Journal articles on the topic 'Near-cognate tRNA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Near-cognate tRNA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nguyen, Ha An, S. Sunita, and Christine M. Dunham. "Disruption of evolutionarily correlated tRNA elements impairs accurate decoding." Proceedings of the National Academy of Sciences 117, no. 28 (2020): 16333–38. http://dx.doi.org/10.1073/pnas.2004170117.
Full textBlanchet, Sandra, David Cornu, Isabelle Hatin, Henri Grosjean, Pierre Bertin, and Olivier Namy. "Deciphering the reading of the genetic code by near-cognate tRNA." Proceedings of the National Academy of Sciences 115, no. 12 (2018): 3018–23. http://dx.doi.org/10.1073/pnas.1715578115.
Full textVimaladithan, A., and P. J. Farabaugh. "Special peptidyl-tRNA molecules can promote translational frameshifting without slippage." Molecular and Cellular Biology 14, no. 12 (1994): 8107–16. http://dx.doi.org/10.1128/mcb.14.12.8107-8116.1994.
Full textVimaladithan, A., and P. J. Farabaugh. "Special peptidyl-tRNA molecules can promote translational frameshifting without slippage." Molecular and Cellular Biology 14, no. 12 (1994): 8107–16. http://dx.doi.org/10.1128/mcb.14.12.8107.
Full textIeong, Ka-Weng, Gabriele Indrisiunaite, Arjun Prabhakar, Joseph D. Puglisi, and Måns Ehrenberg. "N 6-Methyladenosines in mRNAs reduce the accuracy of codon reading by transfer RNAs and peptide release factors." Nucleic Acids Research 49, no. 5 (2021): 2684–99. http://dx.doi.org/10.1093/nar/gkab033.
Full textO’Connor, Michael. "tRNA imbalance promotes −1 frameshifting via near-cognate decoding." Journal of Molecular Biology 279, no. 4 (1998): 727–36. http://dx.doi.org/10.1006/jmbi.1998.1832.
Full textWohlgemuth, Ingo, Corinna Pohl, Joerg Mittelstaet, Andrey L. Konevega, and Marina V. Rodnina. "Evolutionary optimization of speed and accuracy of decoding on the ribosome." Philosophical Transactions of the Royal Society B: Biological Sciences 366, no. 1580 (2011): 2979–86. http://dx.doi.org/10.1098/rstb.2011.0138.
Full textPernod, Ketty, Laure Schaeffer, Johana Chicher, et al. "The nature of the purine at position 34 in tRNAs of 4-codon boxes is correlated with nucleotides at positions 32 and 38 to maintain decoding fidelity." Nucleic Acids Research 48, no. 11 (2020): 6170–83. http://dx.doi.org/10.1093/nar/gkaa221.
Full textZhang, Jingji, Ka-Weng Ieong, Magnus Johansson, and Måns Ehrenberg. "Accuracy of initial codon selection by aminoacyl-tRNAs on the mRNA-programmed bacterial ribosome." Proceedings of the National Academy of Sciences 112, no. 31 (2015): 9602–7. http://dx.doi.org/10.1073/pnas.1506823112.
Full textRoy, Bijoyita, Westley J. Friesen, Yuki Tomizawa, et al. "Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression." Proceedings of the National Academy of Sciences 113, no. 44 (2016): 12508–13. http://dx.doi.org/10.1073/pnas.1605336113.
Full textSchrock, Madison N., Krishna Parsawar, Kelly T. Hughes, and Fabienne F. V. Chevance. "D-stem mutation in an essential tRNA increases translation speed at the cost of fidelity." PLOS Genetics 21, no. 2 (2025): e1011569. https://doi.org/10.1371/journal.pgen.1011569.
Full textBeznosková, Petra, Laure Bidou, Olivier Namy, and Leoš Shivaya Valášek. "Increased expression of tryptophan and tyrosine tRNAs elevates stop codon readthrough of reporter systems in human cell lines." Nucleic Acids Research 49, no. 9 (2021): 5202–15. http://dx.doi.org/10.1093/nar/gkab315.
Full textThomas, Erica N., Carrie L. Simms, Hannah E. Keedy, and Hani S. Zaher. "Insights into the base-pairing preferences of 8-oxoguanosine on the ribosome." Nucleic Acids Research 47, no. 18 (2019): 9857–70. http://dx.doi.org/10.1093/nar/gkz701.
Full textMittelstaet, Joerg, Andrey L. Konevega, and Marina V. Rodnina. "Distortion of tRNA upon Near-cognate Codon Recognition on the Ribosome." Journal of Biological Chemistry 286, no. 10 (2011): 8158–64. http://dx.doi.org/10.1074/jbc.m110.210021.
Full textKhonsari, Bahar, and Roland Klassen. "Impact of Pus1 Pseudouridine Synthase on Specific Decoding Events in Saccharomyces cerevisiae." Biomolecules 10, no. 5 (2020): 729. http://dx.doi.org/10.3390/biom10050729.
Full textNg, Martin Y., Hong Li, Mikel D. Ghelfi, Yale E. Goldman, and Barry S. Cooperman. "Ataluren and aminoglycosides stimulate read-through of nonsense codons by orthogonal mechanisms." Proceedings of the National Academy of Sciences 118, no. 2 (2021): e2020599118. http://dx.doi.org/10.1073/pnas.2020599118.
Full textKeedy, Hannah E., Erica N. Thomas, and Hani S. Zaher. "Decoding on the ribosome depends on the structure of the mRNA phosphodiester backbone." Proceedings of the National Academy of Sciences 115, no. 29 (2018): E6731—E6740. http://dx.doi.org/10.1073/pnas.1721431115.
Full textBeznosková, Petra, Zuzana Pavlíková, Jakub Zeman, Colin Echeverría Aitken, and Leoš S. Valášek. "Yeast applied readthrough inducing system (YARIS): an invivo assay for the comprehensive study of translational readthrough." Nucleic Acids Research 47, no. 12 (2019): 6339–50. http://dx.doi.org/10.1093/nar/gkz346.
Full textAkins, R. A., R. L. Kelley, and A. M. Lambowitz. "Characterization of mutant mitochondrial plasmids of Neurospora spp. that have incorporated tRNAs by reverse transcription." Molecular and Cellular Biology 9, no. 2 (1989): 678–91. http://dx.doi.org/10.1128/mcb.9.2.678-691.1989.
Full textAkins, R. A., R. L. Kelley, and A. M. Lambowitz. "Characterization of mutant mitochondrial plasmids of Neurospora spp. that have incorporated tRNAs by reverse transcription." Molecular and Cellular Biology 9, no. 2 (1989): 678–91. http://dx.doi.org/10.1128/mcb.9.2.678.
Full textSharma, Virag, Marie-Françoise Prère, Isabelle Canal, et al. "Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli." Nucleic Acids Research 42, no. 11 (2014): 7210–25. http://dx.doi.org/10.1093/nar/gku386.
Full textRoy, Bijoyita, John D. Leszyk, David A. Mangus, and Allan Jacobson. "Nonsense suppression by near-cognate tRNAs employs alternative base pairing at codon positions 1 and 3." Proceedings of the National Academy of Sciences 112, no. 10 (2015): 3038–43. http://dx.doi.org/10.1073/pnas.1424127112.
Full textBonilla, Steve. "Single-particle cryo-EM reveals a novel form of viral 3D tRNA mimicry." Structural Dynamics 12, no. 2_Supplement (2025): A296. https://doi.org/10.1063/4.0000602.
Full textBenslimane, Nesrine, Camille Loret, Pauline Chazelas, et al. "Readthrough Activators and Nonsense-Mediated mRNA Decay Inhibitor Molecules: Real Potential in Many Genetic Diseases Harboring Premature Termination Codons." Pharmaceuticals 17, no. 3 (2024): 314. http://dx.doi.org/10.3390/ph17030314.
Full textMcMurry, Jonathan L., and Michelle C. Y. Chang. "Fluorothreonyl-tRNA deacylase prevents mistranslation in the organofluorine producerStreptomyces cattleya." Proceedings of the National Academy of Sciences 114, no. 45 (2017): 11920–25. http://dx.doi.org/10.1073/pnas.1711482114.
Full textGuinto, Ferdiemar C., Rebecca W. Alexander, and Freddie R. Salsbury. "Substrate recognition and near-cognate discrimination by the wobble-base modifying enzyme tRNA-isoleucine lysidine synthase (TilS)." Biophysical Journal 122, no. 3 (2023): 216a. http://dx.doi.org/10.1016/j.bpj.2022.11.1288.
Full textBeyer, Jenna N., Parisa Hosseinzadeh, Ilana Gottfried-Lee, et al. "Overcoming Near-Cognate Suppression in a Release Factor 1-Deficient Host with an Improved Nitro-Tyrosine tRNA Synthetase." Journal of Molecular Biology 432, no. 16 (2020): 4690–704. http://dx.doi.org/10.1016/j.jmb.2020.06.014.
Full textKondo, Jiro, and Mai Koganei. "Structural Bases for the Fitness Cost of the Antibiotic-Resistance and Lethal Mutations at Position 1408 of 16S rRNA." Molecules 25, no. 1 (2019): 159. http://dx.doi.org/10.3390/molecules25010159.
Full textSuzuki, Takeo, Kenjyo Miyauchi, Tsutomu Suzuki, et al. "Taurine-containing Uridine Modifications in tRNA Anticodons Are Required to Decipher Non-universal Genetic Codes in Ascidian Mitochondria." Journal of Biological Chemistry 286, no. 41 (2011): 35494–98. http://dx.doi.org/10.1074/jbc.m111.279810.
Full textZhang, Hong, Zhihui Lyu, Yongqiang Fan, et al. "Metabolic stress promotes stop-codon readthrough and phenotypic heterogeneity." Proceedings of the National Academy of Sciences 117, no. 36 (2020): 22167–72. http://dx.doi.org/10.1073/pnas.2013543117.
Full textJobin, Parker G., Nestor Solis, Yoan Machado, et al. "Moonlighting matrix metalloproteinase substrates: Enhancement of proinflammatory functions of extracellular tyrosyl-tRNA synthetase upon cleavage." Journal of Biological Chemistry 295, no. 8 (2019): 2186–202. http://dx.doi.org/10.1074/jbc.ra119.010486.
Full textPisareva, Vera P., and Andrey V. Pisarev. "DHX29 reduces leaky scanning through an upstream AUG codon regardless of its nucleotide context." Nucleic Acids Research 44, no. 9 (2016): 4252–65. http://dx.doi.org/10.1093/nar/gkw240.
Full textMelnikov, Sergey V., Keith D. Rivera, Denis Ostapenko, et al. "Error-prone protein synthesis in parasites with the smallest eukaryotic genome." Proceedings of the National Academy of Sciences 115, no. 27 (2018): E6245—E6253. http://dx.doi.org/10.1073/pnas.1803208115.
Full textSmoljanow, Daniela, Dennis Lebeda, Julia Hofhuis, and Sven Thoms. "Defining the high-translational readthrough stop codon context." PLOS Genetics 21, no. 6 (2025): e1011753. https://doi.org/10.1371/journal.pgen.1011753.
Full textKämper, U., U. Kück, A. D. Cherniack, and A. M. Lambowitz. "The mitochondrial tyrosyl-tRNA synthetase of Podospora anserina is a bifunctional enzyme active in protein synthesis and RNA splicing." Molecular and Cellular Biology 12, no. 2 (1992): 499–511. http://dx.doi.org/10.1128/mcb.12.2.499-511.1992.
Full textKämper, U., U. Kück, A. D. Cherniack, and A. M. Lambowitz. "The mitochondrial tyrosyl-tRNA synthetase of Podospora anserina is a bifunctional enzyme active in protein synthesis and RNA splicing." Molecular and Cellular Biology 12, no. 2 (1992): 499–511. http://dx.doi.org/10.1128/mcb.12.2.499.
Full textBiswas, Priyanka, Dillip K. Sahu, Kalyanasis Sahu, and Rajat Banerjee. "Spectroscopic Studies of Asparaginyl-tRNA Synthetase from Entamoeba histolytica." Protein & Peptide Letters 26, no. 6 (2019): 435–48. http://dx.doi.org/10.2174/0929866526666190327122419.
Full textNilsson, Kristina, Hans K. Lundgren, Tord G. Hagervall, and Glenn R. Björk. "The Cysteine Desulfurase IscS Is Required for Synthesis of All Five Thiolated Nucleosides Present in tRNA from Salmonella enterica Serovar Typhimurium." Journal of Bacteriology 184, no. 24 (2002): 6830–35. http://dx.doi.org/10.1128/jb.184.24.6830-6835.2002.
Full textMangkalaphiban, Kotchaphorn, Feng He, Robin Ganesan, Chan Wu, Richard Baker, and Allan Jacobson. "Transcriptome-wide investigation of stop codon readthrough in Saccharomyces cerevisiae." PLOS Genetics 17, no. 4 (2021): e1009538. http://dx.doi.org/10.1371/journal.pgen.1009538.
Full textSundararajan, Anuradha, William A. Michaud, Qiang Qian, Guillaume Stahl, and Philip J. Farabaugh. "Near-Cognate Peptidyl-tRNAs Promote +1 Programmed Translational Frameshifting in Yeast." Molecular Cell 4, no. 6 (1999): 1005–15. http://dx.doi.org/10.1016/s1097-2765(00)80229-4.
Full textSanbonmatsu, Karissa Y. "Flipping through the Genetic Code: New Developments in Discrimination between Cognate and Near-Cognate tRNAs and the Effect of Antibiotics." Journal of Molecular Biology 426, no. 19 (2014): 3197–200. http://dx.doi.org/10.1016/j.jmb.2014.07.005.
Full textBeznosková, Petra, Stanislava Gunišová, and Leoš Shivaya Valášek. "Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast." RNA 22, no. 3 (2016): 456–66. http://dx.doi.org/10.1261/rna.054452.115.
Full textThakur, Anil, and Alan G. Hinnebusch. "eIF1 Loop 2 interactions with Met-tRNAi control the accuracy of start codon selection by the scanning preinitiation complex." Proceedings of the National Academy of Sciences 115, no. 18 (2018): E4159—E4168. http://dx.doi.org/10.1073/pnas.1800938115.
Full textGirodat, Dylan, Hans-Joachim Wieden, Scott C. Blanchard, and Karissa Y. Sanbonmatsu. "Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding." Nature Communications 14, no. 1 (2023). http://dx.doi.org/10.1038/s41467-023-40404-9.
Full textSaleh, Sima, and Philip J. Farabaugh. "Post-transcriptional modification to the core of tRNAs modulates translational misreading errors." RNA, October 31, 2023, rna.079797.123. http://dx.doi.org/10.1261/rna.079797.123.
Full textShe, Richard, Jingchuan Luo, and Jonathan S. Weissman. "Translational fidelity screens in mammalian cells reveal eIF3 and eIF4G2 as regulators of start codon selectivity." Nucleic Acids Research, May 5, 2023. http://dx.doi.org/10.1093/nar/gkad329.
Full textLoveland, Anna B., Eugene Bah, Rohini Madireddy, et al. "Ribosome•RelA structures reveal the mechanism of stringent response activation." eLife 5 (July 19, 2016). http://dx.doi.org/10.7554/elife.17029.
Full textValasek, Leos Shivaya, Michaela Kucerova, Jakub Zeman, and Petra Beznoskova. "Cysteine tRNA acts as a stop codon readthrough-inducing tRNA in the human HEK293T cell line." RNA, May 23, 2023, rna.079688.123. http://dx.doi.org/10.1261/rna.079688.123.
Full textHolm, Mikael, Chandra Sekhar Mandava, Måns Ehrenberg, and Suparna Sanyal. "The mechanism of error induction by the antibiotic viomycin provides insight into the fidelity mechanism of translation." eLife 8 (June 7, 2019). http://dx.doi.org/10.7554/elife.46124.
Full textMatsuura, Jin, Shinichiro Akichika, Fan-Yan Wei, et al. "Human DUS1L catalyzes dihydrouridine modification at tRNA positions 16/17, and DUS1L overexpression perturbs translation." Communications Biology 7, no. 1 (2024). http://dx.doi.org/10.1038/s42003-024-06942-8.
Full text