Academic literature on the topic 'Navier-Stokes-Cahn-Hilliard model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Navier-Stokes-Cahn-Hilliard model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Navier-Stokes-Cahn-Hilliard model"

1

Li, Xiaoli, and Jie Shen. "On a SAV-MAC scheme for the Cahn–Hilliard–Navier–Stokes phase-field model and its error analysis for the corresponding Cahn–Hilliard–Stokes case." Mathematical Models and Methods in Applied Sciences 30, no. 12 (2020): 2263–97. http://dx.doi.org/10.1142/s0218202520500438.

Full text
Abstract:
We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC discretization in space for the Cahn–Hilliard–Navier–Stokes phase- field model, prove its energy stability, and carry out error analysis for the corresponding Cahn–Hilliard–Stokes model only. The scheme is linear, second-order, unconditionally energy stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase-field variable, chemical potential, velocity and pressure in different discrete norms for the Cahn–Hilliard–Stokes phase
APA, Harvard, Vancouver, ISO, and other styles
2

Medjo, T. Tachim. "A Cahn-Hilliard-Navier-Stokes model with delays." Discrete and Continuous Dynamical Systems - Series B 21, no. 8 (2016): 2663–85. http://dx.doi.org/10.3934/dcdsb.2016067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kotschote, Matthias, and Rico Zacher. "Strong solutions in the dynamical theory of compressible fluid mixtures." Mathematical Models and Methods in Applied Sciences 25, no. 07 (2015): 1217–56. http://dx.doi.org/10.1142/s0218202515500311.

Full text
Abstract:
In this paper we investigate the compressible Navier–Stokes–Cahn–Hilliard equations (the so-called NSCH model) derived by Lowengrub and Truskinovsky. This model describes the flow of a binary compressible mixture; the fluids are supposed to be macroscopically immiscible, but partial mixing is permitted leading to narrow transition layers. The internal structure and macroscopic dynamics of these layers are induced by a Cahn–Hilliard law that the mixing ratio satisfies. The PDE constitute a strongly coupled hyperbolic–parabolic system. We establish a local existence and uniqueness result for str
APA, Harvard, Vancouver, ISO, and other styles
4

Medjo, T. "Robust control of a Cahn-Hilliard-Navier-Stokes model." Communications on Pure and Applied Analysis 15, no. 6 (2016): 2075–101. http://dx.doi.org/10.3934/cpaa.2016028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boyer, Franck, and Sebastian Minjeaud. "Hierarchy of consistent n-component Cahn–Hilliard systems." Mathematical Models and Methods in Applied Sciences 24, no. 14 (2014): 2885–928. http://dx.doi.org/10.1142/s0218202514500407.

Full text
Abstract:
In this paper, we propose a new generalization of the well-known Cahn–Hilliard two-phase model for the modeling of n-phase mixtures. The model is derived using the consistency principle: we require that our n-phase model exactly coincides with the classical two-phase model when only two phases are present in the system. We give conditions for the model to be well-posed. We also present numerical results (including simulations obtained when coupling the Cahn–Hilliard system with the Navier–Stokes so as to obtain a phase-field model for multiphase flows) to illustrate the capability of such mode
APA, Harvard, Vancouver, ISO, and other styles
6

LAM, KEI FONG, and HAO WU. "Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis." European Journal of Applied Mathematics 29, no. 4 (2017): 595–644. http://dx.doi.org/10.1017/s0956792517000298.

Full text
Abstract:
We derive a class of Navier–Stokes–Cahn–Hilliard systems that models two-phase flows with mass transfer coupled to the process of chemotaxis. These thermodynamically consistent models can be seen as the natural Navier–Stokes analogues of earlier Cahn–Hilliard–Darcy models proposed for modelling tumour growth, and are derived based on a volume-averaged velocity, which yields simpler expressions compared to models derived based on a mass-averaged velocity. Then, we perform mathematical analysis on a simplified model variant with zero excess of total mass and equal densities. We establish the exi
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Xiaoli, and Jie Shen. "On fully decoupled MSAV schemes for the Cahn–Hilliard–Navier–Stokes model of two-phase incompressible flows." Mathematical Models and Methods in Applied Sciences 32, no. 03 (2022): 457–95. http://dx.doi.org/10.1142/s0218202522500117.

Full text
Abstract:
We construct first- and second-order time discretization schemes for the Cahn–Hilliard–Navier–Stokes system based on the multiple scalar auxiliary variables (MSAV) approach for gradient systems and (rotational) pressure-correction for Navier–Stokes equations. These schemes are linear, fully decoupled, unconditionally energy stable, and only require solving a sequence of elliptic equations with constant coefficients at each time step. We carry out a rigorous error analysis for the first-order scheme, establishing optimal convergence rate for all relevant functions in different norms. We also pr
APA, Harvard, Vancouver, ISO, and other styles
8

Lasarzik, Robert. "Analysis of a thermodynamically consistent Navier–Stokes–Cahn–Hilliard model." Nonlinear Analysis 213 (December 2021): 112526. http://dx.doi.org/10.1016/j.na.2021.112526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deugoue, Gabriel, Boris Jidjou Moghomye, and Theodore Tachim Medjo. "Splitting-up scheme for the stochastic Cahn–Hilliard Navier–Stokes model." Stochastics and Dynamics 21, no. 01 (2020): 2150005. http://dx.doi.org/10.1142/s0219493721500052.

Full text
Abstract:
In this paper, we consider a stochastic Cahn–Hilliard Navier–Stokes system in a bounded domain of [Formula: see text] [Formula: see text]. The system models the evolution of an incompressible isothermal mixture of binary fluids under the influence of stochastic external forces. We prove the existence of a global weak martingale solution. The proof is based on the splitting-up method as well as some compactness method.
APA, Harvard, Vancouver, ISO, and other styles
10

Boyer, Franck. "Mathematical study of multi‐phase flow under shear through order parameter formulation." Asymptotic Analysis 20, no. 2 (1999): 175–212. https://doi.org/10.3233/asy-1999-345.

Full text
Abstract:
In this paper we study the coupling of the Navier–Stokes equations and the Cahn–Hilliard equation which stands for a model of a multi‐phase fluid under shear. We first study existence and uniqueness of solutions of the system in dimension $2$ and $3$ even if the diffusion coefficient is allowed to degenerate. In the last part, an asymptotic stability result is shown.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Navier-Stokes-Cahn-Hilliard model"

1

Pi, Haohong. "Analyse expérimentale-numérique de l'écoulement diphasique dans des modèles de milieu poreux sur puce microfluidique." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0126.

Full text
Abstract:
Les expériences de déplacement en milieu poreux sont la méthode habituellement utilisée pour étudier l'écoulement biphasique immiscible. Cependant, malgré les aspects de reproductibilité, un inconvénient majeur est que ces expériences de type "boîte noire" ne permettent pas d'observer et de capturer les phénomènes clés à l'échelle des pores, y compris les interactions interfaciales et les détails sur la mobilisation de l'huile piégée (par exemple, la taille et la distribution des ganglions résiduels). C'est pourquoi les dispositifs micromodèles microfluidiques sont désormais largement utilisés
APA, Harvard, Vancouver, ISO, and other styles
2

Sarmiento, Adel. "Structure-Preserving Methods for the Navier-Stokes-Cahn-Hilliard System to Model Immiscible Fluids." Diss., 2017. http://hdl.handle.net/10754/626270.

Full text
Abstract:
This work presents a novel method to model immiscible incompressible fluids in a stable manner. Here, the immiscible behavior of the flow is described by the incompressible Navier-Stokes-Cahn-Hilliard model, which is based on a diffuse interface method. We introduce buoyancy effects in the model through the Boussinesq approximation in a consistent manner. A structure-preserving discretization is used to guarantee the linear stability of the discrete problem and to satisfy the incompressibility of the discrete solution at every point in space by construction. For the solution of the model, we d
APA, Harvard, Vancouver, ISO, and other styles
3

Řehoř, Martin. "Modely s neostrým rozhraním v teorii směsí." Doctoral thesis, 2018. http://www.nusl.cz/ntk/nusl-389829.

Full text
Abstract:
We study physical systems composed of at least two immiscible fluids occu- pying different regions of space, the so-called phases. Flows of such multi-phase fluids are frequently met in industrial applications which rises the need for their numerical simulations. In particular, the research conducted herein is motivated by the need to model the float glass forming process. The systems of interest are in the present contribution mathematically described in the framework of the so-called diffuse interface models. The thesis consists of two parts. In the modelling part, we first derive standard d
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Navier-Stokes-Cahn-Hilliard model"

1

Climent-Ezquerra, Blanca, and Francisco Guillén-González. "Long-Time Behavior of a Cahn-Hilliard-Navier-Stokes Vesicle-Fluid Interaction Model." In SEMA SIMAI Springer Series. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32013-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hinze, Michael, and Christian Kahle. "A Nonlinear Model Predictive Concept for Control of Two-Phase Flows Governed by the Cahn-Hilliard Navier-Stokes System." In IFIP Advances in Information and Communication Technology. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36062-6_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Feng, Xiaoyu, Jisheng Kou, and Shuyu Sun. "A Novel Energy Stable Numerical Scheme for Navier-Stokes-Cahn-Hilliard Two-Phase Flow Model with Variable Densities and Viscosities." In Lecture Notes in Computer Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93713-7_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Navier-Stokes-Cahn-Hilliard model"

1

Chen, H., Y. Shu, B. Q. Li, P. Mohanty, and S. Sengupta. "Phase-Field Modeling of Droplet Movement Using the Discontinuous Finite Element Method." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43368.

Full text
Abstract:
In this paper, a discontinuous finite element method is presented for the fourth-order nonlinear Cahn-Hilliard equation that models multiphase flows together with the Navier-Stokes equations. A flux scheme suitable for the method is proposed and analyzed together with numerical results. The model is applied to simulate the droplet movement and numerical results are presented.
APA, Harvard, Vancouver, ISO, and other styles
2

Park, Keunsoo, Carlos A. Dorao, Ezequiel M. Chiapero, and Maria Fernandino. "The Least Squares Spectral Element Method for the Navier-Stokes and Cahn-Hilliard Equations." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-21668.

Full text
Abstract:
The least squares spectral element method (LS-SEM) offers many advantages in the implementation of the finite element model compared with the traditional weak Galerkin method. In this article, the LS-SEM is used to solve the Navier-Stokes (NS) and the Cahn-Hilliard (CH) equations. The NS equation is solved with both C0 and C1 basis functions and their performance is compared in terms of accuracy. A two-dimensional steady-state solver is verified with the case of Kovasznay flow and validated for the cavity flow, and a two-dimensional unsteady solver is verified by a transient manufactured solut
APA, Harvard, Vancouver, ISO, and other styles
3

Park, Keunsoo, Carlos A. Dorao, and Maria Fernandino. "Numerical Solution of Coupled Cahn-Hilliard and Navier-Stokes System Using the Least-Squares Spectral Element Method." In ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-1008.

Full text
Abstract:
We consider the least-squares spectral element method to solve the phase field model for two immiscible, incompressible and density-matched fluids. The coupled Cahn-Hilliard and Navier-Stokes system is selected as the numerical model, which was introduced by Hohenberg et al. [1]. The least-squares spectral element scheme is combined with a time-space formulation where both time and space domains are discretized by the same finite element approach to cope with time dependent multidimensional problems in an efficient way. C1 Hermite basis functions are applied for approximating the coupled syste
APA, Harvard, Vancouver, ISO, and other styles
4

Takada, Naoki. "Application of Interface-Tracking Method Based on Phase-Field Model to Numerical Analysis of Isothermal and Thermal Two-Phase Flows." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37567.

Full text
Abstract:
For interface-tracking simulation of two-phase flows in various micro-fluidics devices, the applicability of two versions of Navier-Stokes phase-field method (NS-PFM) was examined, combining NS equations for a continuous fluid with a diffuse-interface model based on the van der Waals-Cahn-Hilliard free-energy theory. Through the numerical simulations, the following major findings were obtained: (1) The first version of NS-PFM gives good predictions of interfacial shapes and motions in an incompressible, isothermal two-phase fluid with high density ratio on solid surface with heterogeneous wett
APA, Harvard, Vancouver, ISO, and other styles
5

DI DONATO, S. "Modeling of charge welds evolution through Cahn-Hilliard equation for interaction between different Fluids: Experimental-numerical comparison with industrial case studies." In Material Forming. Materials Research Forum LLC, 2025. https://doi.org/10.21741/9781644903599-86.

Full text
Abstract:
Abstract. In the hot extrusion process for metals, the interaction between the old and new billet materials during each cycle contaminates a specific length of the extruded profile. Experimental analysis of defect evolution is both time-intensive and costly, while empirical industrial methods and analytical formulas lack the precision required in scenarios where minimizing scrap is critical. To address this, a numerical model was developed using COMSOL Multiphysics® software, coupling the Navier-Stokes equations with the Cahn-Hilliard equation to investigate the interaction between two immisci
APA, Harvard, Vancouver, ISO, and other styles
6

Do-Quang, Minh, Go¨ran Stemme, Wouter van der Wijngaart, and Gustav Amberg. "Numerical Simulation of the Passage of Small Liquid Droplets Through a Thin Liquid Film." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62319.

Full text
Abstract:
We simulate numerically a novel method for dispensing, mixing and ejecting of picolitre liquid samples in a single step. The system consists of a free liquid film, suspended in a frame and positioned in front of a droplet dispenser. On impact, a picolitre droplet merges with the film, but due to its momentum, passes through and forms a droplet that separates on the other side and continues its flight. Through this process the liquid in the droplet and that in the film is mixed in a controlled way. We model the flow using the Navier-Stokes together with the Cahn-Hilliard equations. This system
APA, Harvard, Vancouver, ISO, and other styles
7

Takada, Naoki, and Akio Tomiyama. "Interface-Tracking Simulation of Two-Phase Flows by Phase-Field Method." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98536.

Full text
Abstract:
The purpose of this study is to examine multi-physics computational fluid dynamics method, NS-PFM, which is a combination of Navier-Stokes (NS) equations with phase-field model (PFM) based on the free-energy theory, for interface-capturing/tracking simulation of two-phase flows. First, a new NS-PFM which we have proposed was applied to immiscible, incompressible, isothermal two-phase flow problems with a high density ratio equivalent to that of an air-water system. In this method, a Cahn-Hilliard equation was used for prediction of diffusive interface configuration. The numerical simulations d
APA, Harvard, Vancouver, ISO, and other styles
8

Takada, Naoki, Masaki Misawa, and Akio Tomiyama. "A Phase-Field Method for Interface-Tracking Simulation of Two-Phase Flows." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77367.

Full text
Abstract:
For interface-tracking simulation of two-phase flows, we propose a new computational method, NS-PFM, combining Navier-Stokes (NS) equations with phase-field model (PFM). Based on the free energy theory, PFM describes an interface as a volumetric zone across which physical properties vary continuously. Surface tension is defined as an excessive free energy per unit area induced by density gradient. Consequently, PFM simplifies the interface-tracking procedure by use of a standard technique. The proposed NS-PFM was applied to several problems of incompressible, isothermal two-phase flow with the
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Zhicheng, Xiaoning Zheng, and George Karniadakis. "A Phase Field Method for Numerical Simulation of Boiling Heat Transfer." In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20176.

Full text
Abstract:
Abstract The Cahn-Hilliard phase field method for two-phase flow has gained particular attention due to its unique features including its flexibility for complex morphological and topological changes, the intrinsic property of conserving mass, and the natural approach to account for the surface tension. The essential idea of the method is to use a phase field function to describe the two-phase system, while a thin smooth transition layer (interfacial area) connects the two immiscible fluids, where the value of phase field function varies continuously. The application of phase field method to t
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!