Academic literature on the topic 'Near-field optical microscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Near-field optical microscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Near-field optical microscopy"

1

Labardi, M., P. G. Gucciardi, and M. Allegrini. "Near-field optical microscopy." La Rivista del Nuovo Cimento 23, no. 4 (April 2000): 1–35. http://dx.doi.org/10.1007/bf03548884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vobornik, Dušan, and Slavenka Vobornik. "Scanning Near-Field Optical Microscopy." Bosnian Journal of Basic Medical Sciences 8, no. 1 (February 20, 2008): 63–71. http://dx.doi.org/10.17305/bjbms.2008.3000.

Full text
Abstract:
An average human eye can see details down to 0,07 mm in size. The ability to see smaller details of the matter is correlated with the development of the science and the comprehension of the nature. Today’s science needs eyes for the nano-world. Examples are easily found in biology and medical sciences. There is a great need to determine shape, size, chemical composition, molecular structure and dynamic properties of nano-structures. To do this, microscopes with high spatial, spectral and temporal resolution are required. Scanning Near-field Optical Microscopy (SNOM) is a new step in the evolution of microscopy. The conventional, lens-based microscopes have their resolution limited by diffraction. SNOM is not subject to this limitation and can offer up to 70 times better resolution.
APA, Harvard, Vancouver, ISO, and other styles
3

OKAZAKI, Satoshi, and Toshihiko NAGAMURA. "Near-field Scanning Optical Microscopy." Journal of the Japan Society for Precision Engineering 57, no. 7 (1991): 1155–58. http://dx.doi.org/10.2493/jjspe.57.1155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Averbukh, I. Sh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior. "Coherent near field optical microscopy." Optics Communications 174, no. 1-4 (January 2000): 33–41. http://dx.doi.org/10.1016/s0030-4018(99)00696-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buratto, Steven K. "Near-field scanning optical microscopy." Current Opinion in Solid State and Materials Science 1, no. 4 (August 1996): 485–92. http://dx.doi.org/10.1016/s1359-0286(96)80062-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kirstein, Stefan. "Scanning near-field optical microscopy." Current Opinion in Colloid & Interface Science 4, no. 4 (August 1999): 256–64. http://dx.doi.org/10.1016/s1359-0294(99)90005-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

AOKI, Hiroyuki. "Scanning Near-Field Optical Microscopy." Kobunshi 55, no. 10 (2006): 831–35. http://dx.doi.org/10.1295/kobunshi.55.831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dürig, U., D. W. Pohl, and F. Rohner. "Near‐field optical‐scanning microscopy." Journal of Applied Physics 59, no. 10 (May 15, 1986): 3318–27. http://dx.doi.org/10.1063/1.336848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dunn, Robert C. "Near-Field Scanning Optical Microscopy." Chemical Reviews 99, no. 10 (October 1999): 2891–928. http://dx.doi.org/10.1021/cr980130e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Betzig, E., M. Isaacson, A. Lewis, and K. Lin. "Near-Field Scanning Optical Microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 184–87. http://dx.doi.org/10.1017/s0424820100125853.

Full text
Abstract:
The spatial resolution of most of the imaging or microcharacterization methods presently in use are fundamentally limited by the wavelength of the exciting or the emitted radiation being used. In general, the smaller the wavelength of the exciting probe, the greater the structural damage to the sample under study. Thus, the requirements of minimal sample alteration and high spatial resolution seem to be at odds with one another.However, the reason for this wavelength resolution limit is due to the far field methods for producing or detecting the radiation of interest. If one does not use far field optics, but rather the method of near field imaging, the spatial resolution attainable can be much smaller than the wavelength of the radiation used. This method of near field imaging has a general applicability for all wave probes.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Near-field optical microscopy"

1

Neacsu, Corneliu Catalin. "Tip-enhanced near-field optical microscopy." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16284.

Full text
Abstract:
Die vorliegende Arbeit beschreibt neue Entwicklungen im Verständnis und in der Umsetzung der optischen Nahfeldmikroskopie (scattering - type scanning near-field optical microscopy, s-SNOM) für die lineare und nichtlineare optische Bildgebung mit ultrahoher Auslösung und Empfindlichkeit. Die fundamentalen Mechanismen, die der Feldverstärkung am Ende von ultrascharfen metallischen Spitzen zugrunde liegen, werden systematisch behandelt. Die plasmonischen Eigenschaften der Spitze wurden erstmalig beobachtet, und ihre Bedeutung für die optische Kopplung zwischen Spitze und Probe sowie für die sich ergebende Einengung des Nahfeldes wird diskutiert. Ein aperturloses Nahfeldmikroskop für die spitzenverstärkte Ramanspektroskopie (tip-enhanced Raman spectroscopy, TERS) wurde entwickelt. Die Grundlagen der TERS und die wesentliche Rolle des plasmonischen Verhaltens der Spitze sowie die klare Unterscheidung von Nahfeld-Ramansignatur und Fernfeld-Abbildungsartefakten werden beschrieben. Nahfeld Raman Verstärkungsfaktoren von bis zu 10 wurden erreicht, was einer Feldverstärkung von bis zu 130 entspricht und Raman-Messungen bis auf Einzel-Molekül-Niveau ermöglichte. Die optische Frequenzverdopplung (second harmonic generation, SHG) an einzelnen Spitzen wurde untersucht. Aufgrund ihrer teilweise asymmetrischen Nanostruktur erlauben die Spitzen eine klare Unterscheidung von lokalen Oberflächen und nichtlokalen Volumenbeiträgen zur nichtlinearen Polarisation sowie die Analyse ihrer Polarisations- und Emissions-Auswahlregeln. Die spitzenverstärkte Frequenzverdopplungs-Spektroskopie und die räumlich hoch aufgelöste Abbildung auf Basis des dielektrischen Kontrasts werden demonstriert. Mit Hilfe einer phasen-sensitiven, Selbst-homodyn-Frequenzverdopplungs-s-SNOM-Abbildungsmethode kann die Oberflächen-Struktur der intrinsischen 180-Domänen im hexagonal multiferroischen YMnO aufgelöst werden.
This thesis describes the implementation of scattering-type near-field optical microscopy (s-SNOM) for linear and nonlinear optical imaging. The technique allows for optical spectroscopy with ultrahigh spatial resolution. New results on the microscopic understanding of the imaging mechanism and the employment of s-SNOM for structure determination at solid surfaces are presented. The method relies on the use of metallic probe tips with apex radii of only few nanometers. The local-field enhancement and its dependence on material properties are investigated. The plasmonic character of Au tips is identified and its importance for the optical tip-sample coupling and subsequent near-field confinement are discussed. The experimental results offer valuable criteria in terms of tip-material and structural parameters for the choice of suitable tips required in s-SNOM. An near-field optical microscope is developed for tip-enhanced Raman spectroscopy (TERS) studies. The principles of TERS and the role of the tip plasmonic behavior together with clear distinction of near-field Raman signature from far-field imaging artifacts are described. TERS results of monolayer and submonolayer molecular coverage on smooth Au surfaces are presented. Second harmonic generation (SHG) from individual tips is investigated. As a partially asymmetric nanostructure, the tip allows for the clear distinction of local surface and nonlocal bulk contributions to the nonlinear polarization and the analysis of their polarization and emission selection rules. Tip-enhanced SH microscopy and dielectric contrast imaging with high spatial resolution are demonstrated. SHG couples directly to the ferroelectric ordering in materials and in combination with scanning probe microscopy can give access to the morphology of mesoscopic ferroelectric domains. Using a phase sensitive self-homodyne SHG s-SNOM imaging method, the surface topology of 180 intrinsic domains in hexagonal multiferroic YMnO is resolved.
APA, Harvard, Vancouver, ISO, and other styles
2

Leong, Siang Huei. "Apertureless scanning near-field optical microscopy." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

LeBlanc, Philip R. "Dual-wavelength scanning near-field optical microscopy." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82911.

Full text
Abstract:
A dual-wavelength Scanning Near-Field Optical Microscope was developed in order to investigate near-field contrast mechanisms as well as biological samples in air. Using a helium-cadmium laser, light of wavelengths 442 and 325 nanometers is coupled into a single mode optical fiber. The end of the probe is tapered to a sub-wavelength aperture, typically 50 nanometers, and positioned in the near-field of the sample. Light from the aperture is transmitted through the sample and detected in a confocal arrangement by two photomultiplier tubes. The microscope has a lateral topographic resolution of 10 nanometers, a vertical resolution of 0.1 nanometer and an optical resolution of 30 nanometers. Two alternate methods of producing the fiber probes, heating and pulling, or acid etching, are compared and the metal coating layer defining the aperture is discussed. So-called "shear-force" interactions between the tip and sample are used as the feedback mechanism during raster scanning of the sample. An optical and topographic sample standard was developed to calibrate the microscope and extract the ultimate resolution of the instrument. The novel use of two wavelengths enables the authentication of true near-field images, as predicted by various models, as well as the identification of scanning artifacts and the deconvolution of often highly complicated relationships between the topographical and optical images. Most importantly, the use of two wavelengths provides information on the chemical composition of the sample. Areas of a polystyrene film are detected by a significant change in the relative transmission of the two wavelengths with a resolution of 30 nanometers. As a biological application, a preliminary investigation of the composition of Black Spruce wood cell fibers was performed. Comparisons of the two optical channels reveal the expected lignin distributions in the cell wall.
APA, Harvard, Vancouver, ISO, and other styles
4

Rea, Nigel P. "Interference and laser feedback optical microscopy." Thesis, University of Oxford, 1995. http://ora.ox.ac.uk/objects/uuid:989c9fca-947d-490c-9f34-38065a7c57d9.

Full text
Abstract:
This thesis concerns the development of simple, compact scanning optical microscopes which can obtain confocal and interference images. The effects of feeding the reflected signal back into the laser cavity of a confocal microscope are investigated and exploited. Monomode optical fibres are used to perform the spatial filtering required for confocal microscopy and, later, as the source of reference beams for interferometry. The theory describing the basic operation of the microscopes is developed. The optical systems are modelled using scalar diffraction theory and the effects of optical feedback into the laser cavity are described, with the practical implications emphasised. A fully reciprocal arrangement of the microscope is developed, in which a single mode optical fibre both launches the signal towards the object and then collects the reflected signal. The fibre is shown to exhibit the spatial filtering properties required for the source and detector in a confocal microscope. It is shown that a semiconductor laser can be used as a detector of the amplitude of the object signal. This is first demonstrated by directing the microscope signal back into the laser cavity and measuring the variation of the optical intensity in the cavity itself. Comparable results are obtained when the variation of the junction voltage across the cavity is measured. It is also shown that the optical fibre is redundant in this system, since the lasing mode of the cavity itself is sufficiently small to adequately spatially filter the reflected signal. When a Helium-Neon laser is used as the source of illumination the effect of the feedback on the laser is seen to be very different, resulting in interferometry. It is shown that high frequency modulation techniques can be used to obtain both confocal images and surface profiles from the same system. This is first demonstrated using an optical feedback scheme in which the modulation of the optical path length of the object beam is controlled electrooptically. In an alternative scheme the images are obtained by calculation, rather than by using a control loop system. In this case the modulation is achieved mechanically. The theoretical limits for the resolutions of the systems described are discussed. It is shown that the lateral resolution of the surface profile systems is inherently non-linear with feature height. Finally, a semiconductor laser based microscope is developed which can obtain confocal images and surface profiles independently. The dependence of the wavelength on the injection current is exploited as a convenient means of introducing a phase shift into the feedback signal by which profilometry can be achieved. All the systems are described theoretically and demonstrated experimentally.
APA, Harvard, Vancouver, ISO, and other styles
5

Lessard, Guillaume Quake Stephen R. "Apertureless near-field optical microscopy for fluorescence imaging /." Diss., Pasadena, Calif. : California Institute of Technology, 2003. http://resolver.caltech.edu/CaltechETD:etd-05302003-145931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hadjipanayi, Maria. "Scanning near-field optical microscopy of semiconducting nano-structures." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schneider, Susanne Christine. "Scattering Scanning Near-Field Optical Microscopy on Anisotropic Dielectrics." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1192105974322-82865.

Full text
Abstract:
Near-field optical microscopy allows the nondestructive examination of surfaces with a spatial resolution far below the diffraction limit of Abbe. In fact, the resolution of this kind of microscope is not at all dependent on the wavelength, but is typically in the range of 10 to 100 nanometers. On this scale, many materials are anisotropic, even though they might appear isotropic on the macroscopic length scale. In the present work, the previously never studied interaction between a scattering-type near-field probe and an anisotropic sample is examined theoretically as well as experimentally. In the theoretical part of the work, the analytical dipole model, which is well known for isotropic samples, is extended to anisotropic samples. On isotropic samples one observes an optical contrast between different materials, whereas on anisotropic samples one expects an additional contrast between areas with different orientations of the same dielectric tensor. The calculations show that this anisotropy contrast is strong enough to be observed if the sample is excited close to a polariton resonance. The experimental setup allows the optical examination in the visible and in the infrared wavelength regimes. For the latter, a free-electron laser was used as a precisely tunable light source for resonant excitation. The basic atomic force microscope provides a unique combination of different scanning probe microscopy methods that are indispensable in order to avoid artifacts in the measurement of the near-field signal and the resulting anisotropy contrast. Basic studies of the anisotropy contrast were performed on the ferroelectric single crystals barium titanate and lithium niobate. On lithium niobate, we examined the spectral dependence of the near-field signal close to the phonon resonance of the sample as well as its dependence on the tip-sample distance, the polarization of the incident light, and the orientation of the sample. On barium titanate, analogous measurements were performed and, additionally, areas with different types of domains were imaged and the near-field optical contrast due to the anisotropy of the sample was directly measured. The experimental results of the work agree with the theoretical predictions. A near-field optical contrast due to the anisotropy of the sample can be measured and allows areas with different orientations of the dielectric tensor to be distinguished optically. The contrast results from variations of the dielectric tensor components both parallel and perpendicular to the sample surface. The presented method allows the optical examination of anisotropies of a sample with ultrahigh resolution, and promises applications in many fields of research, such as materials science, information technology, biology, and nanooptics
Die optische Nahfeldmikroskopie ermöglicht die zerstörungsfreie optische Unter- suchung von Oberflächen mit einer räumlichen Auflösung weit unterhalb des klas- sischen Beugungslimits von Abbe. Die Auflösung dieser Art von Mikroskopie ist unabhängig von der verwendeten Wellenlänge und liegt typischerweise im Bereich von 10-100 Nanometern. Auf dieser Längenskala zeigen viele Materialien optisch anisotropes Verhalten, auch wenn sie makroskopisch isotrop erscheinen. In der vorliegenden Arbeit wird die bisher noch nicht bestimmte Wechselwirkung einer streuenden Nahfeldsonde mit einer anisotropen Probe sowohl theoretisch als auch experimentell untersucht. Im theoretischen Teil wird das für isotrope Proben bekannte analytische Dipol- modell auf anisotrope Materialien erweitert. Während fÄur isotrope Proben ein reiner Materialkontrast beobachtet wird, ist auf anisotropen Proben zusätzlich ein Kontrast zwischen Bereichen mit unterschiedlicher Orientierung des Dielektrizitätstensors zu erwarten. Die Berechnungen zeigen, dass dieser Anisotropiekontrast messbar ist, wenn die Probe nahe einer Polaritonresonanz angeregt wird. Der verwendete experimentelle Aufbau ermöglicht die optische Untersuchung von Materialien im sichtbaren sowie im infraroten Wellenlängenbereich, wobei zur re- sonanten Anregung ein Freie-Elektronen-Laser verwendet wurde. Das dem Nahfeld- mikroskop zugrunde liegende Rasterkraftmikroskop bietet eine einzigartige Kombi- nation verschiedener Rastersondenmikroskopie-Methoden und ermöglicht neben der Untersuchung von komplementären Probeneigenschaften auch die Unterdrückung von mechanisch und elektrisch induzierten Fehlkontrasten im optischen Signal. An den ferroelektrischen Einkristallen Lithiumniobat und Bariumtitanat wurde der anisotrope Nahfeldkontrast im infraroten WellenlÄangenbereich untersucht. An eindomÄanigem Lithiumniobat wurden das spektrale Verhalten des Nahfeldsignals sowie dessen charakteristische Abhängigkeit von Polarisation, Abstand und Proben- orientierung grundlegend untersucht. Auf Bariumtitanat, einem mehrdomänigen Kristall, wurden analoge Messungen durchgeführt und zusätzlich Gebiete mit ver- schiedenen Domänensorten abgebildet, wobei ein direkter nachfeldoptischer Kon- trast aufgrund der Anisotropie der Probe nachgewiesen werden konnte. Die experimentellen Ergebnisse dieser Arbeit stimmen mit den theoretischen Vorhersagen überein. Ein durch die optische Anisotropie der Probe induzierter Nahfeldkontrast ist messbar und erlaubt die optische Unterscheidung von Gebie- ten mit unterschiedlicher Orientierung des Dielektriziätstensors, wobei eine Än- derung desselben sowohl parallel als auch senkrecht zur Probenoberfläche messbar ist. Diese Methode erlaubt die hochauflösende optische Untersuchung von lokalen Anisotropien, was in zahlreichen Gebieten der Materialwissenschaft, Speichertech- nik, Biologie und Nanooptik von Interesse ist
APA, Harvard, Vancouver, ISO, and other styles
8

Low, Chun Hong. "Near Field Scanning Optical Microscopy(NSOM) of nano devices." Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://edocs.nps.edu/npspubs/scholarly/theses/2008/Dec/08Dec%5FLow.pdf.

Full text
Abstract:
Thesis (M.S. in Combat Systems Science and Technology)--Naval Postgraduate School, December 2008.
Thesis Advisor(s): Haegel, Nancy M. ; Luscombe, James. "December 2008." Description based on title screen as viewed on January 29, 2009. Sponsoring/Monitoring Agency Report Number: "DMR-0526330." Includes bibliographical references (p. 59-61). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
9

Stevenson, Richard. "Scanning near-field optical microscopy (SNOM) of semiconductor nanostructures." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chaipiboonwong, Tipsuda. "Characterising nonlinear waveguides by scanning near-field optical microscopy." Thesis, University of Southampton, 2008. https://eprints.soton.ac.uk/65528/.

Full text
Abstract:
Scanning near-field optical microscopy (SNOM) has been applied to investigate the dispersion and nonlinear phenomena in a multimode Ta2O5 rectangular waveguide. Unlike the conventional approach of observing only the output spectra, the SNOM technique can collect the localised spectra from the evanescent field at various locations of the waveguide. This provides the visualisation of pulse evolution prior to the final development as the output light. The SNOM-acquired spectra consist of unique features which have not been observed before in previous nonlinear pulse propagation researches. These distinctive characteristics are attributed to the localised nature of the data and the multimode nonlinear pulse propagation. In order to understand the underlying physics of the experimental data, a numerical model simulating this SNOM visualisation has been developed. The simulation was based on the nonlinear Schrödinger equation, adapted for multimode pulses, and performed by the split-step Fourier algorithm. The spectra exhibit very fine features which can be attributed to the interference of various modes with different phase modulation owing to dispersion and nonlinear effects. Accordingly, the complexity of the spectral features increase with the propagation distance and the number of contributing modes. The multimode spectra rapidly broaden at the beginning stage of the propagation, owing to the supplementary intermodal phase modulation. Unlike the single-mode case, in which the spectral broadening caused by the self-phase modulation continuously develops along the propagation distance, the broadening process in the multimode pulse is decelerated at the later distance. This is owing to the separation of the higher-order modes and consequently the influence of the cross-phase modulation on the spectral broadening is reduced. The SNOM technique can also provide the observation of high resolution evolution of the pulse spectra. Both spectral variations along the length of the waveguide and across the waveguide are observable. Such a variation over the wavelength scale is caused by the interference of modes with different phases complexly formed by the dispersion and nonlinear effects.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Near-field optical microscopy"

1

Xing, Zhu, and Ohtsu Motoichi, eds. Near-field optics: Principles and applications : the second Asia-Pacific Workshop on Near Field Optics, Beijing, China, October 20-23, 1999. Singapore: World Scientific, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ohtsu, Motoichi. Near-field nano-optics: From basic principles to nano-fabrication and nano-photonics. New York: Kluwer Academic/Plenum Publishers, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Near-field microscopy and near-field optics. London: Imperial College Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1968-, Hecht Bert, ed. Principles of nano-optics. Cambridge: Cambridge University Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Peng. Development of a near-field scanning optical microscope and its application in studying the optical mode localization of self-affine Ag colloidal films. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

V, Zayats A., and Richards David Prof, eds. Nano-optics and near-field optical microscopy. Boston: Artech House, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fabrication of Silicon Microprobes for Optical Near-Field Applications. CRC, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and Nanoscratching: Application to Rough and Natural Surfaces (NanoScience and Technology). Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

(Editor), Xing Zhu, and Motoichi Ohtsu (Editor), eds. 2AP NFO Near-Field Optics: Principes and Applications: The Second Asia Pacific Workshop on Near Field Optics. World Scientific Publishing Company, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Suganda, Jutamulia, Asakura Toshimitsu 1934-, and Society of Photo-optical Instrumentation Engineers., eds. Far- and near-field optics: Physics and information processing : 23-24 July 1998, San Diego, California. Bellingham, Wash., USA: SPIE, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Near-field optical microscopy"

1

McGurn, Arthur. "Near Field Microscopy." In Springer Series in Optical Sciences, 445–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77072-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Narushima, Tetsuya. "Scanning Near-Field Optical Microscopy/Near-Field Scanning Optical Microscopy." In Compendium of Surface and Interface Analysis, 577–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6156-1_93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gimzewski, J. K., R. Berndt, R. R. Schlittler, A. W. McKinnon, M. E. Welland, T. M. H. Wong, Ph Dumas, et al. "Optical Spectroscopy and Microscopy Using Scanning Tunneling Microscopy." In Near Field Optics, 333–40. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fischer, U. Ch. "Scanning Near Field Optical Microscopy." In Scanning Microscopy, 76–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84810-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fischer, U. C. "Scanning Near-Field Optical Microscopy." In Scanning Probe Microscopy, 161–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03606-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fischer, U. C., J. Koglin, A. Naber, A. Raschewski, R. Tiemann, and H. Fuchs. "Near Field Optics and Scanning Near Field Optical Microscopy." In Quantum Optics of Confined Systems, 309–26. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1657-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cefalì, Eugenio, Salvatore Patanè, and Maria Allegrini. "Near-Field Optical Litography." In Scanning Probe Microscopy in Nanoscience and Nanotechnology, 757–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03535-7_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, Yimei, Hiromi Inada, Achim Hartschuh, Li Shi, Ada Della Pia, Giovanni Costantini, Amadeo L. Vázquez de Parga, et al. "Scanning Near-Field Optical Microscopy." In Encyclopedia of Nanotechnology, 2280–92. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hartschuh, Achim. "Scanning Near-Field Optical Microscopy." In Encyclopedia of Nanotechnology, 3508–21. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohtsu, Motoichi, and Hirokazu Hori. "Principles of Near-Field Optical Microscopy." In Near-Field Nano-Optics, 43–61. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4835-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Near-field optical microscopy"

1

Isaacson, M., J. Cline, and H. Barshatzky. "Near-Field-Optical Microscopy." In Scanned probe microscopy. AIP, 1991. http://dx.doi.org/10.1063/1.41417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Davis, Christopher C. "FIBER NEAR-FIELD MICROSCOPY." In Optical Fiber Sensors. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/ofs.1997.otua3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Planken, P. C. M., C. W. E. M. van Rijmenam, and N. C. J. van der Valk. "Terahertz near-field microscopy." In Optical Terahertz Science and Technology. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/otst.2005.tuc1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Courjon, D., M. Spajer, A. Jalocha, and S. Leblanc. "Near-Field Optical Microscopy and Optical Tunneling Detection." In Scanned probe microscopy. AIP, 1991. http://dx.doi.org/10.1063/1.41405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Le Gac, Gaelle, Adel Rahmani, Christian Seassal, Emmanuel Picard, Emmanuel Hadji, and Segolene Callard. "Active near-field optical microscopy." In 2008 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2008. http://dx.doi.org/10.1109/cleo.2008.4552001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Semin, David J., W. Patrick Ambrose, Peter M. Goodwin, Joel R. Wendt, and Richard A. Keller. "Near-field optical microscopy nanoarray." In Photonics West '97, edited by Terry A. Michalske and Mark A. Wendman. SPIE, 1997. http://dx.doi.org/10.1117/12.271219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haegel, Nancy M., Chun-Hong Low, Lee Baird, and Goon-Hwee Ang. "Transport imaging with near-field scanning optical microscopy." In SPIE Scanning Microscopy, edited by Michael T. Postek, Dale E. Newbury, S. Frank Platek, and David C. Joy. SPIE, 2009. http://dx.doi.org/10.1117/12.824114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Park, Sang Tae, and Ahmed H. Zewail. "Photon-induced near field electron microscopy." In SPIE Optical Engineering + Applications, edited by Zhiwen Liu. SPIE, 2013. http://dx.doi.org/10.1117/12.2023082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mitrofanov, Oleg. "Sensing applications of THz near-field microscopy." In Optical Sensors. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/sensors.2013.sm4b.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ozcan, A., E. Cubukcu, A. Bilenca, K. Crozier, B. E. Bouma, F. Capasso, and G. J. Tearney. "Differential near-field scanning optical microscopy." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431771.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Near-field optical microscopy"

1

Nakakura, Craig Y., and Aaron Michael Katzenmeyer. Novel Applications of Near-Field Scanning Optical Microscopy (NSOM). Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hallen, Hans D. Spatial & Temporal Resolution in Near-Field Optical Microscopy. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada358134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yan, M., J. McWhirter, T. Huser, and W. Siekhaus. Defect studies of optical materials using near-field scanning optical microscopy and spectroscopy. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/15004114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barbara, Paul F. Ultrafast Near-Field Scanning Optical Microscopy (NSOM) of Emerging Display Technology Media: Solid State Electronic Structure and Dynamics,. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada294879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nowak, Derek. The Design of a Novel Tip Enhanced Near-field Scanning Probe Microscope for Ultra-High Resolution Optical Imaging. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography