Academic literature on the topic 'NEDD8 E3 ligases'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'NEDD8 E3 ligases.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "NEDD8 E3 ligases"

1

Furukawa, Manabu, Yanping Zhang, Joseph McCarville, Tomohiko Ohta, and Yue Xiong. "The CUL1 C-Terminal Sequence and ROC1 Are Required for Efficient Nuclear Accumulation, NEDD8 Modification, and Ubiquitin Ligase Activity of CUL1." Molecular and Cellular Biology 20, no. 21 (November 1, 2000): 8185–97. http://dx.doi.org/10.1128/mcb.20.21.8185-8197.2000.

Full text
Abstract:
ABSTRACT Members of the cullin and RING finger ROC protein families form heterodimeric complexes to constitute a potentially large number of distinct E3 ubiquitin ligases. We report here that the highly conserved C-terminal sequence in CUL1 is dually required, both for nuclear localization and for modification by NEDD8. Disruption of ROC1 binding impaired nuclear accumulation of CUL1 and decreased NEDD8 modification in vivo but had no effect on NEDD8 modification of CUL1 in vitro, suggesting that ROC1 promotes CUL1 nuclear accumulation to facilitate its NEDD8 modification. Disruption of NEDD8 binding had no effect on ROC1 binding, nor did it affect nuclear localization of CUL1, suggesting that nuclear localization and NEDD8 modification of CUL1 are two separable steps, with nuclear import preceding and required for NEDD8 modification. Disrupting NEDD8 modification diminishes the IκBα ubiquitin ligase activity of CUL1. These results identify a pathway for regulation of CUL1 activity—ROC1 and the CUL1 C-terminal sequence collaboratively mediate nuclear accumulation and NEDD8 modification, facilitating assembly of active CUL1 ubiquitin ligase. This pathway may be commonly utilized for the assembly of other cullin ligases.
APA, Harvard, Vancouver, ISO, and other styles
2

Baek, Kheewoong, Daniel C. Scott, and Brenda A. Schulman. "NEDD8 and ubiquitin ligation by cullin-RING E3 ligases." Current Opinion in Structural Biology 67 (April 2021): 101–9. http://dx.doi.org/10.1016/j.sbi.2020.10.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kamada, Shinji. "Inhibitor of apoptosis proteins as E3 ligases for ubiquitin and NEDD8." BioMolecular Concepts 4, no. 2 (April 1, 2013): 161–71. http://dx.doi.org/10.1515/bmc-2012-0036.

Full text
Abstract:
AbstractThe inhibitors of apoptosis proteins (IAPs) are endogenous inhibitors for apoptosis. Apoptosis is carried out by caspases, which are the family of cystein proteases. IAPs regulate caspases through two conserved regions, the baculovirus IAP repeats (BIRs) and the really interesting new gene (RING) domains. Although the BIRs are responsible for binding to caspases, the RING domain can act as a ubiquitin-E3 ligase, leading to ubiquitylation of IAPs themselves and their pro-apoptotic IAP counterparts such as caspases. Recently, it is reported that another ubiquitin-like protein, neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8), is also involved in the regulation of apoptosis through neddylation of caspases mediated by IAPs. On the contrary, the results against the function of IAPs as a NEDD8-E3 ligase are also suggested. This review presents the summary of IAPs, caspases, and the ubiquitin-proteasome system and how their interactions influence the regulation of apoptosis.
APA, Harvard, Vancouver, ISO, and other styles
4

Benjamin, Sigi, and Hermann Steller. "Another Tier for Caspase Regulation: IAPs as NEDD8 E3 Ligases." Developmental Cell 19, no. 6 (December 2010): 791–92. http://dx.doi.org/10.1016/j.devcel.2010.11.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Keuss, Matthew J., Yann Thomas, Robin Mcarthur, Nicola T. Wood, Axel Knebel, and Thimo Kurz. "Characterization of the mammalian family of DCN-type NEDD8 E3 ligases." Journal of Cell Science 129, no. 7 (February 18, 2016): 1441–54. http://dx.doi.org/10.1242/jcs.181784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Broemer, Meike, Tencho Tenev, Kristoffer T. G. Rigbolt, Sophie Hempel, Blagoy Blagoev, John Silke, Mark Ditzel, and Pascal Meier. "Systematic In Vivo RNAi Analysis Identifies IAPs as NEDD8-E3 Ligases." Molecular Cell 40, no. 5 (December 2010): 810–22. http://dx.doi.org/10.1016/j.molcel.2010.11.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hjerpe, Roland, Yann Thomas, Jesse Chen, Aleksandra Zemla, Siobhan Curran, Natalia Shpiro, Lawrence R. Dick, and Thimo Kurz. "Changes in the ratio of free NEDD8 to ubiquitin triggers NEDDylation by ubiquitin enzymes." Biochemical Journal 441, no. 3 (January 16, 2012): 927–39. http://dx.doi.org/10.1042/bj20111671.

Full text
Abstract:
Ubiquitin and UBL (ubiquitin-like) modifiers are small proteins that covalently modify other proteins to alter their properties or behaviours. Ubiquitin modification (ubiquitylation) targets many substrates, often leading to their proteasomal degradation. NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8) is the UBL most closely related to ubiquitin, and its best-studied role is the activation of CRLs (cullin-RING ubiquitin ligases) by its conjugation to a conserved C-terminal lysine residue on cullin proteins. The attachment of UBLs requires three UBL-specific enzymes, termed E1, E2 and E3, which are usually well insulated from parallel UBL pathways. In the present study, we report a new mode of NEDD8 conjugation (NEDDylation) whereby the UBL NEDD8 is linked to proteins by ubiquitin enzymes in vivo. We found that this atypical NEDDylation is independent of classical NEDD8 enzymes, conserved from yeast to mammals, and triggered by an increase in the NEDD8 to ubiquitin ratio. In cells, NEDD8 overexpression leads to this type of NEDDylation by increasing the concentration of NEDD8, whereas proteasome inhibition has the same effect by depleting free ubiquitin. We show that bortezomib, a proteasome inhibitor used in cancer therapy, triggers atypical NEDDylation in tissue culture, which suggests that a similar process may occur in patients receiving this treatment.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhou, Lihong, and Felicity Z. Watts. "Nep1, a Schizosaccharomyces pombe deneddylating enzyme." Biochemical Journal 389, no. 2 (July 5, 2005): 307–14. http://dx.doi.org/10.1042/bj20041991.

Full text
Abstract:
Nedd8 is a ubiquitin-like modifier that is attached to the cullin components of E3 ubiquitin ligases. More recently, p53 has also been shown to be Nedd8-modified. Nedd8 attachment occurs in a manner similar to that observed for other ubiquitin-like modifiers. In the present study, we report on the characterization of Nep1, a deneddylating enzyme in fission yeast (Schizosaccharomyces pombe). Unlike loss of ned8, deletion of the nep1 gene is not lethal, although nep1.d cells are heterogeneous in length, suggesting a defect in cell-cycle progression. Viability of nep1.d cells is dependent on a functional spindle checkpoint but not on the DNA integrity checkpoint. Deletion of a related gene (nep2), either alone or in combination with nep1.d, also has little effect on cell viability. We show that Nep1 can deneddylate the Pcu1, Pcu3 and Pcu4 cullins in vitro and that its activity is sensitive to N-ethylmaleimide, consistent with the idea that it is a member of the cysteine protease family. nep1.d cells accumulate Nedd8-modified proteins, although these do not correspond to modified forms of the cullins, suggesting that, although Nep1 can deneddylate cullins in vitro, this is not its main function in vivo. Nep1 can be co-precipitated with the signalosome subunit Csn5. Nep1 itself is present in a high-molecular-mass complex, but the presence of this complex is not dependent on the production of intact signalosomes. Our results suggest that, in vivo, Nep1 may be responsible for deneddylating proteins other than cullins.
APA, Harvard, Vancouver, ISO, and other styles
9

Adhvaryu, Keyur K., Jordan D. Gessaman, Shinji Honda, Zachary A. Lewis, Paula L. Grisafi, and Eric U. Selker. "The Cullin-4 Complex DCDC Does Not Require E3 Ubiquitin Ligase Elements To Control Heterochromatin in Neurospora crassa." Eukaryotic Cell 14, no. 1 (October 31, 2014): 25–28. http://dx.doi.org/10.1128/ec.00212-14.

Full text
Abstract:
ABSTRACT The cullin-4 (CUL4) complex DCDC ( D IM-5/-7/-9/ C UL4/ D DB1 c omplex) is essential for DNA methylation and heterochromatin formation in Neurospora crassa . Cullins form the scaffold of cullin-RING E3 ubiquitin ligases (CRLs) and are modified by the covalent attachment of NEDD8, a ubiquitin-like protein that regulates the stability and activity of CRLs. We report that neddylation is not required for CUL4-dependent DNA methylation or heterochromatin formation but is required for the DNA repair functions. Moreover, the RING domain protein RBX1 and a segment of the CUL4 C terminus that normally interacts with RBX1, the E2 ligase, CAND1, and CSN are dispensable for DNA methylation and heterochromatin formation by DCDC. Our study provides evidence for the noncanonical functions of core CRL components.
APA, Harvard, Vancouver, ISO, and other styles
10

Onel, Melis, Fidan Sumbul, Jin Liu, Ruth Nussinov, and Turkan Haliloglu. "Cullin neddylation may allosterically tune polyubiquitin chain length and topology." Biochemical Journal 474, no. 5 (February 20, 2017): 781–95. http://dx.doi.org/10.1042/bcj20160748.

Full text
Abstract:
Conjugation of Nedd8 (neddylation) to Cullins (Cul) in Cul-RING E3 ligases (CRLs) stimulates ubiquitination and polyubiquitination of protein substrates. CRL is made up of two Cul-flanked arms: one consists of the substrate-binding and adaptor proteins and the other consists of E2 and Ring-box protein (Rbx). Polyubiquitin chain length and topology determine the substrate fate. Here, we ask how polyubiquitin chains are accommodated in the limited space available between the two arms and what determines the polyubiquitin linkage topology. We focus on Cul5 and Rbx1 in three states: before Cul5 neddylation (closed state), after neddylation (open state), and after deneddylation, exploiting molecular dynamics simulations and the Gaussian Network Model. We observe that regulation of substrate ubiquitination and polyubiquitination takes place through Rbx1 rotations, which are controlled by Nedd8–Rbx1 allosteric communication. Allosteric propagation proceeds from Nedd8 via Cul5 dynamic hinges and hydrogen bonds between the C-terminal domain of Cul5 (Cul5CTD) and Rbx1 (Cul5CTD residues R538/R569 and Rbx1 residue E67, or Cul5CTD E474/E478/N491 and Rbx1 K105). Importantly, at each ubiquitination step (homogeneous or heterogeneous, linear or branched), the polyubiquitin linkages fit into the distances between the two arms, and these match the inherent CRL conformational tendencies. Hinge sites may constitute drug targets.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "NEDD8 E3 ligases"

1

Meszka, Igor. "Chemical biology approaches within the NEDD8 pathway." Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONT015.

Full text
Abstract:
Une famille de petites protéines, appelée famille des molécules d'ubiquitine (Ubls), joue un rôle essentiel dans de nombreux aspects de la réponse au stress. Des défauts dans les composants de la famille de l'ubiquitine sont souvent retrouvés dans les pathologies, notamment dans certain type de cancer et les maladies neurodégénératives.L'une des Ubls qui présente le plus d'identité et de similarité avec l'Ubiquitine est NEDD8. NEDD8 fonctionne de manière similaire à Ub mais utilise un mécanisme de conjugaison distinct. La modification de NEDD8 est essentielle au maintien de l'homéostasie de la cellule car elle joue un rôle majeur dans la régulation de la viabilité, de la croissance et du développement. Pour cette raison, de nombreux composants de NEDD8 ont été dérégulés dans de nombreux cancers. NEDD8 peut modifier un large éventail de substrat protéique, et peut également s’auto-modifier entrainant la création de chaînes polyNEDD8. Récemment, la présence de chaînes polyNEDD8 a été liée à la régulation de la mort cellulaire - apoptose et parthanatos. De plus, il a été récemment rapporté que NEDD8 pendant un stress protéotoxique peut être employé par la machinerie de conjugaison Ub. Cela aboutit à la création de chaînes NEDD8 hybrides tels que NEDD8-Ub et NEDD8-SUMO. En effet, des articles récents ont montré que NEDD8 a non seulement la capacité de modifier Ub mais également SUMO-2. La présence des chaînes hybrides NEDD8 a été liée à la création d'agrégats nucléaires formés pendant le stress protéotoxique, ce qui peut jouer un rôle protecteur pendant l'exposition au stress.Connaissant l'importance de la régulation des protéines par la NEDDylation, nous étions également conscients du manque de connaissances sur le mécanisme qui joue un rôle dans la création et la déconjugaison des différentes entités NEDD8. Jusqu'à présent, deux enzymes déNEDDylantes ont été signalées, mais aucune enzyme n'a été testée pour sa capacité à reconnaître et à traiter les chaînes hybrides NEDD8. De plus, nos connaissances sur les ligases E3 responsables de la NEDDylation du substrat, bien qu'en expansion, sont encore très limitées. De plus, étant donné que NEDD8 peut s’auto-modifier via l’utilisation de l’une de ses dix lysines, elle peut générer une très large gamme de signaux par la formation de chaînes polyNEDD8 et hybrides NEDD8. Ces chaines peuvent être reconnues de la même manière que les chaînes polyUb, mais aucune étude ne s'est concentrée sur la détermination de leurs interacteurs jusqu'à présent.Dans ce travail, nous nous sommes concentrés sur l'exploration de ces mécanismes inconnus de conjugaison et de déconjugaison de NEDD8 mentionnées précédemment. En utilisant des approches de biologie chimique, nous avons testé une variété d'enzymes et déterminé que les chaînes polyNEDD8 sont exclusivement traitées par l'enzyme NEDP1. Cependant, la déconjugaison des chaînes hybrides NEDD8 nécessite l'action coordonnée de différentes enzymes de déconjugaison avec une spécificité distincte pour Ub ou SUMO. Nous avons également utilisé des dimères NEDD8-NEDD8 et NEDD8-Ub synthétisés chimiquement afin de rechercher leurs interacteurs et utiliser les données recueillies pour approfondir nos connaissances sur la biologie des chaînes hybrides NEDD8 dans les agrégats nucléaires. En utilisant les sondes NEDD8-Dha, nous avons identifié un groupe de protéines qui sont potentiellement impliquées dans la machinerie de NEDDylation. Par la confirmation biologique des résultats obtenus, nous avons montré que les ARNt ligases - GARS et SARS fonctionnent comme des ligases E3 de NEDD8. De plus, RNF20 fonctionne également comme une NEDD8 E3 ligase responsable de la NEDDylation de l'histone H2B mais aussi de PARP1 - une des protéines acteurs clés dans la formation des SG
Understanding how organisms respond to environmental stress has critical implications both on quality of life and treatment of diseases. Organisms have developed a series of sophisticated processes to detect and repair such damages. A family of small proteins called the family of Ubiquitin molecules (Ubls), play a critical role in many aspects of the stress response. Defects in components of the Ubiquitin family are often found in pathologic conditions including cancer and neurodegenerative diseases. Understanding how the ubiquitin family is involved in the cellular stress response is an important step in the understanding of this process and can lead to the development of novel therapeutic approaches to treat diseases caused by malfunction of this system.One of the Ubls that has the highest identity and similarity to Ubiquitin is NEDD8. NEDD8 works in a similar manner to Ub, using a distinct conjugation machinery. NEDD8 modification is essential for maintaining the homeostasis of the cell as it plays a major role in the regulation of viability, growth, and development. Because of that, many components of NEDD8 have been found deregulated in many cancers. NEDD8 can modify a wide range of substrate proteins, including itself, which results in the creation of polyNEDD8 chains. Recently the presence of polyNEDD8 chains has been linked to the regulation of cell death – apoptosis and parthanatos. Moreover, it has been recently reported that NEDD8 during proteotoxic stress can be employed by the Ub conjugation machinery. This results in the creation of hybrid NEDD8 chains where except for NEDD8, we can also find Ub and SUMO, as recent papers have shown that NEDD8 has the ability to modify Ub and SUMO-2. The presence of the hybrid NEDD8 chains was linked with the creation of nuclear aggregates formed during proteotoxic stress, which can play a potential protective role during stress exposure.Knowing how important the regulation of proteins through NEDDylation is, we were also aware of the lack of knowledge about the machinery that plays a role in the creation and deconjugation of different NEDD8 entities. So far two deNEDDylating enzymes were reported but no enzyme was tested for its ability to recognise and process the hybrid NEDD8 chains. Moreover, our knowledge about E3 ligases that are responsible for substrate NEDDylation, even though expanding, is still very limited. Additionally, NEDD8 having ten lysines through which it can modify itself, can generate a very broad range of signals through polyNEDD8 and hybrid NEDD8 chain formation, which can be recognised similarly to polyUb chains, yet no studies have focused on determining their interactors so far.In this work, we focused on exploring the beforementioned unknown elements of the NEDD8 conjugation and deconjugation machineries. Using chemical biology approaches we tested a variety of enzymes and determined that polyNEDD8 chains are exclusively processed by the NEDP1 enzyme, however, deconjugation of hybrid NEDD8 chains requires the coordinated action of different deconjugating enzymes with distinct specificity for Ub or SUMO. We also employed chemically synthesized NEDD8-NEDD8 and NEDD8-Ub dimers in order to look for their interactors and used the gathered data to deepen our knowledge about the biology of hybrid NEDD8 chains in nuclear aggregates. Using NEDD8-Dha probes we identified a group of proteins that are potentially involved in the NEDDylation machinery. Through biological confirmation of obtained results we have shown that tRNA ligases – GARS and SARS are working as NEDD8 E3 ligases. Moreover, RNF20 is also working as a NEDD8 E3 ligase responsible for NEDDylation of histone H2B but also PARP1 – one of the proteins that are key players in the formation of SG
APA, Harvard, Vancouver, ISO, and other styles
2

Drinjakovic, Jovana. "E3 ligase Nedd4 regulates axon branching by downregulating PTEN." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ruetalo, Buschinger Natalia [Verfasser], and Silke [Akademischer Betreuer] Wiesner. "Mechanisms underlying the regulation of Nedd4-family E3 Ubiquitin ligases / Natalia Ruetalo Buschinger ; Betreuer: Silke Wiesner." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1202774091/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Escobedo, Pascual Albert. "Structural Insights into Substrate Binding and Regulation of E3 Ubiquitin Ligases in the Nedd4 Family using NMR Spectroscopy." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/284605.

Full text
Abstract:
Nedd4L is a HECT-type E3 ubiquitin ligase (it covalently binds ubiquitin molecules before transferring them to the final substrate). Ubiquitination is a posttranslational modification (PTM) that labels proteins for a variety of fates, the most relevant one being proteasome-mediated degradation. Nedd4L is responsible for the regulation of the turnover of the sodium channel ß-ENaC as well as Smad2/3, mediator proteins of the signalling pathway activated by TGF-ß-like cytokines. It also targets the TGF-ß receptor itself. Defects in its function have been related to hereditary hypertension (Liddle’s syndrome), and could be relevant in certain sorts of cancer and metastasis. CDK8/9 and GSK3-ß are two kinases that regulate the phosphorylation of the Smads, enabling them to carry out their function in cooperation with transcription factors and other partner proteins. At the same time, they label the Smads for their recognition by ubiquitin ligases. This provides the cell with a mechanism to give a transient response to the cytokines of the TGF-ß type. In order to identify the residues and the phosphorylation patterns that are relevant for the interactions of the Smads with both the transcription factors and the ubiquitin ligases, we have prepared a set of phosphopeptides corresponding to the sequences of Smad1 and Smad3. Like all other members of the Nedd4 family, Nedd4L has a multi-domain architecture of the type C2-WW-HECT. Several ligases of the family exist in a latent conformation established through inter-domain contacts that occlude the catalytic site in the HECT domain, involving either the C2 domain (Smurf1, Smurf2, WWP2, Nedd4, Nedd4L) or the central segment where the WW domains are located (Itch). Certain cellular events displace these contacts, inducing the transition to the active conformation. In the case of Nedd4L, increases of the intracellular levels of Ca2+ activate the ligase. The hydrolysis of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) delivers into the cytosol the inositol 1,4,5-triphosphate (IP3), a second messenger that mobilizes the intracellular Ca2+ reserves. The C2 domain of Nedd4L interacts both with Ca2+ ions and with IP3. Using a structural and biophysical approach based on Nuclear Magnetic Resonance (NMR) we have described the specific interactions between the HECT and C2 domains that inhibit the catalytic function. Ca2+ binds the C2 domain with high affinity using the same binding surface and compromises these contacts. In addition, it mediates the interaction with IP3. These results provide the structural fundament for the activation and the relocation to the plasma membrane of Nedd4L mediated by Ca2+. The HECT domain has a highly conserved PY site (HECT-PY). The PY motifs are the sequences recognized by WW domains. Central to this recognition is the coordination of the tyrosine residue in the PY motif by the WW domain. In the crystallographic structure of the Nedd4L HECT domain the tyrosine residue of the HECT-PY motif appears buried in the hydrophobic core and not accessible for binding. It has been shown that the WW domains of Nedd4L recognize the HECT-PY motif of the ligase only after the unfolding of the HECT domain. We raised the hypothesis that the recognition of the HECT-PY motif by one of Nedd4L WW domains may play a role in the auto-ubiquitination mechanism of the ligase. Our data confirm that only when the fold of the HECT domain is partially damaged, the PY site is accessible for being recognized by the WW domains. We present the NMR solution structure of the complex between the WW3 domain and the HECT-PY motif. The site is protected in functional Nedd4L molecules, which are able to recognize it in damaged molecules and label them with ubiquitin for degradation.
Nedd4L és una E3 ubiquitín lligasa responsable de la regulació de la vida mitja del canal de sodi ß-ENaC i de Smad2/3, proteïnes mediadores de la ruta de senyalització activada per citocines TGF-ß. Defectes en la seva funció han estat relacionats amb la hipertensió hereditària (Síndrome de Liddle), i podrien ser rellevants en determinats tipus de càncer i metàstasi. CDK8/9 i GSK3-ß són dues quinases que regulen l’estat de fosforilació de les Smads, habilitant-les per dur a terme llur funció en cooperació amb factors de transcripció al mateix temps que les marquen per ser reconegudes per ubiquitín lligases. Amb l’objectiu d’identificar els residus i els patrons de fosforilació rellevants hem preparat un set de fosfopèptids que corresponen a les seqüències de Smad1/3. Nedd4L presenta una arquitectura multi-domini C2-WW-HECT. Diverses lligases de la família de Nedd4 existeixen en una conformació latent en què contactes inter-domini oclouen el lloc catalític en el domini HECT, involucrant bé el domini C2 (Smurf1/2, WWP2, Nedd4, Nedd4L) o la zona central amb els dominis WW (Itch). Certs esdeveniments cel•lulars desplacen aquests contactes, induint la transició a la conformació activa. L’increment dels nivells intracel•lulars de Ca2+ activa Nedd4L. La hidròlisi del fosfolípid de membrana PIP2 allibera l’IP3 provocant aquest increment. El domini C2 de Nedd4L interacciona tant amb el Ca2+ com amb l’IP3. Utilitzant l’RMN hem descrit els contactes HECT-C2 en la conformació latent i hem observat que el Ca2+ s’uneix al domini C2 amb alta afinitat utilitzant el mateix lloc d’unió, a més d’afavorir la interacció amb l’IP3. Així, hem aportat el fonament estructural per a l’activació i re­localització a la membrana cel•lular de Nedd4L. El domini HECT presenta un lloc PY altament conservat (HECT-PY). Els motius PY són reconeguts pels dominis WW. Proposem que el reconeixement del motiu HECT-PY per part d’un dels dominis WW de Nedd4L estigui implicat en l’auto-ubiquitinació. Hem observat que només quan el plegament del domini HECT està compromès, el lloc PY és accessible. Presentem l’estructura per RMN del complex WW3-HECT-PY. El motiu està protegit en molècules funcionals de Nedd4L, capaces de reconèixer-lo en molècules danyades i ubiquitinar-les.
APA, Harvard, Vancouver, ISO, and other styles
5

Takeda, Michiko [Verfasser], Hiroshi [Akademischer Betreuer] Kawabe, Nils [Akademischer Betreuer] Brose, and Andreas [Akademischer Betreuer] Stumpner. "The Role of the E3 Ubiquitin Ligases Nedd4-1 and Nedd4-2 in Synaptic Transmission and Plasticity / Michiko Takeda. Gutachter: Nils Brose ; Andreas Stumpner. Betreuer: Hiroshi Kawabe." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2013. http://d-nb.info/104430779X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Visvalingam, Shivanthy Majella. "Regulation of growth, and insulin/TOR signalling by protein shuttling and the E3 ubiquitin protein ligase nedd4 in drosophila." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fiedorowicz, Katarzyna [Verfasser]. "Microgravity- and shear stress-mediated regulation of E3 ligase NEDD4 and its substrate Cx43 in endothelial cells / Katarzyna Fiedorowicz." Berlin : Freie Universität Berlin, 2013. http://d-nb.info/1032899344/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Altas, Bekir [Verfasser], Nils [Akademischer Betreuer] Brose, Judith [Gutachter] Stegmüller, and Dirk [Gutachter] Goerlich. "Roles of the Nedd4 Family E3 Ligases in Glial Function and Nerve Cell Development / Bekir Altas ; Gutachter: Judith Stegmüller, Dirk Goerlich ; Betreuer: Nils Brose." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2017. http://d-nb.info/1131875710/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hsia, Hung-En [Verfasser], Hiroshi [Akademischer Betreuer] Kawabe, Nils [Akademischer Betreuer] Brose, Judith [Akademischer Betreuer] Stegmüller, and Andreas [Akademischer Betreuer] Wodarz. "Roles of the HECT-Type Ubiquitin E3 Ligases of the Nedd4 and WWP Subfamilies in Neuronal Development / Hung-En Hsia. Gutachter: Nils Brose ; Judith Stegmüller ; Andreas Wodarz. Betreuer: Hiroshi Kawabe." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/1071713493/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Spiegelberg, Larissa [Verfasser], and Friedemann [Akademischer Betreuer] Weber. "Das Ubiquitin-Proteasom-System und die Ubiquitin-E3-Ligase Nedd4 sind involviert in den Abbau der RNA-Polymerase II durch den Virulenzfaktor NSs des La Crosse-Virus / Larissa Spiegelberg. Betreuer: Friedemann Weber." Marburg : Philipps-Universität Marburg, 2016. http://d-nb.info/1082347027/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "NEDD8 E3 ligases"

1

Butt, Ghazala, Ilhan Yaylim, Rukset Attar, Aliye Aras, Mirna Azalea Romero, Muhammad Zahid Qureshi, Jelena Purenovic, and Ammad Ahmad Farooqi. "NEDD4 Family of E3 Ubiquitin Ligases in Breast Cancer: Spotlight on SMURFs, WWPs and NEDD4." In Advances in Experimental Medicine and Biology, 365–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20301-6_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fu, Xiaoli, Jie Chu, Yuyin Li, Shasha Wang, Jie Zhou, Yujie Dai, and Aipo Diao. "Design, Synthesis, and Biological Evaluation of Nedd4 E3 Ubiquitin Ligase Small Molecule Inhibitors." In Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012), 1821–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37925-3_195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jing, Lei, Xin Huo, Yufeng Li, Yuyin Li, and Aipo Diao. "Identification of the Binding Domains of Nedd4 E3 Ubiquitin Ligase with Its Substrate Protein TMEPAI." In Lecture Notes in Electrical Engineering, 47–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45657-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

I. Kane, Emma, and Donald E. Spratt. "New Discoveries on the Roles of “Other” HECT E3 Ubiquitin Ligases in Disease Development." In Ubiquitin - Proteasome Pathway. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.91770.

Full text
Abstract:
HECT E3 ubiquitin ligases selectively recognize, bind, and ubiquitylate their substrate proteins to target them for 26S proteasomal degradation. There is increasing evidence that HECT E3 ubiquitin ligase dysfunction due to misfolding and/or the gene encoding the protein being mutated is responsible for the development of different diseases. Apart from the more prominent and well-characterized E6AP and members of the NEDD4 family, new studies have begun to reveal how other members of the HECT E3 ubiquitin ligase family function as well as their links to disease and developmental disorders. This chapter provides a comprehensive discussion on the more mysterious members of the HECT E3 ubiquitin ligase family and how they control intracellular processes. Specifically, AREL1, HACE1, HECTD1, HECTD4, G2E3, and TRIP12 will be examined as these enzymes have recently been identified as contributors to disease development.
APA, Harvard, Vancouver, ISO, and other styles
5

Tanaka, Tomoaki, and Tatsuya Nakatani. "Anticancer Target Molecules Against the SCF Ubiquitin E3 Ligase in RCC: Potential Approaches to the NEDD8 Pathway." In Emerging Research and Treatments in Renal Cell Carcinoma. InTech, 2012. http://dx.doi.org/10.5772/26409.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "NEDD8 E3 ligases"

1

Song, Fei, Chuandong Fan, Xiaojing Zhang, Xinjiang Wang, and David W. Goodrich. "Abstract LB-280: RNP biogenesis factor Thoc1 is targeted for ubiquitination by NEDD4-1 E3 ligase." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-lb-280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Knudsen, LM, A. Sveen, CH Bergsland, MB Five, NL Rasmussen, MZ Totland, PW Eide, J. Bruun, RA Lothe, and E. Leithe. "PO-127 Role of the NEDD4 family of E3 ubiquitin ligases in colorectal cancer pathogenesis and their potential as biomarkers." In Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Knudsen, Lars M., Anita Sveen, Christer A. Andreassen, Christian H. Bergsland, Ina A. Eilertsen, Nikoline L. Rasmussen, Max Z. Totland, et al. "Abstract 1433: Role of the E3 ubiquitin ligase NEDD4 in the regulation of PTEN and MDM2 in colorectal cancer." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-1433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Hua, Albert Dobi, and Shiv Srivastava. "Abstract 3914: Androgen receptor (AR) degradation is controlled by the co-operation of PMEPA1 and the E3 ubiquitin ligase NEDD4-1." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-3914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Hua, Elizabeth Umeda, Yingjie Song, Denise Young, Lakshmi Ravindranath, Ahmed Mohamed, Shashwat Sharad, et al. "Abstract 4679: Silencing of PMEPA1, a NEDD4 E3 ubiquitin ligase binding protein, stabilizes androgen receptor and confers resistance to AR inhibitors." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-4679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography