Academic literature on the topic 'Nested inference'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nested inference.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nested inference"
Torvik, V. "Guided inference of nested monotone Boolean functions." Information Sciences 151 (May 2003): 171–200. http://dx.doi.org/10.1016/s0020-0255(03)00062-8.
Full textMcAleer, Michael, and M. Hashem Pesaran. "Statistical inference in non-nested econometric models." Applied Mathematics and Computation 20, no. 3-4 (November 1986): 271–311. http://dx.doi.org/10.1016/0096-3003(86)90008-1.
Full textShao, Fang, Jialiang Li, Jason Fine, Weng Kee Wong, and Michael Pencina. "Inference for reclassification statistics under nested and non-nested models for biomarker evaluation." Biomarkers 20, no. 4 (May 19, 2015): 240–52. http://dx.doi.org/10.3109/1354750x.2015.1068854.
Full textPowell, Sean, Kristoffer Forslund, Damian Szklarczyk, Kalliopi Trachana, Alexander Roth, Jaime Huerta-Cepas, Toni Gabaldón, et al. "eggNOG v4.0: nested orthology inference across 3686 organisms." Nucleic Acids Research 42, no. D1 (December 1, 2013): D231—D239. http://dx.doi.org/10.1093/nar/gkt1253.
Full textCribari-Neto, Francisco, and Sadraque E. F. Lucena. "Non-nested hypothesis testing inference for GAMLSS models." Journal of Statistical Computation and Simulation 87, no. 6 (November 14, 2016): 1189–205. http://dx.doi.org/10.1080/00949655.2016.1255946.
Full textLi, Heng, and Hal S. Stern. "Bayesian Inference for Nested Designs Based on Jeffreys's Prior." American Statistician 51, no. 3 (August 1997): 219. http://dx.doi.org/10.2307/2684891.
Full textLi, Heng, and Hal S. Stern. "Bayesian Inference for Nested Designs Based on Jeffreys's Prior." American Statistician 51, no. 3 (August 1997): 219–24. http://dx.doi.org/10.1080/00031305.1997.10473966.
Full textBussche, Jan Van den, and Stijn Vansummeren. "Polymorphic type inference for the named nested relational calculus." ACM Transactions on Computational Logic 9, no. 1 (December 2007): 3. http://dx.doi.org/10.1145/1297658.1297661.
Full textRay, Anandaroop. "Bayesian inversion using nested trans-dimensional Gaussian processes." Geophysical Journal International 226, no. 1 (March 26, 2021): 302–26. http://dx.doi.org/10.1093/gji/ggab114.
Full textAutzen, Bengt. "BAYESIAN OCKHAM’S RAZOR AND NESTED MODELS." Economics and Philosophy 35, no. 02 (January 14, 2019): 321–38. http://dx.doi.org/10.1017/s0266267118000305.
Full textDissertations / Theses on the topic "Nested inference"
Ventura, Valerie. "Likelihood inference by Monte Carlo methods and efficient nested bootstrapping." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362032.
Full textKim, Junyeop. "Causal inference in multilevel settings estimating and using propensity scores when treatment is implemented in nested settings /." Diss., Restricted to subscribing institutions, 2006. http://proquest.umi.com/pqdweb?did=1280132651&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textMarklund, Emil. "Bayesian inference in aggregated hidden Markov models." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243090.
Full textSeaman, Iris Rubi. "Probabilistic Programming for Theory of Mind for Autonomous Decision Making." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6826.
Full textHigson, Edward John. "Bayesian methods and machine learning in astrophysics." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289728.
Full textHee, Sonke. "Computational Bayesian techniques applied to cosmology." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273346.
Full textVatka, E. (Emma). "Boreal populations facing climatic and habitat changes." Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526203607.
Full textTiivistelmä Ihmisen aiheuttama habitaattien katoaminen ja huononeminen sekä ilmastonmuutos vaikuttavat populaatioihin kaikkialla maailmassa. Ilmaston lämpeneminen on muuttanut monien lajien fenologioita eri trofiatasoilla. Osalla saalistajalajien populaatioista suurin ravinnontarve ei enää ajoitu samaan aikaan saaliin runsaushuipun kanssa. Ajoituksen eriaikaisuus -hypoteesin mukaan todennäköisyys populaatioon rekrytoitumiselle riippuu synkronian asteesta saaliin kanssa. Ilmaston lämpenemisen vaikutuksissa lajeihin ja populaatioihin on kuitenkin vaihtelua. Ihmisen maankäyttö muuttaa ja tuhoaa lukuisien lajien elinympäristöjä. Esimerkiksi useiden boreaalisten metsien lintupopulaatioiden pienentymistä on selitetty intensiivisellä metsätaloudella. Lahopuun määrä metsissä on vähentynyt, mikä on uhka lahopuusta riippuvaisille lajeille. Korkealaatuisten habitaattien keskeisten piirteiden tunnistaminen on tärkeää luonnonsuojelun ja kestävän metsätalouden suunnittelulle. Koska yksilöiden oletetaan valitsevan niiden kelpoisuutta maksimoivia elinympäristöjä, pesäpaikanvalinta-analyysiä voidaan käyttää tärkeiden habitaattipiirteiden tunnistamiseen. Tarkastelen väitöskirjassani ilmastonmuutoksen ja habitaattien laadun vaikutuksia boreaalisiin populaatioihin. Mallilajeina käytän koloissa pesiviä varpuslintuja. Hyödyntämällä pitkäaikaisaineistoja osoitan, että lisääntymisen ajoittuminen on aikaistunut tali- ja hömötiaisella, mutta ei sinitiaisella. Myös ravintohuippu on aikaistunut, mikä on parantanut synkroniaa hömötiaisen ja sen pääasiallisen ravinnon eli toukkien välillä. Tali- ja sinitiaisella synkronia on pysynyt hyvänä. Hyvän synkronian myönteinen vaikutus lisääntymismenestykseen vaikuttaa kuitenkin ehdolliselta: se tulee esiin vain tietyissä olosuhteissa, kuten vuosina jolloin toukkia on runsaasti. Kevään lämpötilat näyttävät vaikuttavan pesinnän ajoittumiseen erityisesti proksimaattisena tekijänä. Pesäpaikkoina toimivien seisovien lahopuiden määrä on tärkein hömötiaisen pesäpaikanvalintaa määräävä tekijä. Kaukokartoitusaineisto yksinään ei riitä luotettavien mallien tuottamiseen, sillä ekologisesti tärkeät pienen skaalan tekijät voidaan kartoittaa vain suorin maastomittauksin. Metsien harventamatta jättäminen valituilla laikuilla turvaisi lahopuun jatkuvan saatavuuden, mikä vaikuttaisi myönteisesti talousmetsien biodiversiteettiin
Chammah, Tarek. "Nested pessimistic transactions for both atomicity and synchronization in concurrent software." Thesis, 2011. http://hdl.handle.net/10012/6350.
Full textLu, Li-Tien, and 呂理添. "Statistical Inference for Functions of Variance Componentsunder Two-Way Crossed or Nested Random-Effects Models with Applications to Heritability and Reproducibility of Assay Validation." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/62754389314906325911.
Full text國立臺灣大學
農藝學研究所
97
Various different approaches for constructing confidence interval for functions of variance components proposed under cross-classification or nested random-effects models. However, these approaches are approximate and their probability coverage is either conservative or liberal. Their performances under the imbalanced situations are not fully investigated and hence remain unknown. Therefore, we apply the concept of Generalized Pivotal Quantities (GPQs) to obtain the exact confidence intervals under the two-way cross-classification with interaction random-effects model and the two-stage nested random-effects model . The exact confidence interval can be used to test the hypothesis whether the interested measure of variance components exceeds a pre-specified threshold. This hypothesis can be applied to the heritability study of animal and plant breeding and the gauge repeatability and reproducibility (R&R) study and to the reliability in validation studies during the development of instruments. A large simulation study was conducted to empirically investigate the coverage probability and expected length of the proposed exact confidence intervals, and size and power of the proposed testing procedures based on the exact confidence intervals. Numeric data from public domains illustrate the applications of the proposed methods.
Pham, David. "Densités de copules archimédiennes hiérarchiques." Thèse, 2012. http://hdl.handle.net/1866/8529.
Full textNested Archimedean copulas recently gained interest since they generalize the well-known class of Archimedean copulas to allow for partial asymmetry. Sampling algorithms and strategies have been well investigated for nested Archimedean copulas. However, for likelihood based inference such as estimation or goodness-of-fit testing it is important to have the density. The present work fills this gap. After a short introduction on copula and nested Archimedean copulas, a general formula for the derivatives of the nodes and inner generators appearing in nested Archimedean copulas is developed. This leads to a tractable formula for the density of nested Archimedean copulas. Various examples including famous Archimedean families and transformations of such are given. Furthermore, a numerically efficient way to evaluate the log-density is presented.
Books on the topic "Nested inference"
Bhatti, M. Ishaq. Non-Nested Regression Models: UK ed. edition. Hauppauge, New York, USA: Nova Science Publishers Inc, 2013.
Find full textG, Grubb Teryl, and Rocky Mountain Research Station (Fort Collins, Colo.), eds. Evaluating Great Lakes bald eagle nesting habitat with Bayesian inference. Ft. Collins, CO: United States Dept. of Agriculture, Forest Service, Rocky Mountain Research Station, 2003.
Find full textBook chapters on the topic "Nested inference"
Salzberg, Steven. "Nested hyper-rectangles for exemplar-based learning." In Analogical and Inductive Inference, 184–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/3-540-51734-0_61.
Full textBono, Viviana, Jerzy Tiuryn, and Paweł Urzyczyn. "Type Inference for Nested Self Types." In Lecture Notes in Computer Science, 99–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24849-1_7.
Full textHuckemann, Stephan F., and Benjamin Eltzner. "Essentials of backward nested descriptors inference." In Contributions to Statistics, 137–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55846-2_18.
Full textKjærulff, Uffe. "Inference in Bayesian Networks Using Nested Junction Trees." In Learning in Graphical Models, 51–74. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5014-9_3.
Full textEltzner, Benjamin, and Stephan Huckemann. "Applying Backward Nested Subspace Inference to Tori and Polyspheres." In Lecture Notes in Computer Science, 587–94. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68445-1_68.
Full textGoré, Rajeev, Linda Postniece, and Alwen Tiu. "Taming Displayed Tense Logics Using Nested Sequents with Deep Inference." In Lecture Notes in Computer Science, 189–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02716-1_15.
Full textRobins, James M. "Marginal Structural Models versus Structural nested Models as Tools for Causal inference." In Statistical Models in Epidemiology, the Environment, and Clinical Trials, 95–133. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1284-3_2.
Full textHelian, Shanjun, Babette A. Brumback, Matthew C. Freeman, and Richard Rheingans. "Structural Nested Models for Cluster-Randomized Trials." In Statistical Causal Inferences and Their Applications in Public Health Research, 169–86. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41259-7_9.
Full text"NESTED INFERENCE." In Dictating Development, 84–94. University of Pittsburgh Press, 2006. http://dx.doi.org/10.2307/j.ctv10tq46z.9.
Full textGómez-Rubio, Virgilio. "The Integrated Nested Laplace Approximation." In Bayesian Inference with INLA, 13–38. Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9781315175584-2.
Full textConference papers on the topic "Nested inference"
Skilling, John. "Nested Sampling." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2004. http://dx.doi.org/10.1063/1.1835238.
Full textSkilling, John, Paul M. Goggans, and Chun-Yong Chan. "Nested Sampling’s Convergence." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: The 29th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2009. http://dx.doi.org/10.1063/1.3275625.
Full textHenderson, R. Wesley, and Paul M. Goggans. "Parallelized nested sampling." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 33rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2013). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4903717.
Full textHabeck, Michael. "Nested sampling with demons." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4905971.
Full textFeroz, Farhan, and John Skilling. "Exploring multi-modal distributions with nested sampling." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2013. http://dx.doi.org/10.1063/1.4819989.
Full textBetancourt, Michael, Ali Mohammad-Djafari, Jean-François Bercher, and Pierre Bessiére. "Nested Sampling with Constrained Hamiltonian Monte Carlo." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2011. http://dx.doi.org/10.1063/1.3573613.
Full textSkilling, John. "Bayesian computation in big spaces-nested sampling and Galilean Monte Carlo." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 31st International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2012. http://dx.doi.org/10.1063/1.3703630.
Full textStokes, Barrie, Frank Tuyl, and Irene Hudson. "New prior sampling methods for nested sampling - Development and testing." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4985378.
Full textZhang, Yipeng, Bo Du, Lefei Zhang, Rongchun Li, and Yong Dou. "Accelerated Inference Framework of Sparse Neural Network Based on Nested Bitmask Structure." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/605.
Full textPerez-Vieites, Sara, and Joaquin Miguez. "Kalman-based nested hybrid filters for recursive inference in state-space models." In 2020 28th European Signal Processing Conference (EUSIPCO). IEEE, 2021. http://dx.doi.org/10.23919/eusipco47968.2020.9287359.
Full text