Dissertations / Theses on the topic 'Network anomaly detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Network anomaly detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Mazel, Johan. "Unsupervised network anomaly detection." Thesis, Toulouse, INSA, 2011. http://www.theses.fr/2011ISAT0024/document.
Full textAnomaly detection has become a vital component of any network in today’s Internet. Ranging from non-malicious unexpected events such as flash-crowds and failures, to network attacks such as denials-of-service and network scans, network traffic anomalies can have serious detrimental effects on the performance and integrity of the network. The continuous arising of new anomalies and attacks create a continuous challenge to cope with events that put the network integrity at risk. Moreover, the inner polymorphic nature of traffic caused, among other things, by a highly changing protocol landscape, complicates anomaly detection system's task. In fact, most network anomaly detection systems proposed so far employ knowledge-dependent techniques, using either misuse detection signature-based detection methods or anomaly detection relying on supervised-learning techniques. However, both approaches present major limitations: the former fails to detect and characterize unknown anomalies (letting the network unprotected for long periods) and the latter requires training over labeled normal traffic, which is a difficult and expensive stage that need to be updated on a regular basis to follow network traffic evolution. Such limitations impose a serious bottleneck to the previously presented problem.We introduce an unsupervised approach to detect and characterize network anomalies, without relying on signatures, statistical training, or labeled traffic, which represents a significant step towards the autonomy of networks. Unsupervised detection is accomplished by means of robust data-clustering techniques, combining Sub-Space clustering with Evidence Accumulation or Inter-Clustering Results Association, to blindly identify anomalies in traffic flows. Correlating the results of several unsupervised detections is also performed to improve detection robustness. The correlation results are further used along other anomaly characteristics to build an anomaly hierarchy in terms of dangerousness. Characterization is then achieved by building efficient filtering rules to describe a detected anomaly. The detection and characterization performances and sensitivities to parameters are evaluated over a substantial subset of the MAWI repository which contains real network traffic traces.Our work shows that unsupervised learning techniques allow anomaly detection systems to isolate anomalous traffic without any previous knowledge. We think that this contribution constitutes a great step towards autonomous network anomaly detection.This PhD thesis has been funded through the ECODE project by the European Commission under the Framework Programme 7. The goal of this project is to develop, implement, and validate experimentally a cognitive routing system that meet the challenges experienced by the Internet in terms of manageability and security, availability and accountability, as well as routing system scalability and quality. The concerned use case inside the ECODE project is network anomaly
Brauckhoff, Daniela. "Network traffic anomaly detection and evaluation." Aachen Shaker, 2010. http://d-nb.info/1001177746/04.
Full textUdd, Robert. "Anomaly Detection in SCADA Network Traffic." Thesis, Linköpings universitet, Programvara och system, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122680.
Full textKabore, Raogo. "Hybrid deep neural network anomaly detection system for SCADA networks." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0190.
Full textSCADA systems are more and more targeted by cyber-attacks because of many vulnerabilities inhardware, software, protocols and the communication stack. Those systems nowadays use standard hardware, software, operating systems and protocols. Furthermore, SCADA systems which used to be air-gaped are now interconnected to corporate networks and to the Internet, widening the attack surface.In this thesis, we are using a deep learning approach to propose an efficient hybrid deep neural network for anomaly detection in SCADA systems. The salient features of SCADA data are automatically and unsupervisingly learnt, and then fed to a supervised classifier in order to dertermine if those data are normal or abnormal, i.e if there is a cyber-attack or not. Afterwards, as a response to the challenge caused by high training time of deep learning models, we proposed a distributed approach of our anomaly detection system in order lo lessen the training time of our model
Balupari, Ravindra. "Real-time network-based anomaly intrusion detection." Ohio : Ohio University, 2002. http://www.ohiolink.edu/etd/view.cgi?ohiou1174579398.
Full textPatcha, Animesh. "Network Anomaly Detection with Incomplete Audit Data." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/28334.
Full textPh. D.
Salzwedel, Jason Paul. "Anomaly detection in a mobile data network." Master's thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/31202.
Full textBabaie, Tahereh Tara. "New Methods for Network Traffic Anomaly Detection." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/12032.
Full textMantere, M. (Matti). "Network security monitoring and anomaly detection in industrial control system networks." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526208152.
Full textTiivistelmä Kehittyneet yhteiskunnat käyttävät teollisuuslaitoksissaan ja infrastruktuuriensa operoinnissa monimuotoisia automaatiojärjestelmiä. Näiden automaatiojärjestelmien tieto- ja kyberturvallisuuden tila on hyvin vaihtelevaa. Laitokset ja niiden hyödyntämät järjestelmät voivat edustaa usean eri aikakauden tekniikkaa ja sisältää useiden eri aikakauden heikkouksia ja haavoittuvaisuuksia. Järjestelmät olivat aiemmin suhteellisen eristyksissä muista tietoverkoista kuin omista kommunikaatioväylistään. Tämä automaatiojärjestelmien eristyneisyyden heikkeneminen on luonut uuden joukon uhkia paljastamalla niiden kommunikaatiorajapintoja ympäröivälle maailmalle. Nämä verkkoympäristöt ovat kuitenkin edelleen verrattaen eristyneitä ja tätä ominaisuutta voidaan hyödyntää niiden valvonnassa. Tässä työssä esitetään tutkimustuloksia näiden verkkojen turvallisuuden valvomisesta erityisesti poikkeamien havainnoinnilla käyttäen hyväksi koneoppimismenetelmiä. Alkuvaiheen haasteiden ja erityispiirteiden tutkimuksen jälkeen työssä käytetään itsejärjestyvien karttojen (Self-Organizing Map, SOM) algoritmia esimerkkiratkaisun toteutuksessa uuden konseptin havainnollistamiseksi. Tämä uusi konsepti on tapahtumapohjainen koneoppiva poikkeamien havainnointi (Event-Driven Machine Learning Anomaly Detection, EMLAD). Työn kontribuutiot ovat seuraavat, kaikki teollisuusautomaatioverkkojen kontekstissa: ehdotus yhdeksi anomalioiden havainnoinnissa käytettävien ominaisuuksien ryhmäksi, koneoppivan poikkeamien havainnoinnin käyttökelpoisuuden toteaminen, laajennettava ja joustava esimerkkitoteutus uudesta EMLAD-konseptista toteutettuna Bro NSM työkalun ohjelmointikielellä
Brauckhoff, Daniela [Verfasser]. "Network Traffic Anomaly Detection and Evaluation / Daniela Brauckhoff." Aachen : Shaker, 2010. http://d-nb.info/1122546610/34.
Full textDing, Qi. "Statistical topics relating to computer network anomaly detection." Thesis, Boston University, 2012. https://hdl.handle.net/2144/31538.
Full textPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
This dissertation makes fundamental contributions to statistical methods relating to the detection of anomalies in the context of computer network traffic monitoring. In particular, it contributes basic statistical tools for socially-based network anomaly characterization and detection, it extends a popular detection methodology to high-dimensional contexts, and it demonstrates that standard flow sampling can interact with inherent network topology in ways unexpected. In the first contribution of my research, I define anomalous intrusion in terms of locations in social space, rather than in physical space. I develop statistical detectors based on simple graph-based summaries of the network, with a focus on detecting anti-social behaviors. This research suggests that certain values of local graphical measurements, like clustering coefficients and betweenness centrality, are associated with the malicious antisocial behaviors in the types of network representations of IP flow measurements used in this work. This motivates me to propose a simple, efficient and robust anomaly detection technique. I evaluate this methodology on different network representations and using different social summaries. In the second contribution of my research, I extend the use of the PCA subspace method to high-dimensional spaces. Specifically, I show that, under appropriate conditions,with high probability the magnitude of the residuals of a standard PCA subspace analysis of randomly projected data behaves comparably to that of the residuals of a similar PCA analysis of the original data. My results indicate the feasibility of applying subspacebased anomaly detection algorithms to Gaussian random projection data. This concept is illustrated in the context of computer network traffic anomaly detection for the purpose of detecting volume anomalies. The impact of sampling on so-called Peer-to-Peer (P2P) network analysis is the focus of the third contribution of my research. In this research I use a combination of probability calculations and simulation techniques to characterize the extent to which standard packet sampling in the Internet can adversely affect the topology of stylized versions of Bittorrent download networks reconstructed from measurements of network flows. The results indicate that a certain stratification observed in these networks impacts the reconstructed topology in ways decidedly different from typical networks which have no stratification.
2031-01-01
Labonne, Maxime. "Anomaly-based network intrusion detection using machine learning." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAS011.
Full textIn recent years, hacking has become an industry unto itself, increasing the number and diversity of cyber attacks. Threats on computer networks range from malware to denial of service attacks, phishing and social engineering. An effective cyber security plan can no longer rely solely on antiviruses and firewalls to counter these threats: it must include several layers of defence. Network-based Intrusion Detection Systems (IDSs) are a complementary means of enhancing security, with the ability to monitor packets from OSI layer 2 (Data link) to layer 7 (Application). Intrusion detection techniques are traditionally divided into two categories: signatured-based (or misuse) detection and anomaly detection. Most IDSs in use today rely on signature-based detection; however, they can only detect known attacks. IDSs using anomaly detection are able to detect unknown attacks, but are unfortunately less accurate, which generates a large number of false alarms. In this context, the creation of precise anomaly-based IDS is of great value in order to be able to identify attacks that are still unknown.In this thesis, machine learning models are studied to create IDSs that can be deployed in real computer networks. Firstly, a three-step optimization method is proposed to improve the quality of detection: 1/ data augmentation to rebalance the dataset, 2/ parameters optimization to improve the model performance and 3/ ensemble learning to combine the results of the best models. Flows detected as attacks can be analyzed to generate signatures to feed signature-based IDS databases. However, this method has the disadvantage of requiring labelled datasets, which are rarely available in real-life situations. Transfer learning is therefore studied in order to train machine learning models on large labeled datasets, then finetune them on benign traffic of the network to be monitored. This method also has flaws since the models learn from already known attacks, and therefore do not actually perform anomaly detection. Thus, a new solution based on unsupervised learning is proposed. It uses network protocol header analysis to model normal traffic behavior. Anomalies detected are then aggregated into attacks or ignored when isolated. Finally, the detection of network congestion is studied. The bandwidth utilization between different links is predicted in order to correct issues before they occur
Zhao, Meng John. "Analysis and Evaluation of Social Network Anomaly Detection." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/79849.
Full textPh. D.
Dhanapalan, Manojprasadh. "Topology-aware Correlated Network Anomaly Detection and Diagnosis." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1339742606.
Full textFiore, Ugo. "Improving Network Anomaly Detection with Independent Component Analysis." Doctoral thesis, Universita degli studi di Salerno, 2015. http://hdl.handle.net/10556/1978.
Full textComplexity, sophistication, and rate of growth of modern networks, coupled with the depth, continuity, and pervasiveness of their role in our everyday lives, stress the importance of identifying potential misuse or threats that could undermine regular operation. To ensure an adequate and prompt reaction, anomalies in network traffic should be detected, classified, and identified as quickly and correctly as possible. Several approaches focus on inspecting the content of packets traveling through the network, while other techniques aim at detecting suspicious activity by measuring the network state and comparing it with an expected baseline. Formalizing a model for normal behavior requires the collection and analysis of traffic, in order to isolate a set of features capable of describing traffic completely and in a compact way. The main focus of this dissertation is the quest for good representations for network traffic, representation that are abstract and can capture and describe much of the intricate structure of observed data in a simple manner. In this way, some of the hidden factors and variables governing the traffic data generation process can be unveiled and disentangled and anomalous events can be spotted more reliably. We adopted several methods to achieve such simpler representations, including Independent Component Analysis and deep learning architectures. Machine learning techniques have been used for verifying the improvement in classification effectiveness that can be achieved with the proposed representations. [edited by Author]
XIII n.s.
Olsson, Jonathan. "Detecting Faulty Piles of Wood using Anomaly Detection Techniques." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-83061.
Full textJadidi, Zahra. "Flow-based Anomaly Detection in High-Speed Networks." Thesis, Griffith University, 2016. http://hdl.handle.net/10072/367890.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Information and Cmmunication Technology
Science, Environment, Engineering and Technology
Full Text
Abuaitah, Giovani Rimon. "ANOMALIES IN SENSOR NETWORK DEPLOYMENTS: ANALYSIS, MODELING, AND DETECTION." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1376594068.
Full textOhlsson, Jonathan. "Anomaly Detection in Microservice Infrastructures." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231993.
Full textAnomalitetsdetektering i tidsserier är ett brett område med många användningsområden och har undersökts under många år. De senaste åren har behovet av övervakning och DevOps ökat, delvis på grund av ökad användning av microservice-infrastrukturer. Att tillämpa tidsserieanomalitetsdetektering på de mätvärden som emitteras av dessa microservices kan ge nya insikter i systemhälsan och kan möjliggöra detektering av avvikande förhållanden innan de eskaleras till en fullständig incident. Denna avhandling undersöker hur två föreslagna anomalitetsdetektorer, en baserad på RPCA-algoritmen och den andra på HTM neurala nätverk, presterar på mätvärden som emitteras av en microservice-infrastruktur, med målet att förbättra infrastrukturövervakningen. Detektorerna utvärderas mot ett slumpmässigt urval av mätvärden från en microservice-infrastruktur på en digital underhållningstjänst, och från det öppet tillgängliga NAB-dataset. Det illustreras att båda algoritmerna kunde upptäcka alla kända incidenter i de testade underhållningstjänst-mätvärdena. Deras förmåga att upptäcka avvikelser visar sig vara beroende av det definierade tröskelvärdet för vad som kvalificeras som en anomali. RPCA-detektorn visade sig bättre på att upptäcka anomalier i underhållningstjänstens mätvärden, men HTM-detektorn presterade bättre på NAB-datasetet. Fynden markerar också svårigheten med att manuellt annotera avvikelser, även med domänkunskaper. Ett problem som visat sig vara sant för datasetet skapat för detta projekt och NAB-datasetet. Avhandlingen slutleder att de föreslagna detektorerna har olikaförmågor, vilka båda har sina respektive avvägningar. De har liknande detekteringsnoggrannhet, men har olika inerta förmågor för att utföra uppgifter som kontinuerlig övervakning, eller enkelhet att installera i en befintlig övervakningsinstallation.
Moe, Lwin P. "Cyber security risk analysis framework : network traffic anomaly detection." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118536.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 84-86).
Cybersecurity is a growing research area with direct commercial impact to organizations and companies in every industry. With all other technological advancements in the Internet of Things (IoT), mobile devices, cloud computing, 5G network, and artificial intelligence, the need for cybersecurity is more critical than ever before. These technologies drive the need for tighter cybersecurity implementations, while at the same time act as enablers to provide more advanced security solutions. This paper will discuss a framework that can predict cybersecurity risk by identifying normal network behavior and detect network traffic anomalies. Our research focuses on the analysis of the historical network traffic data to identify network usage trends and security vulnerabilities. Specifically, this thesis will focus on multiple components of the data analytics platform. It explores the big data platform architecture, and data ingestion, analysis, and engineering processes. The experiments were conducted utilizing various time series algorithms (Seasonal ETS, Seasonal ARIMA, TBATS, Double-Seasonal Holt-Winters, and Ensemble methods) and Long Short-Term Memory Recurrent Neural Network algorithm. Upon creating the baselines and forecasting network traffic trends, the anomaly detection algorithm was implemented using specific thresholds to detect network traffic trends that show significant variation from the baseline. Lastly, the network traffic data was analyzed and forecasted in various dimensions: total volume, source vs. destination volume, protocol, port, machine, geography, and network structure and pattern. The experiments were conducted with multiple approaches to get more insights into the network patterns and traffic trends to detect anomalies.
by Lwin P. Moe.
S.M. in Engineering and Management
Lawal, Yusuf Lanre. "Anomaly Detection in Ethereum Transactions Using Network Science Analytics." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin159585057190135.
Full textSarossy, George. "Anomaly detection in Network data with unsupervised learning methods." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55096.
Full textCarlsson, Oskar, and Daniel Nabhani. "User and Entity Behavior Anomaly Detection using Network Traffic." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14636.
Full textVignisson, Egill. "Anomaly Detection in Streaming Data from a Sensor Network." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-257507.
Full textI den här avhandlingen var användningen av oövervakad och halv-övervakad maskininlärning analyserad som ett möjligt verktyg för att upptäcka avvikelser av anomali i det sensornätverk som elektriska systemet en Scanialastbil består av. Experimentet var konstruerat för att analysera behovet av både punkt och kontextuella avvikelser av anomali i denna miljö. För punktavvikelse av anomali var metoden Isolation Forest experimenterad med och för kontextuella avvikelser av anomali användes två arkitekturer av återkommande neurala nätverk. En av modellerna var helt enkelt många-till-en regressionmodell tränad för att förutspå ett visst märke, medan den andre var ett kodare-avkodare nätverk tränat för att rekonstruera en sekvens.Båda modellerna blev tränade på ett halv-övervakat sätt, d.v.s. på data som endast visar normalt beteende, som teoretiskt skulle leda till minskad prestanda på onormala sekvenser som ger ökat antal feltermer. I båda fallen blev parametrarna av en Gaussisk distribution estimerade på grund av dessa feltermer som tillåter ett bekvämt sätt att definera en tröskel som skulle bestämma om iakttagelsen skulle bli flaggad som en anomali eller inte. Ytterligare experiment var genomförda med exponentiellt viktad glidande medelvärde över ett visst antal av tidigare iakttagelser för att filtera märket. Modellernas prestanda på denna uppgift var välidt olika men regressionmodellen lovade mycket, särskilt kombinerad med ett filterat förbehandlingssteg för att minska bruset it datan. Ändå kommer modelldelen alltid styras av uppgiftens natur så att andra metoder skulle kunna ge bättre prestanda i andra miljöer.
Liu, Ying. "Outlier detection by network flow." Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2007p/liu-ying.pdf.
Full textAdditional advisors: Elliot J. Lefkowitz, Kevin D. Reilly, Robert Thacker, Chengcui Zhang. Description based on contents viewed Feb. 7, 2008; title from title screen. Includes bibliographical references (p. 125-132).
Kim, Seong Soo. "Real-time analysis of aggregate network traffic for anomaly detection." Texas A&M University, 2005. http://hdl.handle.net/1969.1/2312.
Full textAlipour, Hamid Reza. "An Anomaly Behavior Analysis Methodology for Network Centric Systems." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/305804.
Full textRiddell, Liam R. "Heterogeneous anomaly detection from network traffic streams using data summarization." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2022. https://ro.ecu.edu.au/theses/2599.
Full textDi, Felice Marco. "Unsupervised anomaly detection in HPC systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Mdini, Maha. "Anomaly detection and root cause diagnosis in cellular networks." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0144/document.
Full textWith the evolution of automation and artificial intelligence tools, mobile networks havebecome more and more machine reliant. Today, a large part of their management tasks runs inan autonomous way, without human intervention. In this thesis, we have focused on takingadvantage of the data analysis tools to automate the troubleshooting task and carry it to a deeperlevel. To do so, we have defined two main objectives: anomaly detection and root causediagnosis. The first objective is about detecting issues in the network automatically withoutincluding expert knowledge. To meet this objective, we have proposed an algorithm, WatchmenAnomaly Detection (WAD), based on pattern recognition. It learns patterns from periodic timeseries and detect distortions in the flow of new data. The second objective aims at identifying theroot cause of issues without any prior knowledge about the network topology and services. Toaddress this question, we have designed an algorithm, Automatic Root Cause Diagnosis (ARCD)that identifies the roots of network issues. ARCD is composed of two independent threads: MajorContributor identification and Incompatibility detection. WAD and ARCD have been proven to beeffective. However, many improvements of these algorithms are possible
Yellapragada, Ramani. "Probabilistic Model for Detecting Network Traffic Anomalies." Ohio University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1088538020.
Full textTaylor, Adrian. "Anomaly-Based Detection of Malicious Activity in In-Vehicle Networks." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36120.
Full textMartignano, Anna. "Real-time Anomaly Detection on Financial Data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281832.
Full textDetta arbete presenterar en undersökning av tillämpningar av Network Representation Learning (NRL) inom den finansiella industrin. Metoder inom NRL möjliggör datadriven kondensering av grafstrukturer till lågdimensionella och lätthanterliga vektorer.Dessa vektorer kan sedan användas i andra maskininlärningsuppgifter. Närmare bestämt, kan metoder inom NRL underlätta hantering av och informantionsutvinning ur beräkningsintensiva och storskaliga grafer inom den finansiella sektorn, till exempel avvikelsehantering bland finansiella transaktioner. Arbetet med data av denna typ försvåras av det faktum att transaktionsgrafer är dynamiska och i konstant förändring. Utöver detta kan noderna, dvs transaktionspunkterna, vara vitt skilda eller med andra ord härstamma från olika fördelningar.I detta arbete har Graph Convolutional Network (ConvGNN) ansetts till den mest lämpliga lösningen för nämnda tillämpningar riktade mot upptäckt av avvikelser i transaktioner. GraphSAGE har använts som utgångspunkt för experimenten i två olika varianter: en dynamisk version där vikterna uppdateras allteftersom nya transaktionssekvenser matas in, och en variant avsedd särskilt för bipartita (tvådelade) grafer. Dessa varianter har utvärderats genom användning av faktiska datamängder med avvikelsehantering som slutmål.
Lin, Chih-Yuan. "A timing approach to network-based anomaly detection for SCADA systems." Licentiate thesis, Linköpings universitet, Programvara och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165155.
Full textZhou, Mian. "Network Intrusion Detection: Monitoring, Simulation and Visualization." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4063.
Full textPh.D.
School of Computer Science
Engineering and Computer Science
Computer Science
Syal, Astha. "Automatic Network Traffic Anomaly Detection and Analysis using SupervisedMachine Learning Techniques." Youngstown State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1578259840945109.
Full textPatsanis, Alexandros. "Network Anomaly Detection and Root Cause Analysis with Deep Generative Models." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-397367.
Full textTaub, Lawrence. "Application of a Layered Hidden Markov Model in the Detection of Network Attacks." NSUWorks, 2013. http://nsuworks.nova.edu/gscis_etd/320.
Full textGarcia, Raymond Christopher. "A soft computing approach to anomaly detection with real-time applicability." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/21808.
Full textCaulkins, Bruce. "SESSION-BASED INTRUSION DETECTION SYSTEM TO MAP ANOMALOUS NETWORK TRAFFIC." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3466.
Full textPh.D.
Other
Arts and Sciences
Modeling and Simulation
McGlohon, Mary. "Structural Analysis of Large Networks: Observations and Applications." Research Showcase @ CMU, 2010. http://repository.cmu.edu/dissertations/18.
Full textPeacock, Matthew. "Anomaly Detection in BACnet/IP managed Building Automation Systems." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2019. https://ro.ecu.edu.au/theses/2178.
Full textSatam, Pratik. "An Anomaly Behavior Analysis Intrusion Detection System for Wireless Networks." Thesis, The University of Arizona, 2015. http://hdl.handle.net/10150/595654.
Full textWu, Xinheng. "A Deep Unsupervised Anomaly Detection Model for Automated Tumor Segmentation." Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/22502.
Full textZhang, Hao. "Discovery of Triggering Relations and Its Applications in Network Security and Android Malware Detection." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/64246.
Full textPh. D.
Casas, Hernandez Pedro. "Statistical analysis of network traffic for anomaly detection and quality of service provisioning." Télécom Bretagne, 2010. http://www.theses.fr/2010TELB0111.
Full textNetwork-wide traffic analysis and monitoring in large-scale networks is a challenging and expensive task. In this thesis work we have proposed to analyze the traffic of a large-scale IP network from aggregated traffic measurements, reducing measurement overheads and simplifying implementation issues. We have provided contributions in three different networking fields related to network-wide traffic analysis and monitoring in large-scale IP networks. The first contribution regards Traffic Matrix (TM) modeling and estimation, where we have proposed new statistical models and new estimation methods to analyze the Origin-Destination (OD) flows of a large-scale TM from easily available link traffic measurements. The second contribution regards the detection and localization of volume anomalies in the TM, where we have introduced novel methods with solid optimality properties that outperform current well-known techniques for network-wide anomaly detection proposed so far in the literature. The last contribution regards the optimization of the routing configuration in large-scale IP networks, particularly when the traffic is highly variable and difficult to predict. Using the notions of Robust Routing Optimization we have proposed new approaches for Quality of Service provisioning under highly variable and uncertain traffic scenarios. In order to provide strong evidence on the relevance of our contributions, all the methods proposed in this thesis work were validated using real traffic data from different operational networks. Additionally, their performance was compared against well-known works in each field, showing outperforming results in most cases. Taking together the ensemble of developed TM models, the optimal network-wide anomaly detection and localization methods, and the routing optimization algorithms, this thesis work offers a complete solution for network operators to efficiently monitor large-scale IP networks from aggregated traffic measurements and to provide accurate QoS-based performance, even in the event of volume traffic anomalies
Edholm, Gustav. "Anomaly Detection and Revenue Loss Estimation in Accounting Data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291773.
Full textFörlorad omsättning till följd av felaktig fakturering ar ett alvarligt problem for vissa företag i service- och reparationsbranchen. Detta kan uppstå på manga satt, till exempel genom konsekvent felaktig prissättning av tjänster. Om ett företag har stor förlust av omsättning ar det otroligt viktigt att upptäcka det, hitta var det sker, och uppskatta storleken av förlusten for att kunna behandla den. Malet med detta arbete ar att hitta statistiska metoder for att identifiera felaktigt prissatta tjänster i ett dataset av fakturor, och uppskatta förlorad omsättning i datasetet. Datasetet som används kommer från ett företag som förlorar omsättning på grund av just felfakturerat pris på tjänster, och representerar därför en verklig instans av detta problem. Ett flertal maskininlärningsmetoder, med olika grader av vägledning, används for att upptäcka felaktiga fakturarader och uppskatta förlorad omsättning i omärkt fakturadata. Regression med neuronnät, och olika beslutstradmetoder såväl som en ensembel av dessa testas och jämförs. Datasetet har sanningsenliga ettiketter till varje rad, därmed kan resultaten jämföras och utvärderas mot korrekta priser. Vi finner att en ensembel av ett neuralnät och ett gradientförstärkt beslutstrad for regression identifierar felaktiga prissättningar mest pålitligt. Pa de 1000 mest sannolika felen har denna metod ratt på 87%, vilket fångar 45% av alla fel. Vidare, med hänsyn till förlorad omsättning finner vi att ett neuralnät som utför regresssion uppnår ett fel på endast 13% i sitt estimat av förlorad omsättning.
Al, Tobi Amjad Mohamed. "Anomaly-based network intrusion detection enhancement by prediction threshold adaptation of binary classification models." Thesis, University of St Andrews, 2018. http://hdl.handle.net/10023/17050.
Full textWang, Qinghua. "Traffic analysis, modeling and their applications in energy-constrained wireless sensor networks on network optimization and anomaly detection /." Doctoral thesis, Sundsvall : Tryckeriet Mittuniversitetet, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-10690.
Full textKenar, Serkan. "An Extensible Framework For Automated Network Attack Signature Generation." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/2/12611418/index.pdf.
Full text