Academic literature on the topic 'Negative binomial regression model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Negative binomial regression model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Negative binomial regression model"
Cepeda-Cuervo, Edilberto, and María Victoria Cifuentes-Amado. "Double Generalized Beta-Binomial and Negative Binomial Regression Models." Revista Colombiana de Estadística 40, no. 1 (January 16, 2017): 141–63. http://dx.doi.org/10.15446/rce.v40n1.61779.
Full textFamoye, Felix. "On the bivariate negative binomial regression model." Journal of Applied Statistics 37, no. 6 (May 11, 2010): 969–81. http://dx.doi.org/10.1080/02664760902984618.
Full textXue, Dixi, and James A. Deddens. "Overdispersed negative binomial regression models." Communications in Statistics - Theory and Methods 21, no. 8 (January 1992): 2215–26. http://dx.doi.org/10.1080/03610929208830908.
Full textLi, Chin-Shang. "Semiparametric Negative Binomial Regression Models." Communications in Statistics - Simulation and Computation 39, no. 3 (February 24, 2010): 475–86. http://dx.doi.org/10.1080/03610910903480834.
Full textHung, Lai-Fa. "A Negative Binomial Regression Model for Accuracy Tests." Applied Psychological Measurement 36, no. 2 (January 24, 2012): 88–103. http://dx.doi.org/10.1177/0146621611429548.
Full textD’Andrea, Amanda, Ricardo Rocha, Vera Tomazella, and Francisco Louzada. "Negative Binomial Kumaraswamy-G Cure Rate Regression Model." Journal of Risk and Financial Management 11, no. 1 (January 19, 2018): 6. http://dx.doi.org/10.3390/jrfm11010006.
Full textRashad, Nadwa Khazaal, Nawal Mahmood Hammood, and Zakariya Yahya Algamal. "Generalized ridge estimator in negative binomial regression model." Journal of Physics: Conference Series 1897, no. 1 (May 1, 2021): 012019. http://dx.doi.org/10.1088/1742-6596/1897/1/012019.
Full textAllison, Paul D., and Richard P. Waterman. "7. Fixed-Effects Negative Binomial Regression Models." Sociological Methodology 32, no. 1 (August 2002): 247–65. http://dx.doi.org/10.1111/1467-9531.00117.
Full textFaroughi, Pouya, and Noriszura Ismail. "Bivariate zero-inflated negative binomial regression model with applications." Journal of Statistical Computation and Simulation 87, no. 3 (July 28, 2016): 457–77. http://dx.doi.org/10.1080/00949655.2016.1213843.
Full textTürkan, Semra, and Gamze Özel. "A Jackknifed estimators for the negative binomial regression model." Communications in Statistics - Simulation and Computation 47, no. 6 (July 11, 2017): 1845–65. http://dx.doi.org/10.1080/03610918.2017.1327069.
Full textDissertations / Theses on the topic "Negative binomial regression model"
Zeileis, Achim, Christian Kleiber, and Simon Jackman. "Regression Models for Count Data in R." Foundation for Open Access Statistics, 2008. http://epub.wu.ac.at/4986/1/Zeileis_etal_2008_JSS_Regression%2DModels%2Dfor%2DCount%2DData%2Din%2DR.pdf.
Full textZeileis, Achim, Christian Kleiber, and Simon Jackman. "Regression Models for Count Data in R." Department of Statistics and Mathematics, WU Vienna University of Economics and Business, 2007. http://epub.wu.ac.at/1168/1/document.pdf.
Full textSeries: Research Report Series / Department of Statistics and Mathematics
Reineck, Viktor, and Folke Ulfsparre. "The Impact of Weather on Residential Fires in Sweden: A Regression Analysis." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254304.
Full textSyftet med denna rapport är att undersöka eventuella samband mellan antalet bostadsbränder i Sverige och olika väderparametrar. Studien genomförts mot bakgrund av en hypotes ställd av MSB, Myndigheten för Samhällsskydd och Beredskap, om att beteendefaktorer relaterade till vädret kan ha en påverkan på antalet bostadsbränder. Generaliserade linjära modeller inom regressionsanalysen har använts och specifikt Poisson- och negativ binomialregression. Målet var att kartlägga det eventuella sambandet och avgöra huruvida det var möjligt att nyttja analysen som verktyg för att förbättra räddningstjänsten i Sverige. Temperatur, kortsiktig temperaturförändring och nederbörd analyserades med bostadsbränder som den beroende variabeln, vilket resulterade i en modell för varje svensk kommun. Sambanden mellan väderparametrarna och bostadsbränder, sett över hela Sverige, visade sig vara svaga till obefintliga med ett undantag. Variabeln för genomsnittstemperatur var signifikant i 117 av 290 kommuner och visade på ett samband där förväntat antal bostadsbränder minskar vid ökad temperatur. På grund av de svaga sambanden, sett över hela Sverige, rekommenderas inte modellen som prognostiskt verktyg på nationell nivå. Däremot skulle enskilda modeller kunna användas som komplement till nuvarande prognostiska verktyg på lokal nivå, samt användas i förebyggande syfte. Därmed har studien kommit fram till att väder har viss påverkan på det förväntade antalet bostadsbränder och således har potential att användas som verktyg vid prognos av bostadsbränder. Som ett komplement till regressionsanalysen genomförs en organisatorisk analys av räddningstjänsten i Sverige. Analysen sökte den optimala strukturen utifrån räddningstjänstens förutsättningar och krav, som definierades utifrån grundläggande organisatoriska begrepp och metoder. Resultatet blev en mer strukturerad verksamhet där metoder och processer sköts på en centraliserad nivå.
Shrestha, Shivesh. "Development of structural condition thresholds for TSD measurements." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78039.
Full textMaster of Science
This thesis presents (a) some of the results of a field evaluation of the Traffic Speed Deflectometer (TSD) in the United States (b) deflection thresholds to classify the pavement structural condition obtained from the TSD for a small subset of the Pennsylvania secondary road network. The results of the field evaluation included: (1) repeatability of the TSD: which is the variation in repeated TSD measurements on the same section of the road, (2) ability of the TSD to identify pavement sections with varying structural conditions, and (3) consistency between the structural number (SNeff) calculated from the TSD and SNeff calculated by the Pennsylvania Department of Transportation (PennDOT). The pavement structural number is an abstract number expressing the structural strength of the pavement. The results showed that the TSD measurements were repeatable and that the TSD was able to identify pavement sections that varied in structural condition. Comparison of the SNeff calculated with TSD measurements, using an empirically developed equation by Rohde, with the SNeff calculated by PennDOT Pavement Management System based on construction history showed similar trends, although the TSD-calculated SNeff was higher. In order to develop deflection thresholds to categorize pavements in different condition: good, fair and poor, a model that related the pavement surface condition to pavement surface age and structural condition was developed. Structural condition thresholds were then selected so that the pavement surface condition predicted from the model for a 10-year-old pavement surface fell within one of the three condition categories (Good, Fair, and Poor), to identify pavements in good, fair and poor condition. With Overall Pavement Index(OPI) characterizing the surface condition and Deflection Slope Index(DSI) characterizing the structural condition, the DSI threshold that separates structurally good from structurally fair pavements was determined as follows: (1) the OPI threshold that separates pavements with good surface condition from those with fair surface condition was obtained from the Pennsylvania Pavement Management System (PMS) and (2) the DSI thresholds were calculated using the determined OPI value and the model equation.
Pemmanaboina, Rajashekar. "Assessing Crash Occurrence On Urban Freeways Using Static And Dynamic Factors By Applying A System Of Interrelated Equations." Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2617.
Full textM.S.C.E.
Department of Civil and Environmental Engineering
Engineering and Computer Science
Civil Engineering
Prasad, Jonathan P. "Zero-Inflated Censored Regression Models: An Application with Episode of Care Data." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/2226.
Full textLindberg, Erik. "A study of the effect of inbreeding in Skellefteå during the 19th century : Using Cox Proportional hazard model to analyze lifespans and Poisson/Negative Binomial regression to analyze fertility." Thesis, Umeå universitet, Statistik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-122687.
Full textVavilikolanu, Srutha. "Crash Prediction Models on Truck-Related Crashes on Two-lane Rural Highways with Vertical Curves." University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1221758522.
Full textDarby, Phillip. "The assessment of driver and manager training in the context of work-related road safety interventions." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/20900.
Full textCoyle, Jesse Aaron. "Optimization of nuclear, radiological, biological, and chemical terrorism incidence models through the use of simulated annealing Monte Carlo and iterative methods." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43599.
Full textBooks on the topic "Negative binomial regression model"
Negative binomial regression. 2nd ed. Cambridge, UK: Cambridge University Press, 2011.
Find full textGreene, William. Functional Form and Heterogeneity in Models for Count Data. Now Publishers Inc, 2007.
Find full textAye, Goodness C. Wealth inequality and CO2 emissions in emerging economies: The case of BRICS. UNU-WIDER, 2020. http://dx.doi.org/10.35188/unu-wider/2020/918-1.
Full textBook chapters on the topic "Negative binomial regression model"
Westfall, Peter H., and Andrea L. Arias. "Models for Poisson and Negative Binomial Response." In Understanding Regression Analysis, 361–77. Boca Raton : CRC Press, [2020]: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9781003025764-14.
Full textReangsephet, Orawan, Supranee Lisawadi, and S. Ejaz Ahmed. "Improving Estimation of Regression Parameters in Negative Binomial Regression Model." In Proceedings of the Twelfth International Conference on Management Science and Engineering Management, 265–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93351-1_22.
Full textGujarati, Damodar. "Modeling Count Data: The Poisson and Negative Binomial Regression Models." In Econometrics, 236–48. London: Macmillan Education UK, 2015. http://dx.doi.org/10.1007/978-1-137-37502-5_12.
Full textCummings, Peter. "Negative Binomial Regression." In Analysis of Incidence Rates, 271–92. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429055713-17.
Full textLemaire, Jean. "Introduction: The Negative Binomial Model." In Automobile Insurance, 117–27. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-015-7708-3_12.
Full textAsar, Yasin. "Liu-Type Negative Binomial Regression: A Comparison of Recent Estimators and Applications." In Contributions to Statistics, 23–39. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73241-1_2.
Full textJing, Wei, Liu Haisheng, and Gui Wenyong. "Ruin Probability of Double Type Insurance Compound Negative Binomial Risk Model." In Communications in Computer and Information Science, 341–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34041-3_49.
Full textRinott, Yosef, and Natalie Shlomo. "A Generalized Negative Binomial Smoothing Model for Sample Disclosure Risk Estimation." In Privacy in Statistical Databases, 82–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11930242_8.
Full textRaspa, G., R. Bruno, and P. Kokkiniotis. "An Application of Disjunctive Kriging: Using The Negative Binomial Model with Different Change of Support Models." In Geostatistics, 935–45. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-015-6844-9_74.
Full textAwazi, Nyong Princely, Martin Ngankam Tchamba, Lucie Felicite Temgoua, and Marie-Louise Tientcheu-Avana. "Farmers’ Adaptive Capacity to Climate Change in Africa: Small-Scale Farmers in Cameroon." In African Handbook of Climate Change Adaptation, 87–115. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_9.
Full textConference papers on the topic "Negative binomial regression model"
Faroughi, Pouya, and Noriszura Ismail. "A new bivariate negative binomial regression model." In INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2014): Proceedings of the 3rd International Conference on Quantitative Sciences and Its Applications. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4903663.
Full textHassan, Anwar, Ishfaq S. Ahmad, and Peer Bilal Ahmad. "Non-Central Negative Binomial Regression Model for Count Data." In 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). IEEE, 2020. http://dx.doi.org/10.1109/icrito48877.2020.9197974.
Full textShafira, Shafira, Sarini Abdullah, and Dian Lestari. "Bayesian Zero Inflated Negative Binomial Regression Model for The Parkinson Data." In Proceedings of the 1st International Conference on Statistics and Analytics, ICSA 2019, 2-3 August 2019, Bogor, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.2-8-2019.2290530.
Full textJiang, Wei, Yutian Tang, Leiyu Ge, and Ming Li. "Maximum Likelihood Estimation - Negative Binomial Regression Traffic Conflict Prediction Model Considering Variable Interactivity." In 2019 5th International Conference on Transportation Information and Safety (ICTIS). IEEE, 2019. http://dx.doi.org/10.1109/ictis.2019.8883720.
Full textFadilah, Febitri Wahyu Rizki, Sri Sulistijowati Handajani, Etik Zukhronah, and Hasih Pratiwi. "Geographically weighted negative binomial regression model to analysis of factors that influence on maternal mortality in Central Java Province." In INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5141718.
Full textAdenomon, Monday Osagie, and Gbenga Solomon Akinyemi. "Statistical Analysis of Tuberculosis and HIV Cases in West Africa Using Panel Poisson and Negative Binomial Regression Models." In 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS). IEEE, 2020. http://dx.doi.org/10.1109/icmcecs47690.2020.240843.
Full textTohari, Amin, Nur Chamidah, and Fatmawati. "Estimating model of the number of HIV and AIDS cases in East Java using bi-response negative binomial regression based on local linear estimator." In SYMPOSIUM ON BIOMATHEMATICS 2019 (SYMOMATH 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0023451.
Full textWang, Yanlei, Shuang Xu, and Xiang Liu. "Risk Analysis of Freight Train Collisions in the United States, 2000 to 2014." In 2016 Joint Rail Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/jrc2016-5738.
Full textJing, Lv, Xie Shan, and Liu Zhifeng. "Compound Negative Binomial-Binomial Risk Model." In 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2014. http://dx.doi.org/10.1109/icmtma.2014.48.
Full textYotenka, Rahmadi, and Alfazrin Banapon. "Modelling the Number of Tuberculosis (TB) Cases in Indonesia using Poisson Regression and Negative Binomial Regression." In The 2nd International Seminar on Science and Technology (ISSTEC 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.201010.007.
Full textReports on the topic "Negative binomial regression model"
Ukkusuri, Satish, Lu Ling, Tho V. Le, and Wenbo Zhang. Performance of Right-Turn Lane Designs at Intersections. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317277.
Full text