Academic literature on the topic 'Network Function Virtualization (NFV)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Network Function Virtualization (NFV).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Network Function Virtualization (NFV)"

1

Kumar, M. Sandeep, and Prabhu J. "Analysis of Network Function Virtualization and Software Defined Virtualization." JOIV : International Journal on Informatics Visualization 1, no. 4 (2017): 122. http://dx.doi.org/10.30630/joiv.1.4.40.

Full text
Abstract:
Network function virtualization (NFV) has played important role in both industry and academic change in telecommunication services. NFV has the ability to handle reduction on OPEX and CAPEX; it provides new service and also increases quickly in getting a time value. NFV has an opportunity in doing research in developing new innovation in architecture, framework, and measures some of the technology used in deploying in NVF. In this paper, the author describes the relation between NFV, SDV and cloud computing. The architecture of NVF its advantage in using network function virtualization and some activity used in NFV and adoption of NVF and future direction of NFV, issues, and difference in NFV and SDV.
APA, Harvard, Vancouver, ISO, and other styles
2

DJOMI, MANZILA IZNIARDI, RENDY MUNADI, and RIDHA MULDINA NEGARA. "Analisis Performansi Layanan FTP danVideo Streaming berbasis Network Function Virtualization menggunakan Docker Containers." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 6, no. 2 (2018): 180. http://dx.doi.org/10.26760/elkomika.v6i2.180.

Full text
Abstract:
ABSTRAKInfrastruktur jaringan seperti router, secara tradisional menggunakan hardware yang bersifat proprietary. Teknologi virtualisasi pada fungsi jaringan atau NFV (Network Function Virtualization) membuat layanan ini dapat diimplementasikan sebagai aplikasi perangkat lunak yang dapat dijalankan di lingkungan virtual atau Virtualized Network Functions (VNFs). Selain menggunakan hypervisor (hardware-level virtualization), teknologi virtualisasi memiliki alternatif pengimplementasian dengan menggunakan teknologi containers (Operating system -level virtualization), salah satunya menggunakan Docker. Penelitian ini mengimplementasikan layanan FTP dan video streaming pada jaringan NFV di Docker Containers. Tanpa backgound traffic, layanan menunjukkan performansi QoS yang memenuhi standarisasi ITU-T G.1010 dengan delay FTP 0,12 ms dan delay video streaming 6,21 ms serta nilai packet loss kedua layanan sebesar 0%. Penggunaan CPU pada Docker ketika layanan dijalankan dibawah 1 %. Kata kunci: Virtualisasi, Containers, Docker, Network Function Virtualization, QoSABSTRACTNetwork infrastructure such as routers, traditionally using proprietary hardware. Virtualization technology on network function or NFV (Network Function Virtualization) makes this service can be implemented as a software application that can run in virtual environment or Virtualized Network Functions (VNFs). In addition to using hypervisor (hardware-level virtualization), virtualization technology has an alternative implementation using containers technology (Operating system-level virtualization), one of them using Docker. This research implements FTP and video streaming services on NFV networks in Docker Containers. Without background traffic, the service demonstrates QoS performance that meets the ITU-T G.1010 standardization with 0.12 ms FTP delay and 6.21 ms video streaming delay and with packet loss value of both services at 0%. CPU usage on Docker when service runs below 1%.Keywords: Virtualization, Containers, Docker, Network Function Virtualization, QoS
APA, Harvard, Vancouver, ISO, and other styles
3

Jawdhari, Hayder A., and Alharith A. Abdullah. "The Application of Network Functions Virtualization on Different Networks, and its New Applications in Blockchain: A Survey." Webology 18, Special Issue 04 (2021): 1007–44. http://dx.doi.org/10.14704/web/v18si04/web18179.

Full text
Abstract:
Operators of networks are striving to provide functional network-based services, while keeping the cost of deploying the service to a minimum. Network Function Virtualization (NFV) is considered to be a promising model to modify such employment by separating network functions from the basic hardware properties, after which they are converted into the style of software. These are eventually referred to as Virtual Network Functions (VNFs). This separation offers numerous benefits, including the decrease of Capital Expenditure (CAPEX) and Operation Expense (OPEX), in addition to the enhanced elasticity of service preparation. Network Functions Virtualization (NFV) is found to cause a remarkable development or even a technological revolution in terms of network-based services, leading to a decrease in deployment costs for network operators. NFV reduces hardware tool costs and energy exhaustion, and it improves its operational performance whereby the network configuration is part of this optimization. Even so, there are a number of possible security problems which are the main focus in NFV. The present study surveys the applications and opportunities of NFV in terms of IoT, SDN, cloud computing and blockchain. A description of the NFV architecture is presented, and several possibilities of NFV security issues and challenges are discussed. Finally, a systematic idea is provided on the design of a Blockchain Network Virtualization System.
APA, Harvard, Vancouver, ISO, and other styles
4

Zehra, Sehar, Ummay Faseeha, Hassan Jamil Syed, et al. "Machine Learning-Based Anomaly Detection in NFV: A Comprehensive Survey." Sensors 23, no. 11 (2023): 5340. http://dx.doi.org/10.3390/s23115340.

Full text
Abstract:
Network function virtualization (NFV) is a rapidly growing technology that enables the virtualization of traditional network hardware components, offering benefits such as cost reduction, increased flexibility, and efficient resource utilization. Moreover, NFV plays a crucial role in sensor and IoT networks by ensuring optimal resource usage and effective network management. However, adopting NFV in these networks also brings security challenges that must promptly and effectively address. This survey paper focuses on exploring the security challenges associated with NFV. It proposes the utilization of anomaly detection techniques as a means to mitigate the potential risks of cyber attacks. The research evaluates the strengths and weaknesses of various machine learning-based algorithms for detecting network-based anomalies in NFV networks. By providing insights into the most efficient algorithm for timely and effective anomaly detection in NFV networks, this study aims to assist network administrators and security professionals in enhancing the security of NFV deployments, thus safeguarding the integrity and performance of sensors and IoT systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Duytam Ly, Le, Mahsa Sadeghi Ghahroudi, and Victor Ponce. "A Systematic Literature Review of Reliable Provisioning for Virtual Network Function Chaining." Applied Sciences 13, no. 9 (2023): 5504. http://dx.doi.org/10.3390/app13095504.

Full text
Abstract:
The abstraction of the network node functions using virtualization methods introduced an innovative architecture called Network Function Virtualization (NFV). In NFV, every virtualization software hosts a network service recognized as a Virtual Network Function (VNF). In general, the network provider creates a Service Function Chain (SFC) for every sequence of multiple requested VNFs by the customers. Although NFV allows for a more flexible and economical approach, it is more prone to error and failure. Therefore, providing reliable provisioning for VNF chaining is one of the key issues in NFV. In this paper, we present a systematic literature review to study the pioneer research efforts that provide reliable provisioning for VNF chaining by guaranteeing the availability of the service and resource optimization. Our review is the result of the analysis of 21 screened papers. This paper presents the result of our analysis, including different aspects of a reliable provisioning algorithm, various adopted techniques for reliable provisioning, and the superiority and drawbacks of each algorithm based on the proposed criteria for the evaluation of the provisioning algorithms.
APA, Harvard, Vancouver, ISO, and other styles
6

Callegati, Franco, Walter Cerroni, and Chiara Contoli. "Virtual Networking Performance in OpenStack Platform for Network Function Virtualization." Journal of Electrical and Computer Engineering 2016 (2016): 1–15. http://dx.doi.org/10.1155/2016/5249421.

Full text
Abstract:
The emerging Network Function Virtualization (NFV) paradigm, coupled with the highly flexible and programmatic control of network devices offered by Software Defined Networking solutions, enables unprecedented levels of network virtualization that will definitely change the shape of future network architectures, where legacy telco central offices will be replaced by cloud data centers located at the edge. On the one hand, this software-centric evolution of telecommunications will allow network operators to take advantage of the increased flexibility and reduced deployment costs typical of cloud computing. On the other hand, it will pose a number of challenges in terms of virtual network performance and customer isolation. This paper intends to provide some insights on how an open-source cloud computing platform such as OpenStack implements multitenant network virtualization and how it can be used to deploy NFV, focusing in particular on packet forwarding performance issues. To this purpose, a set of experiments is presented that refer to a number of scenarios inspired by the cloud computing and NFV paradigms, considering both single tenant and multitenant scenarios. From the results of the evaluation it is possible to highlight potentials and limitations of running NFV on OpenStack.
APA, Harvard, Vancouver, ISO, and other styles
7

Papavassiliou, Symeon. "Software Defined Networking (SDN) and Network Function Virtualization (NFV)." Future Internet 12, no. 1 (2020): 7. http://dx.doi.org/10.3390/fi12010007.

Full text
Abstract:
The role of Software Defined Networking (SDN) and Network Function Virtualization (NFV) have been instrumental in realizing the transition and vision “from black boxes to a white box towards facilitating 5G network architectures”. Though significant research results and several deployments have occurred and realized over the last few years focusing on the NFV and SDN technologies, several issues—both of theoretical and practical importance—remain still open. Accordingly, the papers of this special issue are significant contributions samples within the general ecosystem highlighted above, ranging from SDN and NFV architectures and implementations, to SDN-NFV integration and orchestration approaches, while considering issues associated with optimization, network management and security aspects. In particular, a total of nine excellent articles (one review and eight original research articles) have been accepted, following a rigorous review process, and addressing many of the aforementioned challenges and beyond.
APA, Harvard, Vancouver, ISO, and other styles
8

Elagin, Vasily S., Alexander V. Bogachev, and Ilya A. Belozertsev. "Modeling the estimation of end-to-end packet latency for a chain of NFV nodes in 5G networks." T-Comm 16, no. 3 (2022): 23–30. http://dx.doi.org/10.36724/2072-8735-2022-16-3-23-30.

Full text
Abstract:
It is expected that future communication networks will provide configurable delay-sensitive types of services (for example, streaming video, machine interaction). To support a variety of applications and use cases of servers providing various functions, you can use network function virtualization (NFV), which will be able to provide flexible implementation and placement of configuration of the necessary network functions. This article analyzes the end-to-end packet latency (E2E) for multiple traffic flows passing through the chain of embedded virtual network functions (VNF) in fifth-generation communication networks (5G). The Dominant of Generalized Resource Processing (DR-GPS) is used to distribute computing resources and transfer data between threads in each node of Network Function Virtualization (NFV) to achieve equitable distribution and utilization of available resources. The tandem queuing model is designed for incoming packets combined in several streams passing through the NFV node and its outgoing transmission channel. To analyze manageability, we separate packet processing (and transmission) of various streams in the simulation and determine the average packet processing and transmission rates of each stream as approximate service speeds.
APA, Harvard, Vancouver, ISO, and other styles
9

Raddwan, Basheer, Khalil AL-Wagih, Ibrahim A. Al-Baltah, Mohamed A. Alrshah, and Mohammed A. Al-Maqri. "Path Mapping Approach for Network Function Virtualization Resource Allocation with Network Function Decomposition Support." Symmetry 11, no. 9 (2019): 1173. http://dx.doi.org/10.3390/sym11091173.

Full text
Abstract:
Recently, Network Function Virtualization (NFV) and Software Defined Networking (SDN) have attracted many mobile operators. For the flexible deployment of Network Functions (NFs) in an NFV environment, NF decompositions and control/user plane separation have been introduced in the literature. That is to map traditional functions into their corresponding Virtual Network Functions (VNFs). This mapping requires the NFV Resource Allocation (NFV-RA) for multi-path service graphs with a high number of virtual nodes and links, which is a complex NP-hard problem that inherited its complexity from the Virtual Network Embedding (VNE). This paper proposes a new path mapping approach to solving the NFV-RA problem for decomposed Network Service Chains (NSCs). The proposed solution has symmetrically considered optimizing an average embedding cost with an enhancement on average execution time. The proposed approach has been compared to two other existing schemes using 6 and 16 scenarios of short and long simulation runs, respectively. The impact of the number of nodes, links and paths of the service requests on the proposed scheme has been studied by solving more than 122,000 service requests. The proposed Integer Linear Programming (ILP) and heuristic schemes have reduced the execution time up to 39.58% and 6.42% compared to existing ILP and heuristic schemes, respectively. Moreover, the proposed schemes have also reduced the average embedding cost and increased the profit for the service providers.
APA, Harvard, Vancouver, ISO, and other styles
10

Venâncio, Giovanni, Rogério C. Turchetti, and Elias Procópio Duarte Jr. "NFV-COIN: Unleashing The Power of In-Network Computing with Virtualization Technologies." Journal of Internet Services and Applications 12, no. 1 (2022): 46–53. http://dx.doi.org/10.5753/jisa.2022.2342.

Full text
Abstract:
Network Functions Virtualization (NFV) allows the implementation in software of middleboxes traditionally available as specialized hardware. Network services can be implemented as SFCs (Service Function Chains) based onvirtualization technologies that run on commodity hardware. Although most virtualized functions have classic middlebox functionalities (e.g. firewalls or intrusion detectors) NFV technology can be used to leverage the networkto provide novel types of services to end-users. Actually, NFV can be very convenient to deploy traditional enduser services in the network, in the paradigm that has been called Computing In the Network (COIN). This articlediscusses the requirements to deploy COIN services using NFV technologies, which we call NFV-COIN. We alsopresent case studies and an NFV-COIN architecture that is compliant with the NFV-MANO reference model.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!