilt direction affects measurement uncertainty. The reason for this is not clarified and needs further investigation. The measurements of building corners resulted in a mean deviation of approximately 12 mm when the survey pole was tilted 30°. The hidden point method using intersection of distances generally resulted in lower mean deviation, even though the difference is relatively small (4 mm at best). To summarize, Leica GS18 T seems to be well suited for measuring with tilt in detailed surveying, at least if the requirements of position uncertainty is on cm-level.
Törnlund, Patric, and André Ångman. "Studie av L2C-signalens möjlighet till ökad tillgänglighet vid GPS-baserad produktionsmätning." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-22392.
Full textSince applications of satellite based positioning techniques are constantly increasing, it is important to study the development of GNSS which is improving as well. National Land Survey of Sweden (NLSS) supported this study in order to evaluate the second civil signal from GPS (L2C). The idea is to investigate how using L2C increases the accessibility and accuracy in network-RTK. This also includes an evaluation of how the signal works in different brands of positioning equipment. The equipment that has been selected for this test includes models from the three most established brands in Sweden: Leica, Topcon and Trimble. The data collection was carried out in the area of Mårtsbo where seven well known points were measured, both with and without the L2C signal, for several times. All the measured points are located in forest environments, but with different levels of visibility. In the data post processing many parameters were considered for comparing the results such as: uncertainties, differences from known coordinates, time of fixed solution and initialization time. The tests of how the signal works in the three selected receiver models were carried out at the office of NLSS where a permanent reference antenna is mounted. The result of the field study indicates some improvement regarding the measurement uncertainties and time to fixed solution when including the L2C-signal, especially on those points classified as the most problematic. However, the result does not really fulfill the predicted expectations as hoped, where much bigger advantages for the L2C signal should have been shown. The signal could be used in all the three tested GNSS-equipment, despite of slightly different methods and features.
Ohlsson, Kent. "Studie av mätosäkerhet och tidskorrelationer vid mätning med nätverks-RTK i Swepos 35 km-nät." Thesis, KTH, Geodesi och geoinformatik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154477.
Full textHérou, Mathias, and Ragnar Boll. "Bestämning av vattenytor med hjälp av Nätverks-RTK och totalstation : Inmätning av Karlbergsån i Grums kommun." Thesis, Karlstads universitet, Fakulteten för samhälls- och livsvetenskaper, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-6118.
Full textSvensson, Vilhelm, and Fredrik Tobler. "Utvärdering av olika metoder för stationsetablering med n-RTK." Thesis, Högskolan i Gävle, Samhällsbyggnad, GIS, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-27033.
Full textFree station set up with network-RTK (n-RTK) is a method of establishing a total station over an unknown point without having access to any known points. This allows for accurate surveying even though control points are missing. There are different ways to perform free station set up with n-RTK, and in this study, four different methods were evaluated. The difference between the methods is how the target points are determined. The methods evaluated were RUFRIS (real time updated free station) with 15 and 3 target points, double measurement and the 180seconds method. With RUFRIS, each target point was measured with a 5 s observation time. In double measurement, three target points were used, where each target point was the average of two measurements. Each of these measurements used a 5 s observation time, and a 30 minute separation between the measurements. The number of target points in the 180-seconds method were also three, measured with an observation time of 180 s. The methods are briefly mentioned in HMK – GNSS-baserad detaljmätning 2017 and another purpose of the study was to evaluate the description of them in that document. With each method, ten establishments were performed and after each of them a detail point was surveyed to also analyze how accurate the different methods were in surveying. The methods were evaluated by comparing uncertainties, RMS and user-friendliness for establishments and detail points, between the respective methods. The uncertainties were on one hand based on the deviation of the ten establishments/detail points per method, each one made over the same point, and on the other hand based on the uncertainties presented by the instrument after each establishment. For calculation of RMS, reference points were used, which were measured by static GNSS, and then postprocessed in SWEPOS Beräkningstjänst. In addition to comparisons between the methods, they were also tested to see if they reached sufficiently low uncertainties to meet the recommended tolerances for free stationing, stated in HMK – Terrester detaljmätning 2017. Calculated planar uncertainties, all methods included, ranged from 3 to 6 mm for both the total station and the detail point, which means that all methods can handle the higher tolerances in HMK. The method with the lowest uncertainty and RMS was RUFRIS with 15 target points, which was also low enough to be able to cope with the lower tolerances. The uncertainties of the heights varied from 3 to 8 mm, in which RUFRIS with 15 target points was the only method precise enough to pass the higher tolerances. Another method with lower uncertainty is required when the higher tolerances for heights is specified. The chosen method for determining the reference points turned out to be too uncertain relative to the evaluated methods. Therefore RMS were not as appropriate for comparisons as planned.
Gunnarsson, Anton, and Martin Ström. "Jämförelse mellan två generationer av GNSS-mottagare tillverkade av Trimble : Mätnoggrannhet i plan och höjd vid användande av nätverks-RTK." Thesis, Karlstads universitet, Institutionen för miljö- och livsvetenskaper (from 2013), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-78684.
Full textAronsson, Anders. "Bidrar GLONASS till bättre positionering?" Thesis, Karlstads universitet, Fakulteten för humaniora och samhällsvetenskap (from 2013), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-28316.
Full textIngelman-Sundberg, Simon, and Salem Ali Mishal. "Transformation av stomnät till SWEREF 99 : Fallstudie Norra Vätö, Norrtälje kommun." Thesis, Högskolan Väst, Institutionen för ingenjörsvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-2739.
Full textDuring the last century different coordination systems have been used in Sweden. Today a common coordination system (SWEREF 99) is used. In the municipality of Norrtälje, core networks are listed in different coordination systems that are generated from different earlier missions. These networks normally have poor orientation in the known coordination system; however, the internal accuracy is used to be good. In this study, some of the core networks have been selected to be converted to SWEREF 99 18 00. The conversion has been done by measuring points using the GNSS technology, the measured points were then used to transfer the core network to SWEREF 99 18 00. This means that in the future, staking out a building in the area can be performed solely by GNSS technology. The chosen core networks are located on a part of the island Vätö in the municipality of Norrtälje. The GNSS equipment used to measure the points with was the Leica 1203 RTK network. The selected points were measured on two occasions with a gap between the occasions of at least 45 minutes. Ten repeated measurements have been done on each point to increase the accuracy. The average of these twenty measurements has been used for conversion. After the measuring process, the transformation has been done from three different off-systems to SWEREF 99 18 00. The three off-systems were RT 38 2.5 gon V, RT R09 0 gon and a local 1000/1000-system. Since the areas listed in the RT 38 were poorly oriented towards each others, poor accuracy was achieved during the transformation of the entire RT 38 field at once. Therefore, the RT 38 area has been divided into a number of transformations-areas. When the transformation had been done, control measurements were made on a Rix 95-Point entitled Klockarängsberget (Rix 95-point numbers: 119 741) located on the southern part of Vätö. In addition, control measurements were made of housing estate border area, where the border points were uncertain.
Melcher, Erik. "Mätosäkerhet i höjd vid stationsetablering med RUFRIS." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-78693.
Full textThe traditional method of determining vertical coordinates in surveying is by levelling. The height from a definite coordinate point gets transferred to a new point. But what if there is no point nearby? Levelling over long distances is costly and time consuming. This study is investigating another way of setting new height points, the RUFRIS-method. The RUFRIS-method is a Swedish innovation and stands for “Realtime Updated Free Station” (RealtidsUppdaterad FRI Station in Swedish language). Establishments of the total station with the RUFRIS-method is done in real time and the total station gets its coordinates by a combination of traditional measurements by distance and angle combined with GNSS-technique. This is possible due to a multiple pole with both a reflector and a GNSS-rover set on top. The purpose of this study is to investigate the precision of height levelling with the RUFRIS-method and if the method could be used as a substitute to traditional levelling. In this study three separate areas in Karlstad were selected and set up for RUFRIS-establishments. On each area there was a point with known coordinates in the correct reference system, SWEREF 99 13 30 and RH2000. A total of 60 RUFRIS-establishments were set up, 20 on each area. 10 with 6 backsight points and 10 with 15 backsight points, including subsequent measurement of the control points as a comparison reference. Based on the collected measurement data mean height, uncertainty and spread within the measurement series were analysed and calculated. The result in this study shows that the lowest uncertainty achieved during single measurements was 2.5 mm in one of the RUFRIS-establishment series with 15 backsight points. Highest uncertainty was 5.4 mm during RUFRIS-establishment with 6 backsight points. Comparing with the known vertical coordinates the result indicated a systematic error due to the fact that every measured height ended up lower than the references height. The conclusion that a systematic error occurred were made on the basis of the narrow spread within all the measured series, 7.1-16.2 mm. The result indicates that all the establishments with the RUFRIS-method were solid and trustfully made. The conclusion of this study is that the RUFRIS-method is a useful and solid way to determine new height points in cases were the uncertainty-limit is set to 10 mm. Under good GNSS/RTK conditions and establishment made with 15 backsight points its likely to expect uncertainty of 5 mm in height level with the RUFRIS-method. When requirement for lower uncertainty is demand levelling is considered as more reliable, but the distance to the closest known coordinate-point should be a factor to be considered.
Persson, Patrik, and Dennis Sjölén. "Lägesosäkerhet vid mätning av dold punkt med totalstation och GNSS." Thesis, Högskolan i Gävle, Samhällsbyggnad, GIS, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-27609.
Full textA hidden point is a point that can´t be measured directly but must be measured indirectly using, for example, Global Navigation Satellite System (GNSS) or total station. There are several different methods with GNSS and total station that fit into different survey situations to survey a hidden point. Measurement of hidden points with total stations often occurs in industrial environments where pipes and the like hang in the way of the total station's line of sight to the measuring object. GNSS with network-Real-Time Kinematic positioning (network-RTK), a method that increases in measurement jobs, is a great way to indirectly measure hidden points outdoors where either poor reception of satellite signals or the ability to set an antenna over the point is not possible. The purpose of this study is to investigate how good measurement uncertainty it is possible to obtain when measuring hidden points with GNSS and total station and also compare the different methods tested. Five different methods are described to determine the coordinates of a hidden point with a total station. Among other things, one with a bar and prisms for measurements horizontally and in height, which will also be used in this study. Position uncertainty 0.1 mm both horizontally and in height should be achievable with that method. Methods that can be used with GNSS and network RTK are for example straight line and its bearing, the intersection of two straight lines and the intersection of two length measurements. With network RTK, measurements can achieve a position uncertainty in millimeters based on SWEPOS network RTK service. It is also important for time correlation between measurements to be made independently. The results of position uncertainty in this study can then be compared to those of previous studies, if similar values can be obtained when measuring hidden points and how much they differ. The method used for total station in this study is a bar with two prisms on it held against the hidden point. The prisms on the bar were measured with the total station and the bearing between them can be calculated with the help of the coordinates of the points, the vector is extended to the hidden point and then the coordinates of the hidden point can be calculated. The methods tested with GNSS are the calculation of a straight line and its bearing and calculation with double length measurements. For both GNSS and total station measurements, the least squares method has been used to calculate the hidden point and its measurement uncertainty. Four different alternatives of the total station measurements were performed. 0.7 m fixed prism bar with manual alignment, 1.0 m fixed prism bar with manual alignment, 1.0 m fixed prism bar with automatic alignment and 1.0 m hand-held prism bar with manual alignment. All alternatives were performed in two measuring rounds. Measurement uncertainty for measurements for a hidden point with total station in this study was 1-2 mm horizontally and around 1 mm in height, the lowest measurement uncertainty gave manual alignment (0.7 m between the prisms) with 0.93 mm horizontally and 0.79 mm in height. The measuring alternative which was the best with total station measurements varied between the two measuring rounds, but the difference between them was not that large. It is therefore difficult to say which method gives the best measurement uncertainty with the number of measurements performed in this study. GNSS received uncertainties of at lowest 7.3 mm where double length measurements with tripod yielded the best results. If the GNSS receiver was placed on a tripod or held up with or without support did not change the final result that much, but as expected, the tripod provided the lowest measurement uncertainty.
Törnqvist, Jonas. "En osäkerhetsundersökning av GNSS-mottagare." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-56723.
Full textLarsson, Andreas, and Patrik Söder. "Jämförelse av olika GNSS-mottagare : Mätnoggrannhet i plan och höjd vid användande av nätverks-RTK." Thesis, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-47798.
Full textThe objective of this paper was to test and compare three different GNSS-receivers’ accuracy, using NRTK. The instrument brands and models in the test were SatLab 300, Leica Viva GS15 and Trimble R10. The test was divided into two measurement series. Measurement series 1 was carried out in different areas with distances of 3-4 km (Skåre/Råtorp), 6-7 km (Våxnäs/Kronoparken), and 17-20 km (Vålberg/Älvenäs), respectively, from the closest physical SWEPOS-station (Class A). A total of nine control points in Karlstad municipality were used in measurement series 1, some with a total free line of sight southwards, and others partly obscured by buildings or trees. The results of measurement series 1 shows no significant differences between the tested GNSS- receiver’s results regarding to different distances to the SWEPOS-station (Class A). Measurement series 2 focused on measurements was carried out in a more accurate way, at a smaller number of control points located in the Våxnäs and Kronoparken areas. The control points were measured during a period of 10 to 20 minutes at each control point. In measurement series 1 the SatLab 300 and the Leica Viva GS15 with known coordinates at the chosen control points was compared. In measurement series 2 the SatLab 300, the Leica Viva GS15 and the Trimble R10 with known coordinates at the chosen control points were compared. In measurement series 1 fast measurement (1 époque), and an average of 25 époques were measured at every control point, with two return visits, both at different dates. In measurement series 2, fast measurement (1 époque), and an average of 100 époques were measured at every control point, with two return visits at the same date. The overall results show no significant differences in accuracy of measurements using the different receiver’s in NRTK-mode. The Trimble R10 results, however shows slightly more accurate results when comparing radial deviation, and slightly better values when comparing RMS, relative to the other GNSS receivers. At control points with an obscured sight of view, the Leica Viva GS15 has difficulties obtaining a fixed solution, and flickers between a fixed and a float state. At those conditions, the SatLab 300 has no problem with obtaining a fixed solution, whereas the Trimble R10 instead works in a different way, continuously presenting the quality of the positioning.