Academic literature on the topic 'Nelson-Siegel interest rate model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nelson-Siegel interest rate model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nelson-Siegel interest rate model"
Barbaceia Gonçalves, Adalto, and Felipe Tumenas Marques. "Brazilian term structure of interest rate modeling: A Nelson-Siegel approach." Corporate Ownership and Control 14, no. 1 (2016): 414–32. http://dx.doi.org/10.22495/cocv14i1c3p2.
Full textXiang, J., and X. Zhu. "A Regime-Switching Nelson-Siegel Term Structure Model and Interest Rate Forecasts." Journal of Financial Econometrics 11, no. 3 (January 21, 2013): 522–55. http://dx.doi.org/10.1093/jjfinec/nbs021.
Full textKim, Won Joong, Gunho Jung, and Sun-Yong Choi. "Forecasting CDS Term Structure Based on Nelson–Siegel Model and Machine Learning." Complexity 2020 (July 14, 2020): 1–23. http://dx.doi.org/10.1155/2020/2518283.
Full textToczydlowska, Dorota, and Gareth Peters. "Financial Big Data Solutions for State Space Panel Regression in Interest Rate Dynamics." Econometrics 6, no. 3 (July 18, 2018): 34. http://dx.doi.org/10.3390/econometrics6030034.
Full textGonzalez Sanchez, Mariano, and Sonia Rodriguez-Sanchez. "Comparative analysis of interest rate term structures in the Solvency II environment." Journal of Risk Finance 22, no. 1 (July 2, 2020): 16–33. http://dx.doi.org/10.1108/jrf-04-2020-0067.
Full textRybacki, Jakub. "Does Forward Guidance Matter in Small Open Economies? Examples from Europe." Econometric Research in Finance 4, no. 1 (February 20, 2019): 1–26. http://dx.doi.org/10.33119/erfin.2019.4.1.1.
Full textBogin, Alexander, and William Doerner. "Generating historically-based stress scenarios using parsimonious factorization." Journal of Risk Finance 15, no. 5 (November 21, 2014): 591–611. http://dx.doi.org/10.1108/jrf-03-2014-0036.
Full textCassettari, Ailton, and Jose Raymundo Novaes Chiappin. "Um Modelo Unificado para a Previsão da Estrutura a Termo de Taxa de Juros." Brazilian Review of Finance 16, no. 2 (July 11, 2018): 337. http://dx.doi.org/10.12660/rbfin.v16n2.2018.60169.
Full textNeto, Alberto Ronchi, and Osvaldo Candido. "Avaliação da Curva de Juros Empregando Extensões do Modelo de Diebold & Li com Três Fatores." Brazilian Review of Finance 13, no. 2 (November 5, 2015): 251. http://dx.doi.org/10.12660/rbfin.v13n2.2015.43174.
Full textSubramaniam, Sowmya, and Krishna P. Prasanna. "Inter-dependencies among Asian bond markets." Studies in Economics and Finance 34, no. 4 (October 2, 2017): 485–505. http://dx.doi.org/10.1108/sef-11-2015-0273.
Full textDissertations / Theses on the topic "Nelson-Siegel interest rate model"
Brocco, Marcelo Bertini. "Análise estatística do modelo de Nelson e Siegel." Universidade Federal de São Carlos, 2013. https://repositorio.ufscar.br/handle/ufscar/4566.
Full textFinanciadora de Estudos e Projetos
The present paper studies the yield curve, an important tool for financial decisions, due to its fundamental role in the implementation and evaluation of monetary policies by the central banks. It also shows market perspectives in relation to the future development of interest rates, inflation and economical activities. Using an adequate model and a reasoned assessment of its parameters enables us to adjust the curve as far as possible to the real curve and hence obtain most precise and trustful results. These results were acquired by studying a model which was developed in 1987 by Nelson and Siegel and used to draw up the yield curve. Considering the model s limitations, diferent methods were used to attain the estimated parameters, such as Ordinary Least Squares, Maximum Likelihood and Bayesian Inference in the static version. The Nelson-Siegel model is widely used in Brazil and in the rest of the world, due to its economical idea, easy implementation and eficient adjustment into diferent formats that the yield curve is able to deal with. By considering the restrictions of the model, we found estimations for the parameters of the model safer than other and besides, the main point of this work is an estimation form of parameters of time together with others parameters of the model without considering one fixed value for it.
O objeto de estudo deste trabalho é a curva de taxas de juros, uma importante ferramenta utilizada em decisões financeiras, pois desempenha um papel fundamental na implementação e avaliação de políticas monetárias pelos bancos centrais. Assim sendo, indica as expectativas do mercado quanto ao comportamento futuro das taxas de juros, inflação e atividade econômica. A utilização de um bom modelo e uma boa estimação dos parâmetros do mesmo nos permite representar a curva ajustada o mais próximo da curva real, dessa forma, conseguimos encontrar resultados mais precisos e confiáveis. Neste trabalho estudamos o modelo utilizado para construção das curvas de taxas de juros desenvolvido em 1987 por Nelson e Siegel (1987) e métodos, considerando as restrições do modelo, para obtermos as estimativas dos parâmetros (Mínimos Quadrados Ordinários, Máxima Verossimilhança e Inferência Bayesiana) na vers~ao estática. O modelo de Nelson e Siegel apresenta grande aplicação tanto no Brasil quanto no restante do mundo, pois ele apresenta como características seu caráter parcimonioso nos parâmetros, sua fácil implementação e ajuste eficiente nos diversos formatos que a curva de taxas de juros pode assumir. Por considerarmos as restrições do modelo, encontramos estimativas para os parâmetros do modelo mais seguras e além disso, como principal contribuição deste trabalho, temos uma forma de estimação do parâmetro de tempo conjuntamente com os demais parâmetros do modelo, sem considerar apenas um valor fixo para ele.
Oz, Emrah. "Can Relative Yield Curves Predict Exchange Rate Movements? Example From Turkish Financial Market." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612505/index.pdf.
Full textNehmi, Ulisses Duarte. "Características da estrutura a termo das taxas de juros em economias desenvolvidas e emergentes." reponame:Repositório Institucional do FGV, 2017. http://hdl.handle.net/10438/19489.
Full textApproved for entry into archive by Thais Oliveira (thais.oliveira@fgv.br) on 2017-12-22T17:51:45Z (GMT) No. of bitstreams: 1 Dissert_MPE_Ulisses_2017.12.pdf: 2808696 bytes, checksum: fe4dbd86f710e7d09cbb1705853aba42 (MD5)
Made available in DSpace on 2017-12-23T15:56:54Z (GMT). No. of bitstreams: 1 Dissert_MPE_Ulisses_2017.12.pdf: 2808696 bytes, checksum: fe4dbd86f710e7d09cbb1705853aba42 (MD5) Previous issue date: 2017-12-15
Muitos estudos sobre a Estrutura a Termo das Taxas de Juros (ETTJ) focam na análise de um único país, geralmente uma economia desenvolvida. São raros os estudos que avaliam as características das curvas de juros para um conjunto de países desenvolvidos, e ainda mais raros os estudos que avaliam essas características para países emergentes. Este estudo parametrizou a ETTJ de 19 economias por um período de 10 anos, divididas entre economias desenvolvidas e emergentes, identificando as principais características que definem cada grupo, algumas das quais se revelaram contraintuitivas. A parametrização das curvas de juros também foi utilizada para remover o ruído dos dados originais, o que permitiu uma análise mais precisa dos fatores que explicam suas variâncias. Com isso, foram encontradas evidências de diferenças relevantes no peso dos fatores nível, inclinação e curvatura na explicação das variações na ETTJ para os países desenvolvidos em relação aos países emergentes.
Many studies on Term Structure of Interest Rates (TSIR) focus on the analysis of a single country, usually a developed economy. Seldom do studies evaluate the features of yield curves for a set of developed countries, and even more rarely do studies evaluate these features for emerging countries. The present study evaluates the parametric TSIR of 19 economies over a period of 10 years, grouped into two distinct sets: developed and emerging economies. It identifies the main features, some of which have proved counterintuitive, that define each group. The parameterization of the yield curves was also used to removed noise from the original data, which allowed for a more accurate analysis of the factors that explain its variances. Evidence of relevant differences in weights for the level, slope and curvature factors were found, which explain the variations in the TSIR of developed countries relative to emerging countries.
Daccache, Rudy. "Interest Rate and Liquidity Risk Management for Lebanese Commercial Banks." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10100/document.
Full textThe aim of this thesis is to provide Bank Audi with econometric tools for sake of a more robust risk management. Lebanese businesses today are faced with greater challenges than ever before, both economical and political, and there is a question about the future of the middle east region after the Syrian civil war. Thus, Lebanese commercial banks face greater complications in the management of interest rate and liquidity risk. The first part of this thesis discusses interest rate risk management and measurement in the Lebanese market. First, we seek to build the Lebanese term structure. This market is known by its illiquidity, yields for a given maturity make a large jump with a small impact on other yields even if close to this maturity. Therefore, we face challenges in calibrating existing yield curve models. For this matter, we get historical prices of bonds issued by the Lebanese government, and denominated in Local currency and in US dollar. A new estimation method has been added to Nelson Siegel and Svensson model, we call it “Correlation Constraint Approach”. Model parameters can be interpreted from economical perspective which will be helpful in forecasting yield curve movements based on economist’s opinion. On the second hand, traditional customer deposits are the main funding source of Lebanese commercial banks (80-85% of liabilities). Although they are contractually short term (mainly one month) paying fixed interest rates, these deposits are historically known to be a stable source of funding and therefore exhibit a sticky behavior to changes in market interest rates. We develop an error correction model showing a long-run equilibrium between Libor and Lebanese banking sector average rate offered on USD deposits. Results make it possible to determine the behavioral duration (repricing date) of customer deposits when market interest rates fluctuate. Therefore, the behavioral duration of liabilities will be higher than the contractual one which will lower the duration gap between assets and liabilities and thus the negative impact of positive interest rate shocks. After understanding interest risk profile of customers’ deposits, we start the second part by determining their behavioral liquidation maturity. We get Bank Audi’s historical deposits outstanding balances filtered into the following categories: currency, account typology and residency of depositor. We develop an error correction model for each filter. Results show relationship between deposits behaviors, the coincident indicator and spreads between offered rates in the Lebanese market. The model will lead to assess behavioral liquidation maturity to deposits and understand their liquidity risk profile. This will be helpful for the funding liquidity risk management at Bank Audi. Large financial institutions are supposed to hold large positions of given assets. The last topic is related to market liquidity risk management. We suppose an investor holds a large position of a given asset. Then at time 0, a severe shock causes a large depreciation of the asset value and makes the investor decides to liquidate the portfolio as soon as possible with limited losses. Stock returns are modeled by GARCH process which has tail behaviors after large variation at time 0. Trading on liquid and illiquid markets, we provide the trader with best exit trading strategy maximizing his utility function, finally we incorporate into the model an expert opinion which will help the investor in taking the decision
Berg, Simon, and Victor Elfström. "IRRBB in a Low Interest Rate Environment." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273589.
Full textFinansiella institutioner är exponerade mot flera olika typer av risker. En av de risker som kan ha en stor påverkan är ränterisk i bankboken (IRRBB). 2018 släppte European Banking Authority (EBA) ett regelverk gällande IRRBB som ska se till att institutioner gör tillräckliga riskberäkningar. Detta papper föreslår en IRRBB modell som följer EBAs regelverk. Detta regelverk innehåller bland annat ett deterministiskt stresstest av den riskfria avkastningskurvan, utöver detta så gjordes två olika typer av stokastiska stresstest av avkastningskurvan. Resultatet visar att de deterministiska stresstesten ger högst riskutslag men att utfallen anses vara mindre sannolika att inträffa jämfört med utfallen som de stokastiska modellera genererade. Det påvisas även att EBAs förslag på stressmodell skulle kunna anpassas bättre mot den lågräntemiljö som vi för tillfället befinner oss i. Vidare förs en diskussion gällande ett behov av ett mer standardiserat ramverk för att tydliggöra, både för institutioner själva och samt övervakande myndigheter, vilka risker institutioner utsätts för.
Krippner, Leo. "The Derivation and Application of a Theoretically and Economically Consistent Version of the Nelson and Siegel Class of Yield Curve Models." The University of Waikato, 2007. http://hdl.handle.net/10289/2645.
Full textMariani, Lucas Argentieri. "Modelos macro-financeiros com o uso de fatores latentes do tipo Nelson-Siegel." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/96/96131/tde-07042015-141933/.
Full textUse financial assets to extract market expectations for some macroeconomic variables is a common practice in Macro-Finance literature. In this dissertation we use Brazilian securities to extract the expectations of both the exchange rate as inflation using Nelson- Siegel factors. In the first chapter we developed a model that incorporates these financial market expectations with macroeconomic variables, which are the foundations of this variable. The model developed here differs from previous models by allowing conditional volatilities that seem to be very important in the foreign exchange market. The study findings indicate that the models with latent factors and macroeconomic variables has better preditive power than purely macroeconomic models. In addition,indicates that there is a relationship between macroeconomic variables and the interest rate differential curve between countries. In the second chapter we use the spread between real and nominal bonds used as predictors of inflation. The model presented here is a decomposition of this interest differential in risk premiums and implied inflation using a parametric model based on no-arbitrage conditions. Estimates of implied inflation are non biased estimators of future inflation for shorter horizons and carry information over longer horizons. In addition, the implied inflation has superior results than that only using the differential
Bayazit, Dervis. "Yield Curve Estimation And Prediction With Vasicek Model." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605126/index.pdf.
Full textAkamine, André Mitsuo. "Estrutura a termo de volatilidade no mercado brasileiro e aplicação para risco de mercado." reponame:Repositório Institucional do FGV, 2014. http://hdl.handle.net/10438/11496.
Full textApproved for entry into archive by Vera Lúcia Mourão (vera.mourao@fgv.br) on 2014-02-25T20:48:28Z (GMT) No. of bitstreams: 1 dissertacao-andre_akamine -versao final.pdf: 1090370 bytes, checksum: 2cc992eb83cbdbf42457a77eeb02dffa (MD5)
Made available in DSpace on 2014-02-26T12:20:22Z (GMT). No. of bitstreams: 1 dissertacao-andre_akamine -versao final.pdf: 1090370 bytes, checksum: 2cc992eb83cbdbf42457a77eeb02dffa (MD5) Previous issue date: 2014-01-29
Com o objetivo de analisar o impacto na Estrutura a Termos de Volatilidade (ETV) das taxas de juros utilizando dois diferentes modelos na estimação da Estrutura a Termo das Taxas de Juros (ETTJ) e a suposição em relação a estrutura heterocedástica dos erros (MQO e MQG ponderado pela duration), a técnica procede em estimar a ETV utilizando-se da volatilidade histórica por desvio padrão e pelo modelo auto-regressivo Exponentially Weighted Moving Average (EWMA). Por meio do teste de backtesting proposto por Kupiec para o VaR paramétrico obtido com as volatilidades das ETV´s estimadas, concluí-se que há uma grande diferença na aderência que dependem da combinação dos modelos utilizados para as ETV´s. Além disso, há diferenças estatisticamente significantes entre as ETV´s estimadas em todo os pontos da curva, particularmente maiores no curto prazo (até 1 ano) e nos prazos mais longos (acima de 10 anos).
For the purpose of analyzing the impact in Volatility Term Structure (VTS) of interest rate using two different models in the estimation of the Term Structure of Interest Rates (TSIR) and the assumption regarding the heterocedastic structure of errors (OLS and GLS weighted by duration), the technique proceeds in estimating the VTS using the historical volatility by the standard deviation and autoregressive model Exponentially Weighted Moving Average (EWMA). Through the backtesting test proposed by Kupiec for parametric VaR obtained with the volatilities of VTS’s estimate, conclude that there is a big difference in adherence that depend on the combination of the models used for VTS’s. In addition, there is statistically significant differences between the VTS’s estimated around the points of the curve, specially higher in the short term (less than 1 year) and long term (over 10 years).
Plánička, Pavel. "Bezriziková výnosová míra ve výnosovém oceňování podniků." Master's thesis, Vysoká škola ekonomická v Praze, 2009. http://www.nusl.cz/ntk/nusl-19021.
Full textBook chapters on the topic "Nelson-Siegel interest rate model"
Bose, Sumit Kumar, Janardhanan Sethuraman, and Sadhalaxmi Raipet. "Forecasting the Term Structure of Interest Rates Using Neural Networks." In Artificial Neural Networks in Finance and Manufacturing, 124–38. IGI Global, 2006. http://dx.doi.org/10.4018/978-1-59140-670-9.ch007.
Full text