Academic literature on the topic 'NEGF'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'NEGF.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "NEGF"
Manna, Narugopal, Nadeema Ayasha, Santosh K. Singh, and Sreekumar Kurungot. "A NiFe layered double hydroxide-decorated N-doped entangled-graphene framework: a robust water oxidation electrocatalyst." Nanoscale Advances 2, no. 4 (2020): 1709–17. http://dx.doi.org/10.1039/c9na00808j.
Full textBahun, Mateja, and Brigita Skela-Savič. "Dejavniki neizvedene zdravstvene nege." Obzornik zdravstvene nege 55, no. 1 (March 19, 2021): 42–51. http://dx.doi.org/10.14528/snr.2021.55.1.3061.
Full textBergmann, Nicolas, and Michael Galperin. "A Green’s function perspective on the nonequilibrium thermodynamics of open quantum systems strongly coupled to baths." European Physical Journal Special Topics 230, no. 4 (April 12, 2021): 859–66. http://dx.doi.org/10.1140/epjs/s11734-021-00067-3.
Full textVoves, Jan, Tomáš Třebický, and Roman Jackiv. "NEGF simulation of the RTD bistability." Journal of Computational Electronics 6, no. 1-3 (January 24, 2007): 259–62. http://dx.doi.org/10.1007/s10825-006-0095-5.
Full textMAITI, T. K., and C. K. MAITI. "NONEQUILIBRIUM GREEN'S FUNCTION BASED QUANTUM TRANSPORT SIMULATION FOR STRAINED-ENGINEERED NANOSCALE TRANSISTORS IN THE PRESENCE OF ELECTRON–PHONON INTERACTIONS." International Journal of Nanoscience 09, no. 04 (August 2010): 327–33. http://dx.doi.org/10.1142/s0219581x10006909.
Full textAkbari, Moaazameh, Mehdi Jafari Shahbazzadeh, Luigi La Spada, and Alimorad Khajehzadeh. "The Graphene Field Effect Transistor Modeling Based on an Optimized Ambipolar Virtual Source Model for DNA Detection." Applied Sciences 11, no. 17 (August 31, 2021): 8114. http://dx.doi.org/10.3390/app11178114.
Full textHe, Chao, Guocai Liu, Huiyan Zhao, Kun Zhao, Zuju Ma, and Xingtao An. "Inorganic photovoltaic cells based on BiFeO3: spontaneous polarization, lattice matching, light polarization and their relationship with photovoltaic performance." Physical Chemistry Chemical Physics 22, no. 16 (2020): 8658–66. http://dx.doi.org/10.1039/d0cp01176b.
Full textSubhan, Fazle, M. Umar Farooq, and Jisang Hong. "Bias-dependent transport properties of passivated tilted black phosphorene nanoribbons." Physical Chemistry Chemical Physics 20, no. 16 (2018): 11021–27. http://dx.doi.org/10.1039/c8cp00090e.
Full textHuong, Vu Thi Thu, Truong Ba Tai, and Minh Tho Nguyen. "A theoretical study on charge transport of dithiolene nickel complexes." Physical Chemistry Chemical Physics 18, no. 8 (2016): 6259–67. http://dx.doi.org/10.1039/c5cp07277h.
Full textGao, Siyan, Liang Liu, Bo Wen, and Xi Zhang. "Monolayer InSe photodetector with strong anisotropy and surface-bound excitons." Physical Chemistry Chemical Physics 23, no. 10 (2021): 6075–83. http://dx.doi.org/10.1039/d1cp00255d.
Full textDissertations / Theses on the topic "NEGF"
Hosenfeld, Fabian. "NEGF Based Analytical Modeling of Advanced MOSFETs." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/462901.
Full textLa corriente túnel de fuente a drenador (SD) disminuye el rendimiento de los dispositivos MOSFETs cuando la longitud del canal cae por debajo de 10 nm. La modelización de los efectos cuánticos incluyendo la corriente túnel SD ha ganado más importancia especialmente para los desarrolladores de modelos compactos. La función de Green de no equilibrio (NEGF) se ha convertido en un método del estado-de-arte para la simulación a nano-escala de los dispositivos en los últimos años. En el sentido de un enfoque de simulación a escala múltiple es necesario cerrar la brecha entre los modelos compactos con su cálculo rápido y eficiente de la corriente, y los modelos numéricos que consideran los efectos cuánticos de los dispositivos de nano escala . En este trabajo, se introduce un modelo analítico basado en NEGF para los MOSFETs de doble compuerta (DG) de nano-escala y FETs de efecto túnel. El modelo consiste en una solución del potencial de forma cerrada a partir de un modelo compacto clásico y un formalismo NEGF 1D para el cálculo de la corriente, teniendo en cuenta los efectos cuánticos. El cálculo del potencial omite el acoplamiento iterativo, lo que permite el cálculo directo de la corriente. El modelo se basa en un enfoque balístico del método NEGF donde los efectos de la retro-dispersión se consideran como de segundo orden de manera simplificada. La precisión y escalabilidad del modelo no iterativo para DG MOSFET se inspecciona en comparación con datos numéricos de simulaciones TCAD nanoMOS para longitudes de canal desde 6 nm hasta 30 nm. Con la ayuda de este modelo se realizan investigaciones sobre los efectos de canal corto y de la temperatura. Los resultados del modelo analítico de FET-túnel se verifican con datos numéricos provenientes de simulaciones TCAD Sentaurus.
Source-to-drain (SD) tunneling decreases the device performance in MOSFETs falling below the 10 nm channel length. Modeling quantum mechanical effects including SD tunneling has gained more importance specially for compact model developers. The non-equilibrium Green's function (NEGF) has become a state-of-the-art method for nano-scaled device simulation in the past years. In the sense of a multi-scale simulation approach it is necessary to bridge the gap between compact models with their fast and efficient calculation of the device current, and numerical device models which consider quantum effects of nano-scaled devices. In this work, a NEGF based analytical model for nano-scaled double-gate (DG) MOSFETs and Tunneling-FETs is introduced. The model consists of a closed-form potential solution of a classical compact model and a 1D NEGF formalism for calculating the device current, taking into account quantum mechanical effects. The potential calculation omits the iterative coupling and allows the straightforward current calculation. The model is based on a ballistic NEGF approach whereby backscattering effects are considered as second order effect in a closed-form. The accuracy and scalability of the non-iterative DG MOSFET model is inspected in comparison with numerical nanoMOS TCAD data for channel lengths from 6 nm to 30 nm. With the help of this model investigations on short-channel and temperature effects are performed. The results of the analytical Tunneling-FET model are verified with numerical TCAD Sentaurus simulation data.
Croy, Alexander. "Zeitaufgelöster Elektronentransport in Quantendotsystemen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-39486.
Full textNier, Olivier. "Development of TCAD modeling for low field electronics transport and strain engineering in advanced Fully Depleted Silicon On Insulator (FDSOI) CMOS transistors." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT141/document.
Full textThe design of nanoscale CMOS devices brings new challenges to TCAD community. Indeed, nowadays, CMOS performances improvements are not simply due to device scaling but also to the introduction of new technology “boosters” such as new transistors architectures (FDSOI, trigate), high-k dielectric gate stacks, stress engineering or new channel material (Ge, III-V). To face all these new technological challenges, Technology Computer Aided Design (TCAD) is a powerful tool to guide the development of advanced technologies but also to reduce development time and cost. In this context, this PhD work aimed at improving the modeling for 28/14 and 10FDSOI technologies, with a particular attention on mechanical strain impacts. In the first section, a summary of the main models implemented in state of the art device simulators is performed. The limitations and assumptions of these models are highlighted and developments of the in-house STMicroelectronics KG solvers are discussed. In the second section, a “top down” approach has been set-up. It has consisted in using advanced physical-based solvers as a reference for TCAD empirical models calibration. Calibrated TCAD reproduced accurately split-CV mobility measurements varying the temperature, the back bias and the Interfacial Layer (IL) thickness. The third section deals with a description of the methodologies used during this thesis to model stress induced by the process flow. Simulations are compared to nanobeam diffraction (NBD) strain measurements. The use and calibration of available TCAD models to efficiently model the impact of stress on mobility in a large range of stress (up to 2GPa) is also discussed in this section. The last part deals with TCAD modeling of advanced CMOS devices for 28/14 and 10FDSOI technology development. Mechanical simulations are performed to model the stress profile in transistors and several solutions to optimize the stress configuration in sSOI and SiGe-based devices have been presented
Nadimi, Ebrahim. "Quantum Mechanical and Atomic Level ab initio Calculation of Electron Transport through Ultrathin Gate Dielectrics of Metal-Oxide-Semiconductor Field Effect Transistors." Doctoral thesis, Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800477.
Full textDie vorliegende Arbeit beschäftigt sich mit der Berechnung von Tunnelströmen in MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors). Zu diesem Zweck wurde ein quantenmechanisches Modell, das auf der selbstkonsistenten Lösung der Schrödinger- und Poisson-Gleichungen basiert, entwickelt. Die Gleichungen sind im Rahmen der EMA gelöst worden. Die Lösung der Schrödinger-Gleichung unter offenen Randbedingungen führt zur Berechnung von Ladungsverteilung und Lebensdauer der Ladungsträger in den QBSs. Der Tunnelstrom wurde dann aus diesen Informationen ermittelt. Der Tunnelstrom wurde in verschiedenen Proben mit unterschiedlichen Oxynitrid Gatedielektrika berechnet und mit gemessenen Daten verglichen. Der Vergleich zeigte, dass die effektive Masse sich sowohl mit der Schichtdicke als auch mit dem Stickstoffgehalt ändert. Im zweiten Teil der vorliegenden Arbeit wurde ein atomistisches Modell zur Berechnung des Tunnelstroms verwendet, welche auf der DFT und NEGF basiert. Zuerst wurde ein atomistisches Modell für ein Si/SiO2-Schichtsystem konstruiert. Dann wurde der Tunnelstrom für verschiedene Si/SiO2/Si-Schichtsysteme berechnet. Das Modell ermöglicht die Untersuchung atom-skaliger Verzerrungen und ihren Einfluss auf den Tunnelstrom. Außerdem wurde der Einfluss einer einzelnen und zwei unterschiedlich positionierter neutraler Sauerstoffleerstellen auf den Tunnelstrom berechnet. Zug- und Druckspannungen auf SiO2 führen zur Deformationen in den chemischen Bindungen und ändern den Tunnelstrom. Auch solche Einflüsse sind anhand des atomistischen Modells berechnet worden
Paulla, Kirti Kant K. "Computational Modeling of Nanosensors Based on Graphene Nanoribbons Including Electron-Phonon Effects." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1377374382.
Full textPENAZZI, GABRIELE. "Development of an atomistic/continous simulation tool for nanoelectronic devices." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2010. http://hdl.handle.net/2108/1335.
Full textThe simulation of novel optoelectronic devices is a great challenge for the engineering community. The enoromous progress in device fabrication technology allowed such a massive downscaling that geometrical feature in the nanoscale play a crucial role. Furthermore we have a great effort in exploring alternative solutions respect to more traditional semiconductor devices. It involves molecular electronic, semiconductive polymers, self-assembled structures, quasi-one dimensional and two dimensional materials. In such scenario it's crucial to develop modular simulation tools able to connect different physical models on different length scales. Quantum effect play an important role and we need to take them into account, avoiding anyway an explosion of the computational complexity. Thus it's needed to go in the direction of a multiscale approach, which is already applied with success in mechanical science. The goal of this work is to include atomistic description and atomistic models in TiberCAD, a Technology CAD code for simulation of optoelectronic devices which can rely on excellent instruments for interfacing different models in a multyphisics/multiscale environment. Atomistic models for the calculation of strain, structure geometry and electronic states have been included. A novel technique for describing quantum transport with an efficient algorithm is also presented. These work wants to push TiberCAD to be a reference tool for calculation of complex optoeletronic devices at the nanoscale.
Jones, Alexander M. "Onset of Spin Polarization in Four-Gate Quantum Point Contacts." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1485188708345005.
Full textOeiras, Rodrigo Yoshikawa. "Estudo de primeiros princípios das propriedades eletrônicas de novos materiais derivados do grafeno : as nanofitas e nanofios." Universidade Federal de São Carlos, 2012. https://repositorio.ufscar.br/handle/ufscar/4946.
Full textFinanciadora de Estudos e Projetos
In this thesis, we study new materials derived from graphene, like nanowires and nanoribbons, with numerical calculations based on the density functional theory (DFT) and the non-equilibrium Green functions (NEGF). We will discuss these theories in general and we remark that these theories are based on quantum mechanical. The results of this study indicate that the carbon ribbons and carbon wires present interesting and not predictable structural properties. The analysis of the density of stated (DOS) and its variants (LDOs, PDOS, and COOP), provides the basis for understanding the structural properties and the electronic structure of the wires and ribbons. Whenever possible, we compare the results obtained with DFT and NEGF with simpler theories, such as the valence orbital theory and the molecular orbital theory. The results show that the transport current is robust and presents an anisotropy in transmission of electrons, indicating these materials are candidates for fabrication of electronic devices, such as transistors.
Nesta tese, estudamos novos materiais derivados de grafeno, as nanofitas e os nanofios de carbono, com o uso de cálculos numéricos baseados na teoria do funcional da densidade (DFT) e na teoria de funções de Green fora do equilíbrio (NEGF). Abordaremos estas teorias de forma geral na tese e ressaltamos que são teorias baseadas em mecânica quântica. Os resultados que obtivemos deste estudo indicam que as fitas e os fios de carbono apresentam propriedades estruturais interessantes e não previsíveis. A análise da densidade de estados (DOS) e suas variantes (LDOS, PDOS e COOP), permitem o entendimento das propriedades estruturais e eletrônicas que os fios e fitas apresentam. Sempre que possível, comparamos os resultados obtidos com a DFT e a NEGF com teorias mais simples, tais como a teoria de orbital de valência e a teoria do orbital molecular. Os resultados de transporte mostram que estas estruturas apresentam uma corrente robusta e com uma anisotropia na transmissão de elétrons, indicando estes materiais como candidatos para fabricação de dispositivos eletrônicos, tais como transistores.
Kruglyak, Yu A. "Non-Equilibrium Green’s Function Method in Matrix Representation and Model Transport Problems of Nanoelectronics." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35352.
Full textAminpour, Maral. "Theoretical Studies of Nanostructure Formation and Transport on Surfaces." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6239.
Full textPh.D.
Doctorate
Physics
Sciences
Physics
Books on the topic "NEGF"
Kalchev, Ivan Petrov. Sartr: Za nego i ot nego. Sofii͡a︡: Biblioteka "Nov den", 1993.
Find full textVilla de Noailles (Hyères, France) and Blanc Jean-Pierre conservateur, eds. Neuf architectes, neuf propositions pour habiter. Paris]: Archibooks+Sautereau éditeur, 2012.
Find full textDzhantyg, Tambyĭ. Zhʺogʺo nėf. Myekʺuapė: Adygė Respublikėm itkhylʺ tedzapḣ, 1995.
Find full textBook chapters on the topic "NEGF"
Camsari, Kerem Y., Shuvro Chowdhury, and Supriyo Datta. "The Nonequilibrium Green Function (NEGF) Method." In Springer Handbook of Semiconductor Devices, 1583–99. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79827-7_44.
Full textMartinez, A., A. Asenov, and M. Pala. "NEGF for 3D Device Simulation of Nanometric Inhomogenities." In Nanoscale CMOS, 335–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118621523.ch10.
Full textKlimeck, Gerhard. "NEMO 1-D: the first NEGF-based TCAD tool." In Simulation of Semiconductor Processes and Devices 2004, 9–12. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-0624-2_2.
Full textVerma, Chhaya, and Jeetendra Singh. "NEGF Method for Design and Simulation Analysis of Nanoscale MOS Devices." In Sub-Micron Semiconductor Devices, 181–92. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003126393-12.
Full textMukherjee, Swarnadip, and Bhaskaran Muralidharan. "Type-II Superlattice Infrared Photodetector (T2SL IRPD) Miniband Modeling: An Atomistic NEGF Study." In Springer Proceedings in Physics, 1039–45. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_159.
Full textBonnefoy, Yves. "Mille neuf cent dix-neuf." In Yeats Annual, 186–90. London: Palgrave Macmillan UK, 1988. http://dx.doi.org/10.1007/978-1-349-07948-3_8.
Full textSarti, Giulio C. "NELF Model." In Encyclopedia of Membranes, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-40872-4_408-2.
Full textRatner, L., and T. M. J. Niederman. "Nef." In Transacting Functions of Human Retroviruses, 169–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78929-8_10.
Full textMiestamo, Matti. "Negation." In Handbook of Pragmatics, 1–25. Amsterdam: John Benjamins Publishing Company, 2006. http://dx.doi.org/10.1075/hop.10.neg1.
Full textMiestamo, Matti. "Negation." In Handbook of Pragmatics, 1–25. Amsterdam: John Benjamins Publishing Company, 2001. http://dx.doi.org/10.1075/hop.5.neg1.
Full textConference papers on the topic "NEGF"
Datta. "The NEGF method: capabilities and challenges." In Electrical Performance of Electronic Packaging. IEEE, 2004. http://dx.doi.org/10.1109/iwce.2004.1407323.
Full textKarner, M., O. Baumgartner, M. Pourfath, M. Vasicek, and H. Kosina. "Investigation of a MOSCAP using NEGF." In International Semiconductor Device Research Symposium. IEEE, 2007. http://dx.doi.org/10.1109/isdrs.2007.4422272.
Full textHong, Sung-Min, and Phil-Hun Ahn. "AC NEGF Simulation of Nanosheet MOSFETs." In 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2020. http://dx.doi.org/10.23919/sispad49475.2020.9241656.
Full textHopkins, Patrick E., Pamela M. Norris, Mikiyas S. Tsegaye, and Avik W. Ghosh. "Predicting Phonon Thermal Conductance at Atomic Junctions: Nonequilibrium Green’s Function Approach Compared to Semiclassical Methods." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66691.
Full textFarhana, Soheli, A. H. M. Zahirul Alam, Sheroz Khan, and S. M. A. Motakabber. "NEGF-based transport phenomena for semiconduncting CNTFET." In 2015 5th National Symposium on Information Technology: Towards New Smart World (NSITNSW). IEEE, 2015. http://dx.doi.org/10.1109/nsitnsw.2015.7176386.
Full textMusho, T. D., S. M. Claiborne, and D. G. Walker. "NEGF Quantum Simulation of Field Emission Devices." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44504.
Full textCavassilas, Nicolas, Fabienne Michelini, Marc Bescond, and Thibault Joie. "Hot-carrier solar cell NEGF-based simulations." In SPIE OPTO, edited by Alexandre Freundlich, Laurent Lombez, and Masakazu Sugiyama. SPIE, 2016. http://dx.doi.org/10.1117/12.2212612.
Full textTakeda, H., and N. Mori. "Mode-coupling effects in NEGF device simulation." In 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.p9-10.
Full textHopkins, Patrick E., Pamela M. Norris, Mikiyas S. Tsegaye, and Avik Ghosh. "Phonon Thermal Boundary Conductance in 1-D Chains: Comparison Between the Semiclassical and Nonequilibrium Green’s Function Formalisms." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52233.
Full textPal, Himadri S., Dmitri E. Nikonov, Raseong Kim, and Mark S. Lundstrom. "Electron-phonon scattering in planar MOSFETs with NEGF." In 2010 Silicon Nanoelectronics Workshop (SNW). IEEE, 2010. http://dx.doi.org/10.1109/snw.2010.5562595.
Full textReports on the topic "NEGF"
Zhang S. Y., H. C. Hseuh, and T. Roser. NEG Coating at RHIC. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/1061692.
Full textZhang S. Y., H. C. Hseuh, W. Fischer, H. Huang, and T. Roser. NEG Coating Application at RHIC. Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/1061811.
Full textZhang S. Y. Application of Saturated NEG at Interaction Regions. Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/1061880.
Full textBuckle, J. L., J. M. Carson, M. Coyle, R. Dumont, K L Ford, B. J. A. Harvey, and G. Delaney. Cree Lake South geophysical survey, Neff Lake, NTS 74 F/01, Saskatchewan. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2008. http://dx.doi.org/10.4095/225431.
Full textGrace, R., J. Gifford, T. Leeds, and S. Bauer. New England Wind Forum: A Wind Powering America Project - Newsletter #6 - September 2010, (NEWF). Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/989419.
Full textBuckle, J. L., J. M. Carson, M. Coyle, K. L. Ford, G. Delaney, and W. Slimmon. Geophysical Series - Neff Lake 74 F/1 and 74 F/2, Saskatchewan, Cree Lake geophysical survey, Saskatchewan. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2007. http://dx.doi.org/10.4095/223981.
Full textBumpers, Harvey L. Effects of a Viral Peptide (Nef) on Growth and Metastasis of Human Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada512002.
Full textCheng, Yeeva, and Cara Krause-Perrotta. Guide d’utilisation de la liste de contrôle de la politique A3. Population Council, 2022. http://dx.doi.org/10.31899/sbsr2022.1021.
Full textPremises - Branches - Port Moresby - View of Harbour (neg only) - 1966. Reserve Bank of Australia, March 2021. http://dx.doi.org/10.47688/rba_archives_pn-006065.
Full textPremises - Branches - Port Moresby - View of Harbour (neg only) - 1966. Reserve Bank of Australia, March 2021. http://dx.doi.org/10.47688/rba_archives_pn-006063.
Full text