Academic literature on the topic 'Nematic hydrogel'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nematic hydrogel.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nematic hydrogel"

1

Gwon, So-Jeong, and Soo-Young Park. "General method for the production of hydrogel droplets from uniformly sized smart shell membranes." Polymer Chemistry 11, no. 34 (2020): 5444–54. http://dx.doi.org/10.1039/d0py00679c.

Full text
Abstract:
A smart solid-state liquid crystal shell membrane template prepared by a microfluidic method with a reactive mesogen mixture doped with a nematic liquid crystal of 5CB as a porogen was used for a facile and general method to produce uniformly sized hydrogel droplets.
APA, Harvard, Vancouver, ISO, and other styles
2

Bertsch, Pascal, Stéphane Isabettini, and Peter Fischer. "Ion-Induced Hydrogel Formation and Nematic Ordering of Nanocrystalline Cellulose Suspensions." Biomacromolecules 18, no. 12 (October 20, 2017): 4060–66. http://dx.doi.org/10.1021/acs.biomac.7b01119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Chuang, Garrett C. Lau, Hang Yuan, Aaveg Aggarwal, Victor Lopez Dominguez, Shuangping Liu, Hiroaki Sai, et al. "Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields." Science Robotics 5, no. 49 (December 9, 2020): eabb9822. http://dx.doi.org/10.1126/scirobotics.abb9822.

Full text
Abstract:
The design of soft matter in which internal fuels or an external energy input can generate locomotion and shape transformations observed in living organisms is a key challenge. Such materials could assist in productive functions that may range from robotics to smart management of chemical reactions and communication with cells. In this context, hydrated matter that can function in aqueous media would be of great interest. Here, we report the design of hydrogels containing a scaffold of high–aspect ratio ferromagnetic nanowires with nematic order dispersed in a polymer network that change shape in response to light and experience torques in rotating magnetic fields. The synergistic response enables fast walking motion of macroscopic objects in water on either flat or inclined surfaces and also guides delivery of cargo through rolling motion and light-driven shape changes. The theoretical description of the response to the external energy input allowed us to program specific trajectories of hydrogel objects that were verified experimentally.
APA, Harvard, Vancouver, ISO, and other styles
4

Nack, Annemarie, Julian Seifert, Christopher Passow, and Joachim Wagner. "Hindered nematic alignment of hematite spindles in poly(N-isopropylacrylamide) hydrogels: a small-angle X-ray scattering and rheology study." Journal of Applied Crystallography 51, no. 1 (February 1, 2018): 87–96. http://dx.doi.org/10.1107/s1600576717017411.

Full text
Abstract:
Field-induced changes to the mesostructure of ferrogels consisting of spindle-shaped hematite particles and poly(N-isopropylacrylamide) are investigated by means of small-angle X-ray scattering (SAXS). Related field-induced changes to the macroscopic viscoelastic properties of these composites are probed by means of oscillatory shear experiments in an external magnetic field. Because of their magnetic moment and magnetic anisotropy, the hematite spindles align with their long axis perpendicular to the direction of an external magnetic field. The field-induced torque acting on the magnetic particles leads to an elastic deformation of the hydrogel matrix. Thus, the field-dependent orientational distribution functions of anisotropic particles acting as microrheological probes depend on the elastic modulus of the hydrogel matrix. The orientational distribution functions are determined by means of SAXS experiments as a function of the varying flux density of an external magnetic field. With increasing elasticity of the hydrogels, tunedviathe polymer volume fraction and the crosslinking density, the field-induced alignment of these anisotropic magnetic particles is progressively hindered. The microrheological results are in accordance with macrorheological experiments indicating increasing elasticity with increasing flux density of an external field.
APA, Harvard, Vancouver, ISO, and other styles
5

Pei, Xiaodong, Tingting Zan, Hengming Li, Yingjun Chen, Linqi Shi, and Zhenkun Zhang. "Pure Anisotropic Hydrogel with an Inherent Chiral Internal Structure Based on the Chiral Nematic Liquid Crystal Phase of Rodlike Viruses." ACS Macro Letters 4, no. 11 (October 21, 2015): 1215–19. http://dx.doi.org/10.1021/acsmacrolett.5b00677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Walker, Rebecca, Damian Pociecha, Alfonso Martinez-Felipe, John MD Storey, Ewa Gorecka, and Corrie T. Imrie. "Twist-Bend Nematogenic Supramolecular Dimers and Trimers Formed by Hydrogen Bonding." Crystals 10, no. 3 (March 6, 2020): 175. http://dx.doi.org/10.3390/cryst10030175.

Full text
Abstract:
A selection of novel non-symmetric supramolecular liquid crystal dimers and trimers formed by hydrogen-bonding have been prepared and their phase behaviour characterised by polarised optical microscopy, X-ray diffraction and temperature-dependent Fourier-transform infrared spectroscopy. We mix the bent twist-bend nematogen 4-[6-(4’-cyanobiphenyl-4-yl) hexyloxy]-benzoic acid (CB6OBA) with a series of small stilbazole-based compounds 4-[(E)-2-(n-alkoxyphenyl)ethenyl]pyridines (nOS) of varying terminal chain length (n) to obtain the CB6OBA:nOS complexes. Complexes with n ≤ 7 exhibit nematic and twist-bend nematic behaviour, followed on cooling by a smectic C phase for n = 4–7, and finally, a hexatic-type smectic X phase for n = 3–7. Mixtures with n = 8–10 exhibit a smectic A phase below the conventional nematic phase, and on further cooling, a biaxial smectic Ab phase and the same hexatic-type SmX phase. Supramolecular trimers, CB6OBA:CB6OS and CB6OBA:1OB6OS, formed between CB6OBA and dimeric stilbazoles [(E)-2-(4-{[6-(4’-methoxy[1,1’-biphenyl]-4-yl)hexyl]oxy}phenyl)ethenyl]pyridine (1OB6OS) or 4-[(E)-4’-(6-{4-[(E)-2-(pyridin-4-yl)ethenyl]phenoxy}hexyl)[1,1’-biphenyl]-4- carbonitrile (CB6OS), exhibit nematic and twist-bend nematic phases, and are the first hydrogen-bonded trimers consisting of unlike donor and acceptor fragments to do so.
APA, Harvard, Vancouver, ISO, and other styles
7

Okumuş, Mustafa. "Investigation of thermal and optical properties of some quartet mixed hydrogen-bonded liquid crystals." International Journal of Modern Physics B 31, no. 29 (November 7, 2017): 1750224. http://dx.doi.org/10.1142/s0217979217502241.

Full text
Abstract:
In this study, the thermal and optical properties of quartet mixtures formed at different weight ratios (1:1:1:1 and 1.5:1:1:1) from liquid crystals 4-octyloxy-4[Formula: see text]-cyanobiphenyl (8OCB), 4-hexylbenzoic acid, 4-(octyloxy)benzoic acid and 4-(decyloxy)benzoic acid were investigated by differential scanning calorimeter (DSC) and polarized optic microscopy (POM). The phase transition temperatures of the novel quartet mixtures measured in the DSC experiments are in line with the POM experiments. The experimental results clearly show that the novel liquid crystal mixtures have displayed pure liquid crystalline properties. According to the phase diagram drawn from DSC results, the nematic range of the novel mixture at the eutectic point is larger than the nematic ranges of the components. The mesomorphic structures of produced homolog complex mixtures are found to be smectic and nematic phases. But the smectic phase cannot be observed in the novel complex 1.5:1:1:1 mixture during continuous cooling. The nematic range of the novel complex 1.5:1:1:1 mixture is bigger than the nematic range of the novel complex 1:1:1:1 mixture with increasing 8OCB. Also, the nematic-to-isotropic phase transition temperature decreases with increasing the weight ratio of 8OCB in the complex quartet mixture. Another interesting result is that the produced mixtures are to be like a medical cream at room temperatures. Furthermore, order parameter and thermal stability factor of the transitions are also calculated.
APA, Harvard, Vancouver, ISO, and other styles
8

Hiratani, Takayuki, Osamu Kose, Wadood Y. Hamad, and Mark J. MacLachlan. "Stable and sensitive stimuli-responsive anisotropic hydrogels for sensing ionic strength and pressure." Materials Horizons 5, no. 6 (2018): 1076–81. http://dx.doi.org/10.1039/c8mh00586a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fu, Dengwei, Juntao Li, Jie Wei, and Jinbao Guo. "Effects of terminal chain length in hydrogen-bonded chiral switches on phototunable behavior of chiral nematic liquid crystals: helicity inversion and phase transition." Soft Matter 11, no. 15 (2015): 3034–45. http://dx.doi.org/10.1039/c5sm00128e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Giese, Michael, Tim Krappitz, Ronald Y. Dong, Carl A. Michal, Wadood Y. Hamad, Brian O. Patrick, and Mark J. MacLachlan. "Tuning the photonic properties of chiral nematic mesoporous organosilica with hydrogen-bonded liquid-crystalline assemblies." Journal of Materials Chemistry C 3, no. 7 (2015): 1537–45. http://dx.doi.org/10.1039/c4tc02602k.

Full text
Abstract:
The thermochromic behaviour of chiral nematic mesoporous organosilica hybrids infiltrated with hydrogen-bonded liquid crystals was investigated by polarized optical microscopy, UV-vis and CD-spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Nematic hydrogel"

1

JEONG, SEUNG YEON. "Liquid crystalline behavior of mesogens formed by anomalous hydrogen bonding." Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1304649634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Meng. "Supramolecular hydrogels based on bile acids and their derivatives." Thèse, 2016. http://hdl.handle.net/1866/18440.

Full text
Abstract:
Les hydrogels moléculaires avec un réseau de fibres auto-assembles sont utilisés dans différents domaines dont le relargage de médicaments, les senseurs, l’ingénierie tissulaire et la nano-modélisation. Les hydrogels moléculaires à base d’acides biliaires, qui sont une classe de biocomposés d’origine naturelle, montrent une biocompatibilité améliorée et sont de bons candidats pour des applications dans le domaine biomédical. Ces hydrogels présentent une bonne bio-dégradabilité et une diversité fonctionnelle grâce aux faibles interactions supramoléculaires et aux structures chimiques précisément contrôlées. Dans cette thèse, des nouveaux hydrogels moléculaires à base des acides biliaires et leurs dérivés ont été étudiés pour mieux comprendre la relation entre la structure chimique du gélifiant et la formation de gels moléculaires. Un dimère de l'acide cholique avec un groupe diéthylènetriamine est insoluble dans l'eau. Par contre, il peut former des hydrogels grâce à un réseau tri-dimensionnel de fibres en présence de certains acides carboxyliques. L'addition d'acide carboxylique peut protoner le groupe amine secondaire et défaire les interactions intermoléculaires entre les dimères et favoriser la formation des liaisons hydrogènes acide-dimère. Seuls les acides carboxyliques faibles et hydrophiles causent la gélation des dimères. La résistance mécanique des hydrogels formés peut être modifiée par un choix judicieux d'acides. Les interactions hydrophobes et les liaisons hydrogènes entre les chaînes latérales d'acides carboxyliques peuvent améliorer les propriétés mécaniques des hydrogels. La solubilité marginale du complexe acide-dimère a été considérée comme un facteur critique pour la formation d'hydrogels. Un autre système d’hydrogélation à base d’acides biliaires a été développé par l’introduction de dioxyde de carbone (CO2) dans des solutions aqueuses de certains sels d’acides biliaires, qui donne un hydrogel composé de molécules biologiques entièrement naturelles et fournit un réservoir commode du CO2 dans l’eau. Le groupement carboxylate des sels d’acides biliaires peut être partiellement protoné dans les solutions aqueuses, ce qui amène la dissolution marginale dans l’eau et la formation d’hydrogels avec une structure fibreuse. L’aspect et les propriétés mécaniques des hydrogels dépendent de la concentration de CO2. Le bullage avec CO2 pendant une ou deux secondes génère un hydrogel transparent avec des nanofibres. Le bullage supplémentaire forme des hydrogels plus forts. Mais réduit la transparence et la force mécanique des hydrogels. D’ailleurs, les hydrogels transparents ou opaques redeviennent des solutions transparentes quand ils sont chauffés avec bullage de N2. La transition sol-gel est réversible et reproductible. La force mécanique et la transparence des hydrogels peuvent être améliorées par l’addition de sels inorganiques comme NaCl par l’effet de relargage. Toutes les composantes de ces hydrogels sont naturelles, donnant des hydrogels biocompatibles et potentiellement utiles pour des applications dans le domaine biomédical. Le dimère mentionné ci-dessus possède des propriétés d’auto-assemblage dépendamment de sa concentration. Ceci a été étudié en utilisant un sel organique de dimère/acide formique avec un rapport molaire 1/1. Le sel du dimère s’auto-assemble dans l’eau et ainsi forme des nanofibres isolées et mono-dispersées à des concentrations faibles. Les fibres enchevêtrées donnent des réseaux fibreux 3D bien dispersés de façon aléatoire à des concentrations plus élevées. Quand la concentration du sel du dimère est supérieure à la concentration critique de gélation, le réseau fibreux est assez fort pour immobiliser la solution, qui provoque la formation d’un hydrogel isotrope. L’augmentation supplémentaire de la concentration du sel du dimère peut augmenter l’anisotropie de l’hydrogel et former ainsi un hydrogel nématique. La formation de domaines ordonnés des nanofibres alignées donne ces propriétés optiques à l’hydrogel. L’agitation de systèmes aqueux du sel de dimère favorise aussi la formation de nanofibres alignées.
Molecular hydrogels are soft materials formed by the self-assembly of small molecules in aqueous solutions via supramolecular interactions. Although much effort has been made in the past several decades in the study of these hydrogels, the mechanism of their formation remains to be understood and the prediction of their formation is a challenge. The main purpose of this thesis is to develop novel molecular hydrogels derived from bile acids, which are naturally occurring biocompounds, and to find the relationship between the gelator structure and the gelation ability. Two new molecular gelation systems based on bile acids and their derivatives have been developed, which may be useful in biomedical applications. The marginal solubility of the solute in water has been found to be a prerequisite for the formation of such molecular hydrogels. The alignment of the nanofibers in the gels leads to the formation of nematic hydrogels. The first gelation system is based on a cholic acid dimer as a gelator, which has two cholic acid molecules covalently linked by a diethylenetriamine spacer. This dimer is insoluble in water, but it forms hydrogels with 3-D fibrous networks in the presence of selected carboxylic acids. The carboxylic acids protonate the dimer, making it marginally soluble in water to yield hydrogels. Only weak and hydrophilic carboxylic acids were capable of inducing the gelation of the dimer and the mechanical strength of the hydrogels could be varied by judicious choice of the acids. Hydrophobic interactions and hydrogen bonding between the side chains of carboxylic acids improve the mechanical properties of hydrogels. The marginal solubility of the acid-dimer complex is regarded to be the critical factor for the formation of hydrogels. Another hydrogelation system was developed by purging to the aqueous solutions of a series of bile salts with carbon dioxide (CO2), yielding hydrogels made of entire natural biological molecules and providing a convenient storage reservoir of CO2 in water. Bile salts are well dissolved in water, while the solubility of bile acids is limited. The carboxylate group of bile salts may be partially protonated in aqueous solutions by bubbling CO2, making them only marginally soluble in water. This forms fibrous structures. Both the appearance and mechanical properties of the hydrogels depend on the amount of CO2 purged. Bubbling CO2 initially induced the formation of transparent hydrogels with nanofibers. Continued purging with CO2 strengthened the hydrogel mechanically, while further addition of CO2 reduced the transparency and mechanical strength of the hydrogel. Both the transparent and opaque hydrogels reverted to transparent solutions when heated and bubbling N2. The sol-gel transition process was reversible and repeatable. The mechanical strength and transparency of the hydrogels could be improved by adding inorganic salts such as NaCl via a salting-out effect. All the hydrogel components are naturally biological compounds, making such hydrogels biocompatible and potentially useful in biomedical applications. The cholic acid dimer linked with a diethylenetriamine spacer was able to assemble in water and form isolated nanofibers in the presence of certain carboxylic acids at a much lower concentration than the CMC of sodium cholate. These nanofibers entangle with each other to yield well-dispersed and randomly-directed 3-D fibrous networks at higher concentrations. When the concentration of dimer salt is above the minimum gelation concentration, the fibrous network is strong enough to immobilize the solution, leading to the formation of an isotropic hydrogel. Further increase of the dimer salt concentration may transit the hydrogels to be anisotropic, thus the formation of nematic hydrogels. The formation of ordered domains of the aligned nanofibers led to anisotropic optical properties of the hydrogels. Stirring the aqueous systems of dimer salt also promoted the alignment of the nanofibers. These molecular hydrogels with ordered aggregates may be useful in applications such as cell culture and mechano-optical sensing.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nematic hydrogel"

1

Park, Jimin, Jongyoon Kim, Jahyeon Koo, Kwang-Un Jeong, and Ji-Hoon Lee. "Enhanced flexoelectric anisotropy of nematic liquid crystal with hydrogen-bonded dimer." In Emerging Liquid Crystal Technologies XV, edited by Liang-Chy Chien and Dirk J. Broer. SPIE, 2020. http://dx.doi.org/10.1117/12.2545919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography