Academic literature on the topic 'Network anomally'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Network anomally.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Network anomally"
García González, Gastón, Pedro Casas, Alicia Fernández, and Gabriel Gómez. "On the Usage of Generative Models for Network Anomaly Detection in Multivariate Time-Series." ACM SIGMETRICS Performance Evaluation Review 48, no. 4 (2021): 49–52. http://dx.doi.org/10.1145/3466826.3466843.
Full textDymora, Paweł, Miroslaw Mazurek, and Sławomir Jaskółka. "VoIP Anomaly Detection - selected methods of statistical analysis." Annales Universitatis Mariae Curie-Sklodowska, sectio AI – Informatica 16, no. 2 (2017): 14. http://dx.doi.org/10.17951/ai.2016.16.2.14.
Full textPatel, Darsh, Kathiravan Srinivasan, Chuan-Yu Chang, Takshi Gupta, and Aman Kataria. "Network Anomaly Detection inside Consumer Networks—A Hybrid Approach." Electronics 9, no. 6 (2020): 923. http://dx.doi.org/10.3390/electronics9060923.
Full textLalitha, K. V., and V. R. Josna. "Traffic Verification for Network Anomaly Detection in Sensor Networks." Procedia Technology 24 (2016): 1400–1405. http://dx.doi.org/10.1016/j.protcy.2016.05.161.
Full textNaseer, Sheraz, Yasir Saleem, Shehzad Khalid, et al. "Enhanced Network Anomaly Detection Based on Deep Neural Networks." IEEE Access 6 (2018): 48231–46. http://dx.doi.org/10.1109/access.2018.2863036.
Full textZhang, Huajie, Sen Zhang, and Marlia Mohd Hanafiah. "Localization and recognition algorithm for fuzzy anomaly data in big data networks." Open Physics 16, no. 1 (2018): 1076–84. http://dx.doi.org/10.1515/phys-2018-0128.
Full textDas, Krishna, and Smriti Kumar Sinha. "Centrality measure based approach for detection of malicious nodes in twitter social network." International Journal of Engineering & Technology 7, no. 4.5 (2018): 518. http://dx.doi.org/10.14419/ijet.v7i4.5.21147.
Full textNaseer, Sheraz, Rao Faizan Ali, P. D. D. Dominic, and Yasir Saleem. "Learning Representations of Network Traffic Using Deep Neural Networks for Network Anomaly Detection: A Perspective towards Oil and Gas IT Infrastructures." Symmetry 12, no. 11 (2020): 1882. http://dx.doi.org/10.3390/sym12111882.
Full textLópez-Vizcaíno, Manuel, Carlos Dafonte, Francisco Nóvoa, Daniel Garabato, and M. Álvarez. "Network Data Unsupervised Clustering to Anomaly Detection." Proceedings 2, no. 18 (2018): 1173. http://dx.doi.org/10.3390/proceedings2181173.
Full textPrabhakar, T. S., and M. N. Veena. "Review on Anomaly Detection in Mobile Networks Using Traditional Learning, Machine Learning and Deep Learning." Journal of Computational and Theoretical Nanoscience 17, no. 11 (2020): 4789–96. http://dx.doi.org/10.1166/jctn.2020.9054.
Full textDissertations / Theses on the topic "Network anomally"
Lieskovan, Tomáš. "Detekce anomálií síťového provozu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-317122.
Full textKabore, Raogo. "Hybrid deep neural network anomaly detection system for SCADA networks." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0190.
Full textMantere, M. (Matti). "Network security monitoring and anomaly detection in industrial control system networks." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526208152.
Full textMazel, Johan. "Unsupervised network anomaly detection." Thesis, Toulouse, INSA, 2011. http://www.theses.fr/2011ISAT0024/document.
Full textBrauckhoff, Daniela. "Network traffic anomaly detection and evaluation." Aachen Shaker, 2010. http://d-nb.info/1001177746/04.
Full textUdd, Robert. "Anomaly Detection in SCADA Network Traffic." Thesis, Linköpings universitet, Programvara och system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122680.
Full textMcGlohon, Mary. "Structural Analysis of Large Networks: Observations and Applications." Research Showcase @ CMU, 2010. http://repository.cmu.edu/dissertations/18.
Full textTurcotte, Melissa. "Anomaly detection in dynamic networks." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/24673.
Full textIoannidou, Polyxeni. "Anomaly Detection in Computer Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295762.
Full textAlkadi, Alaa. "Anomaly Detection in RFID Networks." UNF Digital Commons, 2017. https://digitalcommons.unf.edu/etd/768.
Full textBooks on the topic "Network anomally"
Bhuyan, Monowar H., Dhruba K. Bhattacharyya, and Jugal K. Kalita. Network Traffic Anomaly Detection and Prevention. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65188-0.
Full textNetwork anomaly detection: A machine learning perspective. CRC Press, Taylor & Francis Group, 2014.
Find full textBurbeck, Kalle. Adaptive real-time anomaly detection for safeguarding critical networks. Department of Computer and Information Science, Linköpings universitet, 2006.
Find full textUsman, Muhammad, Vallipuram Muthukkumarasamy, Xin-Wen Wu, and Surraya Khanum. Mobile Agent-Based Anomaly Detection and Verification System for Smart Home Sensor Networks. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7467-7.
Full textSatellite anomalies: Benefits of a centralized anomaly database and methods for securely sharing information among satellite operators. RAND, 2014.
Find full textBiersack, Ernst. Data Traffic Monitoring and Analysis: From Measurement, Classification, and Anomaly Detection to Quality of Experience. Springer Berlin Heidelberg, 2013.
Find full textKalita, Jugal K., Monowar H. Bhuyan, and Dhruba K. Bhattacharyya. Network Traffic Anomaly Detection and Prevention: Concepts, Techniques, and Tools. Springer, 2018.
Find full textKalita, Jugal K., Monowar H. Bhuyan, and Dhruba K. Bhattacharyya. Network Traffic Anomaly Detection and Prevention: Concepts, Techniques, and Tools. Springer, 2017.
Find full textManikopoulos, Constantine N. Intrusion Detection and Network Security: Statistical Anomaly Approaches (Signal Processing and Communications). CRC, 2008.
Find full textTari, Zahir, Adil Fahad, Abdulmohsen Almalawi, and Xun Yi. Network Classification for Traffic Management: Anomaly Detection, Feature Selection, Clustering and Classification. Institution of Engineering & Technology, 2020.
Find full textBook chapters on the topic "Network anomally"
Hood, C. S., and C. Ji. "Automated Proactive Anomaly Detection." In Integrated Network Management V. Springer US, 1997. http://dx.doi.org/10.1007/978-0-387-35180-3_51.
Full textLeppänen, Rony Franca, and Timo Hämäläinen. "Network Anomaly Detection in Wireless Sensor Networks: A Review." In Lecture Notes in Computer Science. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30859-9_17.
Full textDarsh, P., and R. Rahul. "Performance Analysis of Network Anomaly Detection Systems in Consumer Networks." In Lecture Notes in Networks and Systems. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4218-3_21.
Full textRavinder Reddy, R., K. Ayyappa Reddy, C. Madan Kumar, and Y. Ramadevi. "Detection of Network Anomaly Sequences Using Deep Recurrent Neural Networks." In Smart Computing Techniques and Applications. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1502-3_60.
Full textReddy, Suresh, and Sukumar Nandi. "Enhanced Network Traffic Anomaly Detector." In Distributed Computing and Internet Technology. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11604655_45.
Full textFarraposo, Sílvia, Philippe Owezarski, and Edmundo Monteiro. "NADA – Network Anomaly Detection Algorithm." In Managing Virtualization of Networks and Services. Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75694-1_18.
Full textAlla, Sridhar, and Suman Kalyan Adari. "Temporal Convolutional Networks." In Beginning Anomaly Detection Using Python-Based Deep Learning. Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5177-5_7.
Full textCheng, En, Hai Jin, Zongfen Han, and Jianhua Sun. "Network-Based Anomaly Detection Using an Elman Network." In Networking and Mobile Computing. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11534310_51.
Full textLin, Xin-Xue, En-Hau Yeh, and Phone Lin. "Anomaly Detection for IoT Systems." In Encyclopedia of Wireless Networks. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_183.
Full textLin, Xin-Xue, En-Hau Yeh, and Phone Lin. "Anomaly Detection for IoT Systems." In Encyclopedia of Wireless Networks. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-32903-1_183-1.
Full textConference papers on the topic "Network anomally"
Li, Jundong, Harsh Dani, Xia Hu, and Huan Liu. "Radar: Residual Analysis for Anomaly Detection in Attributed Networks." In Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/299.
Full textShekhar, Prashant, and Rahul Rai. "Anomaly Detection in Complex Spatiotemporal Networks Through Location Aware Geospatial Big Data Sets." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59587.
Full textPeng, Zhen, Minnan Luo, Jundong Li, Huan Liu, and Qinghua Zheng. "ANOMALOUS: A Joint Modeling Approach for Anomaly Detection on Attributed Networks." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/488.
Full textLiu, Ninghao, Xiao Huang, and Xia Hu. "Accelerated Local Anomaly Detection via Resolving Attributed Networks." In Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/325.
Full textSi, Wen, Jianghai Li, Ronghong Qu, and Xiaojin Huang. "Anomaly Detection for Network Traffic of I&C Systems Based on Neural Network." In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16900.
Full textGloba, L., Y. Demidova, and M. Ternovoy. "Network Anomaly Detection using Neural Networks." In 2006 16th International Crimean Microwave and Telecommunication Technology. IEEE, 2006. http://dx.doi.org/10.1109/crmico.2006.256445.
Full textAndropov, Sergey, Alexei Guirik, Mikhail Budko, and Marina Budko. "Network anomaly detection using artificial neural networks." In 2017 20th Conference of Open Innovations Association (FRUCT). IEEE, 2017. http://dx.doi.org/10.23919/fruct.2017.8071288.
Full textSalimi Naneh Karan, Farshad, and Subhadeep Chakraborty. "Detecting Behavioral Anomaly in Social Networks Using Symbolic Dynamic Filtering." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9643.
Full textPrado D'Andrada, Luís Felipe, Paulo Freitas de Araujo-Filho, and Divanilson Rodrigo Campelo. "A Real-time Anomaly-based Intrusion Detection System for Automotive Controller Area Networks." In Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos. Sociedade Brasileira de Computação, 2020. http://dx.doi.org/10.5753/sbrc.2020.12316.
Full textKim, Si-Jung, Bong-Han Kim, Sang-Soo Yeo, and Do-Eun Cho. "Network Anomaly Detection for M-Connected SCADA Networks." In 2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA). IEEE, 2013. http://dx.doi.org/10.1109/bwcca.2013.61.
Full textReports on the topic "Network anomally"
Turcotte, Melissa. Anomaly Detection in Dynamic Networks. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1160097.
Full textColeman, Todd P. Low-Complexity Methods for Provably Good Information Transmission and Network Anomaly Detection via Packet Timings In Networks. Defense Technical Information Center, 2011. http://dx.doi.org/10.21236/ada549164.
Full textCorley, Michael J. Anomaly Detection in Disparate Computer Networks. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada443328.
Full textSubrahmanian, V. S. ADEN: Anomaly Detection Engine for Networks. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada598209.
Full textZhang, Pengchu C., and Nancy Ann Durgin. Profile-based adaptive anomaly detection for network security. Office of Scientific and Technical Information (OSTI), 2005. http://dx.doi.org/10.2172/875979.
Full textBarford, Paul. Coordinated Anomaly Detection and Characterization in Wide Area Network Flows. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada440956.
Full textXie, Bin. AnomLoc: A perfSONAR-based Distributed Network Anomaly Detection and Localization. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1464216.
Full textWillett, Rebecca. Density Estimation and Anomaly Detection in Large Social Networks. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada610336.
Full textHunt, Brian R., Edward Ott, and James A. Yorke. Chaotic Models and Anomaly Detection for Complex Data Networks. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada563464.
Full textChen, Yan. HPNAIDM: The High-Performance Network Anomaly/Intrusion Detection and Mitigation System. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1108982.
Full text