Journal articles on the topic 'Nested Association Mapping'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nested Association Mapping.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Guo, Baohong, David A. Sleper, and William D. Beavis. "Nested Association Mapping for Identification of Functional Markers." Genetics 186, no. 1 (2010): 373–83. http://dx.doi.org/10.1534/genetics.110.115782.
Full textMcMullen, M. D., S. Kresovich, H. S. Villeda, et al. "Genetic Properties of the Maize Nested Association Mapping Population." Science 325, no. 5941 (2009): 737–40. http://dx.doi.org/10.1126/science.1174320.
Full textFragoso, Christopher A., Maria Moreno, Zuoheng Wang, et al. "Genetic Architecture of a Rice Nested Association Mapping Population." G3: Genes|Genomes|Genetics 7, no. 6 (2017): 1913–26. http://dx.doi.org/10.1534/g3.117.041608.
Full textNice, Liana M., Brian J. Steffenson, Thomas K. Blake, Richard D. Horsley, Kevin P. Smith, and Gary J. Muehlbauer. "Mapping Agronomic Traits in a Wild Barley Advanced Backcross-Nested Association Mapping Population." Crop Science 57, no. 3 (2017): 1199–210. http://dx.doi.org/10.2135/cropsci2016.10.0850.
Full textMcCauley, DJ. "A Nested Association Mapping Population for Wheat Stem Rust Resistance." CSA News 65, no. 8 (2020): 6–9. http://dx.doi.org/10.1002/csan.20240.
Full textGuo, Baohong, and William D. Beavis. "In silico genotyping of the maize nested association mapping population." Molecular Breeding 27, no. 1 (2010): 107–13. http://dx.doi.org/10.1007/s11032-010-9503-4.
Full textGrover, Sajjan, Braden Wojahn, Suresh Varsani, Scott E. Sattler, and Joe Louis. "Resistance to greenbugs in the sorghum nested association mapping population." Arthropod-Plant Interactions 13, no. 2 (2019): 261–69. http://dx.doi.org/10.1007/s11829-019-09679-y.
Full textBrock, Marcus T., Matthew J. Rubin, Dean DellaPenna, and Cynthia Weinig. "A Nested Association Mapping Panel in Arabidopsis thaliana for Mapping and Characterizing Genetic Architecture." G3: Genes|Genomes|Genetics 10, no. 10 (2020): 3701–8. http://dx.doi.org/10.1534/g3.120.401239.
Full textKitony, Justine K., Hidehiko Sunohara, Mikako Tasaki, et al. "Development of an Aus-Derived Nested Association Mapping (Aus-NAM) Population in Rice." Plants 10, no. 6 (2021): 1255. http://dx.doi.org/10.3390/plants10061255.
Full textBlake, N. K., M. Pumphrey, K. Glover, et al. "Registration of the Triticeae-CAP Spring Wheat Nested Association Mapping Population." Journal of Plant Registrations 13, no. 2 (2019): 294–97. http://dx.doi.org/10.3198/jpr2018.07.0052crmp.
Full textYu, Jianming, James B. Holland, Michael D. McMullen, and Edward S. Buckler. "Genetic Design and Statistical Power of Nested Association Mapping in Maize." Genetics 178, no. 1 (2008): 539–51. http://dx.doi.org/10.1534/genetics.107.074245.
Full textZahn, Sebastian, Thomas Schmutzer, Klaus Pillen, and Andreas Maurer. "Genomic Dissection of Peduncle Morphology in Barley through Nested Association Mapping." Plants 10, no. 1 (2020): 10. http://dx.doi.org/10.3390/plants10010010.
Full textBajgain, Prabin, Yue Jin, Toi J. Tsilo, et al. "Registration of KUWNSr, a wheat stem rust nested association mapping population." Journal of Plant Registrations 14, no. 3 (2020): 467–73. http://dx.doi.org/10.1002/plr2.20043.
Full textTian, Feng, Peter J. Bradbury, Patrick J. Brown, et al. "Genome-wide association study of leaf architecture in the maize nested association mapping population." Nature Genetics 43, no. 2 (2011): 159–62. http://dx.doi.org/10.1038/ng.746.
Full textOlatoye, Marcus O., Sandeep R. Marla, Zhenbin Hu, Sophie Bouchet, Ramasamy Perumal, and Geoffrey P. Morris. "Dissecting Adaptive Traits with Nested Association Mapping: Genetic Architecture of Inflorescence Morphology in Sorghum." G3: Genes|Genomes|Genetics 10, no. 5 (2020): 1785–96. http://dx.doi.org/10.1534/g3.119.400658.
Full textCook, Jason P., Michael D. McMullen, James B. Holland, et al. "Genetic Architecture of Maize Kernel Composition in the Nested Association Mapping and Inbred Association Panels." Plant Physiology 158, no. 2 (2011): 824–34. http://dx.doi.org/10.1104/pp.111.185033.
Full textZhang, Nengyi, Yves Gibon, Jason G. Wallace, et al. "Genome-Wide Association of Carbon and Nitrogen Metabolism in the Maize Nested Association Mapping Population." Plant Physiology 168, no. 2 (2015): 575–83. http://dx.doi.org/10.1104/pp.15.00025.
Full textBeche, Eduardo, Jason D. Gillman, Qijian Song, et al. "Nested association mapping of important agronomic traits in three interspecific soybean populations." Theoretical and Applied Genetics 133, no. 3 (2020): 1039–54. http://dx.doi.org/10.1007/s00122-019-03529-4.
Full textGuo, Zhigang, Dominic M. Tucker, Jianwei Lu, Venkata Kishore, and Gilles Gay. "Evaluation of genome-wide selection efficiency in maize nested association mapping populations." Theoretical and Applied Genetics 124, no. 2 (2011): 261–75. http://dx.doi.org/10.1007/s00122-011-1702-9.
Full textPerumal, Ramasamy, Tesfaye T. Tesso, Geoffrey P. Morris, et al. "Registration of the sorghum nested association mapping (NAM) population in RTx430 background." Journal of Plant Registrations 15, no. 2 (2021): 395–402. http://dx.doi.org/10.1002/plr2.20110.
Full textKidane, Yosef G., Cherinet A. Gesesse, Bogale N. Hailemariam, et al. "A large nested association mapping population for breeding and quantitative trait locus mapping in Ethiopian durum wheat." Plant Biotechnology Journal 17, no. 7 (2019): 1380–93. http://dx.doi.org/10.1111/pbi.13062.
Full textGuo, Zhigang, Dominic M. Tucker, Daolong Wang, et al. "Accuracy of Across-Environment Genome-Wide Prediction in Maize Nested Association Mapping Populations." G3: Genes|Genomes|Genetics 3, no. 2 (2013): 263–72. http://dx.doi.org/10.1534/g3.112.005066.
Full textBajgain, Prabin, Matthew N. Rouse, Toi J. Tsilo, et al. "Nested Association Mapping of Stem Rust Resistance in Wheat Using Genotyping by Sequencing." PLOS ONE 11, no. 5 (2016): e0155760. http://dx.doi.org/10.1371/journal.pone.0155760.
Full textChen, Qiuyue, Chin Jian Yang, Alessandra M. York, et al. "TeoNAM: A Nested Association Mapping Population for Domestication and Agronomic Trait Analysis in Maize." Genetics 213, no. 3 (2019): 1065–78. http://dx.doi.org/10.1534/genetics.119.302594.
Full textStich, Benjamin. "Comparison of Mating Designs for Establishing Nested Association Mapping Populations in Maize andArabidopsis thaliana." Genetics 183, no. 4 (2009): 1525–34. http://dx.doi.org/10.1534/genetics.109.108449.
Full textPoland, J. A., P. J. Bradbury, E. S. Buckler, and R. J. Nelson. "Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize." Proceedings of the National Academy of Sciences 108, no. 17 (2011): 6893–98. http://dx.doi.org/10.1073/pnas.1010894108.
Full textGage, Joseph L., Brandon Monier, Anju Giri, and Edward S. Buckler. "Ten Years of the Maize Nested Association Mapping Population: Impact, Limitations, and Future Directions." Plant Cell 32, no. 7 (2020): 2083–93. http://dx.doi.org/10.1105/tpc.19.00951.
Full textMarla, Sandeep R., Gloria Burow, Ratan Chopra, et al. "Genetic Architecture of Chilling Tolerance in Sorghum Dissected with a Nested Association Mapping Population." G3: Genes|Genomes|Genetics 9, no. 12 (2019): 4045–57. http://dx.doi.org/10.1534/g3.119.400353.
Full textGireesh, Channappa, Raman M. Sundaram, Siddaiah M. Anantha, et al. "Nested Association Mapping (NAM) Populations: Present Status and Future Prospects in the Genomics Era." Critical Reviews in Plant Sciences 40, no. 1 (2021): 49–67. http://dx.doi.org/10.1080/07352689.2021.1880019.
Full textKump, Kristen L., Peter J. Bradbury, Randall J. Wisser, et al. "Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population." Nature Genetics 43, no. 2 (2011): 163–68. http://dx.doi.org/10.1038/ng.747.
Full textScott, Kelsey, Christine Balk, Deloris Veney, Leah K. McHale, and Anne E. Dorrance. "Quantitative Disease Resistance Loci towardsPhytophthora sojaeand Three Species ofPythiumin Six Soybean Nested Association Mapping Populations." Crop Science 59, no. 2 (2019): 605–23. http://dx.doi.org/10.2135/cropsci2018.09.0573.
Full textWang, Xiaoqian, Luhao Dong, Junmei Hu, et al. "Dissecting genetic loci affecting grain morphological traits to improve grain weight via nested association mapping." Theoretical and Applied Genetics 132, no. 11 (2019): 3115–28. http://dx.doi.org/10.1007/s00122-019-03410-4.
Full textStich, Benjamin, H. Friedrich Utz, Hans-Peter Piepho, Hans P. Maurer, and Albrecht E. Melchinger. "Optimum allocation of resources for QTL detection using a nested association mapping strategy in maize." Theoretical and Applied Genetics 120, no. 3 (2009): 553–61. http://dx.doi.org/10.1007/s00122-009-1175-2.
Full textBian, Yang, Qin Yang, Peter J. Balint-Kurti, Randall J. Wisser, and James B. Holland. "Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population." BMC Genomics 15, no. 1 (2014): 1068. http://dx.doi.org/10.1186/1471-2164-15-1068.
Full textBouchet, Sophie, Marcus O. Olatoye, Sandeep R. Marla, et al. "Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population." Genetics 206, no. 2 (2017): 573–85. http://dx.doi.org/10.1534/genetics.116.198499.
Full textSharma, Rajiv, Fulvia Draicchio, Hazel Bull, et al. "Genome-wide association of yield traits in a nested association mapping population of barley reveals new gene diversity for future breeding." Journal of Experimental Botany 69, no. 16 (2018): 3811–22. http://dx.doi.org/10.1093/jxb/ery178.
Full textJordan, Katherine W., Shichen Wang, Fei He, et al. "The genetic architecture of genome‐wide recombination rate variation in allopolyploid wheat revealed by nested association mapping." Plant Journal 95, no. 6 (2018): 1039–54. http://dx.doi.org/10.1111/tpj.14009.
Full textAli, Muhammad Jaffer, Guangnan Xing, Jianbo He, Tuanjie Zhao, and Junyi Gai. "Detecting the QTL-allele system controlling seed-flooding tolerance in a nested association mapping population of soybean." Crop Journal 8, no. 5 (2020): 781–92. http://dx.doi.org/10.1016/j.cj.2020.06.008.
Full textNice, Liana M., Brian J. Steffenson, Gina L. Brown-Guedira, et al. "Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild × Cultivated Barley." Genetics 203, no. 3 (2016): 1453–67. http://dx.doi.org/10.1534/genetics.116.190736.
Full textHung, H.-Y., C. Browne, K. Guill, et al. "The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population." Heredity 108, no. 5 (2011): 490–99. http://dx.doi.org/10.1038/hdy.2011.103.
Full textAndrade, Luciano Rogério Braatz de, Roberto Fritsche Neto, Ítalo Stefanine Correia Granato, Gustavo César Sant’Ana, Pedro Patric Pinho Morais, and Aluízio Borém. "Genetic Vulnerability and the Relationship of Commercial Germplasms of Maize in Brazil with the Nested Association Mapping Parents." PLOS ONE 11, no. 10 (2016): e0163739. http://dx.doi.org/10.1371/journal.pone.0163739.
Full textMaurer, Andreas, Vera Draba, and Klaus Pillen. "Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping." Journal of Experimental Botany 67, no. 8 (2016): 2507–18. http://dx.doi.org/10.1093/jxb/erw070.
Full textHerzig, Paul, Andreas Maurer, Vera Draba, et al. "Contrasting genetic regulation of plant development in wild barley grown in two European environments revealed by nested association mapping." Journal of Experimental Botany 69, no. 7 (2018): 1517–31. http://dx.doi.org/10.1093/jxb/ery002.
Full textGangurde, Sunil S., Hui Wang, Shasidhar Yaduru, et al. "Nested‐association mapping (NAM)‐based genetic dissection uncovers candidate genes for seed and pod weights in peanut ( Arachis hypogaea )." Plant Biotechnology Journal 18, no. 6 (2019): 1457–71. http://dx.doi.org/10.1111/pbi.13311.
Full textVollrath, Paul, Harmeet S. Chawla, Sarah V. Schiessl, et al. "A novel deletion in FLOWERING LOCUS T modulates flowering time in winter oilseed rape." Theoretical and Applied Genetics 134, no. 4 (2021): 1217–31. http://dx.doi.org/10.1007/s00122-021-03768-4.
Full textHufford, Matthew B., Arun S. Seetharam, Margaret R. Woodhouse, et al. "De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes." Science 373, no. 6555 (2021): 655–62. http://dx.doi.org/10.1126/science.abg5289.
Full textChu, Y., C. C. Holbrook, T. G. Isleib, et al. "Phenotyping and genotyping parents of sixteen recombinant inbred peanut populations." Peanut Science 45, no. 1 (2018): 1–11. http://dx.doi.org/10.3146/ps17-17.1.
Full textVenkatesh, Tyamagondlu V., George G. Harrigan, Tim Perez, and Sherry Flint-Garcia. "Compositional Assessments of Key Maize Populations: B73 Hybrids of the Nested Association Mapping Founder Lines and Diverse Landrace Inbred Lines." Journal of Agricultural and Food Chemistry 63, no. 21 (2015): 5282–95. http://dx.doi.org/10.1021/acs.jafc.5b00208.
Full textLi, Shuguang, Yongce Cao, Jianbo He, Tuanjie Zhao, and Junyi Gai. "Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure." Theoretical and Applied Genetics 130, no. 11 (2017): 2297–314. http://dx.doi.org/10.1007/s00122-017-2960-y.
Full textChidzanga, Charity, Delphine Fleury, Ute Baumann, et al. "Development of an Australian Bread Wheat Nested Association Mapping Population, a New Genetic Diversity Resource for Breeding under Dry and Hot Climates." International Journal of Molecular Sciences 22, no. 9 (2021): 4348. http://dx.doi.org/10.3390/ijms22094348.
Full text