To see the other types of publications on this topic, follow the link: Network; Internet of Things.

Dissertations / Theses on the topic 'Network; Internet of Things'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Network; Internet of Things.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Okumura, Brandon M. "IoTA: Internet of Things Assistant." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1769.

Full text
Abstract:
The Internet of Things is the networking of electronic devices, or “Things”, that enables them to collect and share data, as well as interact with their physical surround- ings. Analyzing this collected data allows us to make smarter economic decisions. These interconnected networks are usually driven by low-powered micro-controllers or cheap CPUs that are designed to function optimally with very little hardware. As scale and computational requirements increase, these micro-controllers are unable to grow without being physically replaced. This thesis proposes a system, IoTA, that assists the Internet of Things by pro- viding a shared computational resource for endpoint devices. This solution extends the functionality of endpoint devices without the need of physical replacement. The IoTA system is designed to be easily integrable to any existing IoT network. This system presents a model that allows for seamless processing of jobs submitted by endpoint devices while keeping scalability and flexibility in mind. Additionally, IoTA is built on top of existing IoT protocols. Evaluation shows there is a significant performance benefit in processing computationally heavy algorithms on the IoTA system as compared to processing them locally on the endpoint devices themselves.
APA, Harvard, Vancouver, ISO, and other styles
2

Ramos, Alex Lacerda. "Network security metrics for the Internet of things." Universidade de Fortaleza, 2018. http://dspace.unifor.br/handle/tede/108423.

Full text
Abstract:
Made available in DSpace on 2019-03-30T00:02:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-11-26<br>Recent advances in networking technologies, such as the IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) standard, have allowed to interconnect wireless sensor networks (WSNs) to the Internet, thus forming the Internet of Things (IoT). Despite the availability of different message security mechanisms, sensor networks are still vulnerable to several types of attack. To identify such attacks, an Intrusion Detection System (IDS) can be deployed. However, IDSs can generate several false positives and false negatives. Moreover, the alerts raised by IDSs provide no information regarding the impact an attack has on the security of a sensor network. As a consequence, it becomes difficult for WSN administrators and users to take proper responsive actions when attacks occur. To address these issues, this thesis proposes three security metrics. The first metric, called Trust Probability, quantifies by how much an IDS output could be trusted (to be correct). Such metric can help administrators decide which alerts deserve careful attention or which alerts might be safely ignored. Since this type of metric provides a measure of IDS effectiveness, it can also be used to compare different IDSs as well as to fine-tune a given IDS. The second metric, named Damage Level, quantifies the severity of an attack. This metric, when combined with the Trust Probability metric, enables the administrator to correctly prioritize and respond to alerts by evaluating them in terms of accuracy and attack impact. Finally, the third metric, namely Data Security Level, quantifies the degree to which sensor data can be trusted when the sensor is under attack. The security situational awareness provided by this metric helps WSN users make better decisions about the use of the gathered sensor data. Experimental results show that the proposed metrics can accurately quantify security level with low performance overhead and power consumption. Keywords: Network Security Metrics, Quantitative Security Analysis, Security Situational Awareness, Internet of Things, Wireless Sensor Networks.<br>Recentes avanços nas tecnologias de rede, tais como o padrão IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN), permitiram a interconexão de redes de sensores sem fio (RSSF) à Internet, formando assim a Internet das Coisas (Internet of Things -- IoT). Apesar da disponibilidade de diferentes mecanismos de segurança de mensagens, as redes de sensores ainda são vulneráveis a vários tipos de ataques. Para identificar esses ataques, um Sistema de Detecção de Intrusão (Intrusion Detection System -- IDS) pode ser implantado. No entanto, os IDSs podem gerar vários falsos positivos e falsos negativos. Além disso, os alertas gerados pelos IDSs não fornecem nenhuma informação sobre o impacto de um ataque sobre a segurança de uma RSSF. Consequentemente, torna-se difícil para os administradores e usuários da rede tomarem as devidas ações responsivas quando ataques ocorrerem. Para tratar estas questões, esta tese propõe três métricas de segurança. A primeira delas, chamada Trust Probability, quantifica o quão confiável (correto) é um output de um IDS. Essa métrica pode ajudar os administradores a decidir quais alertas merecem mais atenção ou quais podem ser ignorados com segurança. Já que essa métrica fornece uma medida da efetividade de um IDS, ela também pode ser usada para comparar diferentes IDSs, bem como para otimizar um dado IDS. A segunda métrica, denominada Damage Level, quantifica a gravidade de um ataque. Esta métrica, quando combinada com a Trust Probability, permite ao administrador priorizar e responder corretamente a alertas, avaliando-os em termos de precisão e impacto de ataque. Por fim, a terceira métrica, chamada de Data Security Level, quantifica quão confiáveis os dados dos sensores são quando a rede está sob ataque. Conhecer a informação fornecida por esta métrica ajuda os usuários a tomar melhores decisões sobre o uso dos dados coletados pelos sensores. Os resultados experimentais mostram que as métricas propostas podem quantificar com precisão o nível de segurança da rede, com baixo consumo de energia e sobrecarga de desempenho. Palavras-chave:Métricas de Segurança de Rede, Análise Quantitativa de Segurança, Consciência Situacional de Segurança, Internet das Coisas, Redes de Sensores sem Fio.
APA, Harvard, Vancouver, ISO, and other styles
3

Cobârzan, Cosmin. "Internet of highly mobile things." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAD037/document.

Full text
Abstract:
La mobilité devienne un partie intégrante de l’Internet des Object d’aujourd’hui, comme beaucoup d’applications (monitorage des animaux sauvage, suivi des cible dans le champs de bataille) sont impossible de mettre en œuvre juste avec des nœuds statiques. L’objective de cette thèse est de définir une nouvelle architecture de communication articule autour de la mobilité dans les réseaux avec pertes et à bas puissance (Low Power and Lossy Networks - LLNs) (réseaux des capteurs sans fils). Tout d’abord, nous avons analysé théoriquement l’auto configuration des adresses IPv6, fait avec toutes les optimisations disponibles dans Neighbor Discovery Optimization for IPv6 over 6LoWPAN. Cette étape est cruciale pour des protocoles qui donnent de support pour la mobilité dans des réseaux IP, comme MIPv6. Les résultats obtenues – taille des paquets trop grande et consumations énergétique importante pour les routeurs qui tournent Neighbor Discovery – n’ont amener a utiliser le IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). RPL est développe d’el debout pour les LLN. Notre deuxième contribution sont améliorer les opérations du RPL pour mieux supporter les nœuds mobiles. Enfin, nous avons développe une mécanisme inter-couche – Mobility Triggered-RPL – qui profite des actions dans le protocole avec préambule X-Machiavel à la couche accès au medium dans le protocole RPL à la couche routage<br>Mobility is becoming an integrating part of todays Internet of Things, as many applications such as wildlife monitoring or target tracking in the battlefield cannot be done only with the help of static nodes. The goal of this thesis is to provide new communication architecture articulated around providing mobility support in Low Power and Lossy Networks (LLNs). First we analyzed from a theoretical point of view the IPv6 address auto-configuration with all optimizations made in Neighbor Discovery Optimization for IPv6 over 6LoWPAN. This step is of crucial importance for protocols that offer mobility support in IP networks, such as MIPv6. Our findings, increased message size that leads to fragmentation and high energy consumption for routers that are involved in Neighbor Discovery message exchange, have lead us to use the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) in order to provide mobility support. RPL is build from ground up with respect to LLN requirements. Our second contribution enhanced RPL operations to support mobility management. Finally, we proposed a cross-layer protocol – Mobility Triggered-RPL – that leverages actions from the X-Machiavel preamble sampling MAC protocol into RPL
APA, Harvard, Vancouver, ISO, and other styles
4

Shahid, Mustafizur Rahman. "Deep learning for Internet of Things (IoT) network security." Electronic Thesis or Diss., Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAS003.

Full text
Abstract:
L’internet des objets (IoT) introduit de nouveaux défis pour la sécurité des réseaux. La plupart des objets IoT sont vulnérables en raison d'un manque de sensibilisation à la sécurité des fabricants d'appareils et des utilisateurs. En conséquence, ces objets sont devenus des cibles privilégiées pour les développeurs de malware qui veulent les transformer en bots. Contrairement à un ordinateur de bureau, un objet IoT est conçu pour accomplir des tâches spécifiques. Son comportement réseau est donc très stable et prévisible, ce qui le rend bien adapté aux techniques d'analyse de données. Ainsi, la première partie de cette thèse tire profit des algorithmes de deep learning pour développer des outils de surveillance des réseaux IoT. Deux types d'outils sont explorés: les systèmes de reconnaissance de type d’objets IoT et les systèmes de détection d'intrusion réseau IoT. Pour la reconnaissance des types d’objets IoT, des algorithmes d'apprentissage supervisé sont entrainés pour classifier le trafic réseau et déterminer à quel objet IoT le trafic appartient. Le système de détection d'intrusion consiste en un ensemble d'autoencoders, chacun étant entrainé pour un type d’objet IoT différent. Les autoencoders apprennent le profil du comportement réseau légitime et détectent tout écart par rapport à celui-ci. Les résultats expérimentaux en utilisant des données réseau produites par une maison connectée montrent que les modèles proposés atteignent des performances élevées. Malgré des résultats préliminaires prometteurs, l’entraînement et l'évaluation des modèles basés sur le machine learning nécessitent une quantité importante de données réseau IoT. Or, très peu de jeux de données de trafic réseau IoT sont accessibles au public. Le déploiement physique de milliers d’objets IoT réels peut être très coûteux et peut poser problème quant au respect de la vie privée. Ainsi, dans la deuxième partie de cette thèse, nous proposons d'exploiter des GAN (Generative Adversarial Networks) pour générer des flux bidirectionnels qui ressemblent à ceux produits par un véritable objet IoT. Un flux bidirectionnel est représenté par la séquence des tailles de paquets ainsi que de la durée du flux. Par conséquent, en plus de générer des caractéristiques au niveau des paquets, tel que la taille de chaque paquet, notre générateur apprend implicitement à se conformer aux caractéristiques au niveau du flux, comme le nombre total de paquets et d'octets dans un flux ou sa durée totale. Des résultats expérimentaux utilisant des données produites par un haut-parleur intelligent montrent que notre méthode permet de générer des flux bidirectionnels synthétiques réalistes et de haute qualité<br>The growing Internet of Things (IoT) introduces new security challenges for network activity monitoring. Most IoT devices are vulnerable because of a lack of security awareness from device manufacturers and end users. As a consequence, they have become prime targets for malware developers who want to turn them into bots. Contrary to general-purpose devices, an IoT device is designed to perform very specific tasks. Hence, its networking behavior is very stable and predictable making it well suited for data analysis techniques. Therefore, the first part of this thesis focuses on leveraging recent advances in the field of deep learning to develop network monitoring tools for the IoT. Two types of network monitoring tools are explored: IoT device type recognition systems and IoT network Intrusion Detection Systems (NIDS). For IoT device type recognition, supervised machine learning algorithms are trained to perform network traffic classification and determine what IoT device the traffic belongs to. The IoT NIDS consists of a set of autoencoders, each trained for a different IoT device type. The autoencoders learn the legitimate networking behavior profile and detect any deviation from it. Experiments using network traffic data produced by a smart home show that the proposed models achieve high performance.Despite yielding promising results, training and testing machine learning based network monitoring systems requires tremendous amount of IoT network traffic data. But, very few IoT network traffic datasets are publicly available. Physically operating thousands of real IoT devices can be very costly and can rise privacy concerns. In the second part of this thesis, we propose to leverage Generative Adversarial Networks (GAN) to generate bidirectional flows that look like they were produced by a real IoT device. A bidirectional flow consists of the sequence of the sizes of individual packets along with a duration. Hence, in addition to generating packet-level features which are the sizes of individual packets, our developed generator implicitly learns to comply with flow-level characteristics, such as the total number of packets and bytes in a bidirectional flow or the total duration of the flow. Experimental results using data produced by a smart speaker show that our method allows us to generate high quality and realistic looking synthetic bidirectional flows
APA, Harvard, Vancouver, ISO, and other styles
5

Крамаренко, Є. С. "Iнтелектуальна мережа Internet of Things". Master's thesis, Сумський державний університет, 2019. http://essuir.sumdu.edu.ua/handle/123456789/76473.

Full text
Abstract:
Зпроектовано інтелектуальну мережу «розумного будинку» у симуляторі Cisco Packet Tracer_7, яка базується на роботі дротової та бездротової мереж, де усі пристрої звязані зі шлюзом. Доступ контролю та моніторингу забезпечено з планшету та смартфону через зручний веб-інтерфейс. Для налаштування пожежної безпеки було розроблено програму для мікроконтролера на мові JavaScript. Візуальне програмування було використано для забезпечення системи комфорту. Розроблена схема при тестуванні показала високі результати, що говорить про доступність та зрозумілість взаємодії із можливостями симулятора. Вона дає змогу отримати наочне уявлення про функціонування розгалудженої системи «розумного будинку» та навчитися формулювати правила роботи окремих елементів на базі отриманих показників датчиків і сенсорів.
APA, Harvard, Vancouver, ISO, and other styles
6

Alm, Anton. "Internet of Things mesh network : Using the Thread networking protocol." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-70809.

Full text
Abstract:
This thesis summarizes my project in setting up a Thread network. The idea of this project was presented by the company ÅF in Karlstad, Sweden. ÅF wishes to upgrade their current demonstrator for IoT. The current demonstrator includes Azure Cloud component, Raspberry Pi, Bluetooth and Arduino components. The upgrade includes implementing Thread technology together with Thread verified hardware from Nordic semiconductor and the Raspberry Pi Foundation. Thread is an IoT mesh networking protocol that was released year 2014. Compared to Bluetooth it offers IP communication (including IPv6) combined with higher reliability, performance and security. The process of installing, compiling and configuring the Thread network is explained. The result is an operational thread network that has sensor devices sending data to an HTTP web server, where the data is stored and monitored. Though, there are many improvements and functions that can be implemented to make this demonstrator more appealing.
APA, Harvard, Vancouver, ISO, and other styles
7

Koutsoumpakis, Iakovos. "An Internet of Things network for proximity based distributed processing." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-267865.

Full text
Abstract:
The Internet of Things, the interconnection of all computing devices, is a concept that has become very popular nowadays and many companies try to achieve a leading role in shaping its future. Billions of devices are already connected to IoT cloud networks and this number is expected to rapidly increase in the near future. Devices in an IoT cloud network can be producers or consumers of data, while some can be processors. As data often needs processing in order to be transformed from lower to higher conceptual value, before being delivered to the consumers, this processing has to be done in an efficient manner. Ideally processing should take place in the proximity of data producers as opposed to having to transfer large volumes of data over the network in order to reach the processor. For this problem to be solved, scheduling algorithms require additional information that quantifies the "distance" between the different nodes in an IoT cloud network. Consequently, the main focus of this work is the development and the evaluation of an efficient mechanism that uses a heuristic technique to estimate this information, the latency between nodes, greatly reducing to linear the running time complexity that, if every device had to contact every other to calculate it, would be O(n^2).
APA, Harvard, Vancouver, ISO, and other styles
8

Carlquist, Johan. "Evaluating the use of ICN for Internet of things." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-343368.

Full text
Abstract:
The market of IOT devices continues to grow at a rapid speed as well as constrained wireless sensor networks. Today, the main network paradigm is host centric where a users have to specify which host they want to receive their data from. Information-centric networking is a new paradigm for the future internet, which is based on named data instead of named hosts. With ICN, a user needs to send a request for a perticular data in order to retrieve it. When sent, any participant in the network, router or server, containing the data will respond to the request. In order to achieve low latency between data creation and its consumption, as well as being able to follow data which is sequentially produced at a fixed rate, an algortihm was developed. This algortihm calculates and determines when to send the next interest message towards the sensor. It uses a ‘one time subscription’ approach to send its interest message in advance of the creation of the data, thereby enabling a low latency from data creation to consumption. The result of this algorithm shows that a consumer can retrieve the data with minimum latency from its creation by the sensor over an extended period of time, without using a publish/subscribe system such as MQTT or similar which pushes their data towards their consumers. The performance evaluation carried out which analysed the Content Centric Network application on the sensor shows that the application has little impact on the overall round trip time in the network. Based on the results, this thesis concluded that the ICN paradigm, together with a ’one-time subscription’ model, can be a suitable option for communication within the IoT domain where consumers ask for sequentially produced data.
APA, Harvard, Vancouver, ISO, and other styles
9

Corino, Gianni. "Internet of props : a performative ontology and design framework for the Internet of Things." Thesis, University of Plymouth, 2017. http://hdl.handle.net/10026.1/9511.

Full text
Abstract:
Set in the relatively new and fast developing field of investigation known as Internet of Things (IoT), this research starts by looking at the lack of critical and conceptual reflection on the area. With a main research question that challenges the underlying concepts of the IoT, the study develops a performative design framework to critique the field of investigation. The main corpus consists of: 1. speculative inquiry into the ontological dualisms of ‘objects’ and ‘things’ and the emerging social dimension of humans and non-humans; 2. the identification of an ontological-performative model based on the idea of Props; 3. the entanglement of theory and practice to construct a performative design framework, called the Internet of Props, which includes: an enabling platform (Smarter Planet Lab) and a set of design strategies (Transactional Props) to demonstrate and evaluate this model and framework; 4. a combined-evaluation conversational analysis methodology that assesses the performativity of the setting and the Props, through linguistic and socio-behavioural studies. Inspired by the concepts of ontological theatre, the entanglement of humans and non-humans, and the Internet of People; the IoT is imagined and performed in a theory-driven, practice-based investigation of the Internet of Props, which aims to bring new theoretical and practical knowledge for the future of the IoT.
APA, Harvard, Vancouver, ISO, and other styles
10

Ljungblad, Robert. "Blockchain in an Internet-of-Things Network Based on User Participation." Thesis, Luleå tekniska universitet, Datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75041.

Full text
Abstract:
The internet-of-things is the relatively new and rapidly growing concept of connecting everyday devices to the internet. Every day more and more devices are added to the internet-of-things and it is not showing any signs of slowing down. In addition, advancements in new technologies such as blockchains, artificial intelligence, virtual reality and machine learning are made practically every day. However, there are still much to learn about these technologies. This thesis explores the possibilities of blockchain technology by applying it to an internet-of-things network based on user participation. More specifically, it is applied to a use case derived from Luleå Kommun’s wishes to easier keep track of how full the city’s trash cans are. The goal of the thesis is to learn more about how blockchains can help an internet-of-things network as well as what issues can arise. The method takes an exploratory approach to the problem by partaking in a workshop with Luleå Kommun and by performing a literature study. It also takes a qualitative approach by creating a proof-of-concept solution to experience the technology firsthand. The final proof-of-concept as well as issues that arose during the project are analysed with the help of information gathered and experience gained throughout the project. It is concluded that blockchain technology can help communication in an internet-of-things network based on user participation. However, there is still a lot more to learn and uncover in future research.<br>Internet-of-things är ett relativt nytt men snabbt växande koncept som handlar om att koppla upp vardagliga saker till internet. Varje dag kopplas mer och mer enheter upp och det visar inga tecken på att sakta ner. Det görs även framsteg inom andra nya teknologier som blockkedjor, artificiell intelligens, virtuell verklighet och maskininlärning i stort sett varje dag. Dock finns det fortfarande mycket att lära sig om dessa teknologier. Denna rapport utforskar blockkedjeteknologins möjligheter genom att applicera det på ett internet-of-things-nätverk baserat på användarmedverkan. Mer specifikt, det är applicerat på ett användningsfall grundat i Luleå Kommuns önskan att lättare hålla koll på hur fulla deras soptunnor i och runtom staden är. Målet med denna rapport är att lära sig mer om hur blockkedjor kan stödja ett internet-of-things-nätverk och utforska vilka problem som kan uppstå. Metoden tar en explorativ ansats till problemet genom att delta i en workshop tillsammans med Luleå Kommun och genomföra en litteraturstudie. Dessutom tas en kvalitativ ansats genom att skapa en prototyplösning för att få förstahandserfarenhet av teknologin. Den slutliga prototypen och problemen som uppstod under projektets gång är analyserade med hjälp av information och erfarenhet som samlats genom hela projektet. Sammanfattningsvis kan blockkedjeteknologi hjälpa till kommunikationen i ett internet-of-things-nätverk baserat på användarmedverkan. Dock finns det fortfarande mycket att lära sig om denna teknologi i framtida forskning.
APA, Harvard, Vancouver, ISO, and other styles
11

Xu, Ran. "Federated Sensor Network architectural design for the Internet of Things (IoT)." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13453.

Full text
Abstract:
An information technology that can combine the physical world and virtual world is desired. The Internet of Things (IoT) is a concept system that uses Radio Frequency Identification (RFID), WSN and barcode scanners to sense and to detect physical objects and events. This information is shared with people on the Internet. With the announcement of the Smarter Planet concept by IBM, the problem of how to share this data was raised. However, the original design of WSN aims to provide environment monitoring and control within a small scale local network. It cannot meet the demands of the IoT because there is a lack of multi-connection functionality with other WSNs and upper level applications. As various standards of WSNs provide information for different purposes, a hybrid system that gives a complete answer by combining all of them could be promising for future IoT applications. This thesis is on the subject of `Federated Sensor Network' design and architectural development for the Internet of Things. A Federated Sensor Network (FSN) is a system that integrates WSNs and the Internet. Currently, methods of integrating WSNs and the Internet can follow one of three main directions: a Front-End Proxy solution, a Gateway solution or a TCP/IP Overlay solution. Architectures based on the ideas from all three directions are presented in this thesis; this forms a comprehensive body of research on possible Federated Sensor Network architecture designs. In addition, a fully compatible technology for the sensor network application, namely the Sensor Model Language (SensorML), has been reviewed and embedded into our FSN systems. The IoT as a new concept is also comprehensively described and the major technical issues discussed. Finally, a case study of the IoT in logistic management for emergency response is given. Proposed FSN architectures based on the Gateway solution are demonstrated through hardware implementation and lab tests. A demonstration of the 6LoWPAN enabled federated sensor network based on the TCP/IP Overlay solution presents a good result for the iNET localization and tracking project. All the tests of the designs have verified feasibility and achieve the target of the IoT concept.
APA, Harvard, Vancouver, ISO, and other styles
12

Diratie, Eyassu Dilla. "Hybrid internet of things network for energy-efficient video surveillance system." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG066.

Full text
Abstract:
Les réseaux de capteurs visuels sans fil basés sur les réseaux maillés IEEE 802.11 sont des solutions efficaces et adaptées aux systèmes de vidéosurveillance pour surveiller les intrusions dans des zones sélectionnées. Les réseaux de capteurs visuels basés sur IEEE 802.11 offrent des transmissions vidéo à haut débit mais souffrent de problèmes d'inefficacité énergétique. De plus, la transmission vidéo dans les réseaux de capteurs visuels nécessite une qualité de service (QoS) stricte en termes de bande passante et de délai. En outre, il est difficile de réduire la consommation énergétique globale du réseau tout en garantissant une qualité de service garantie en termes de bande passante et de délai dans les réseaux de capteurs visuels sans fil à énergie limitée. La principale contribution de cette thèse est de fournir un réseau de vidéosurveillance économe en énergie sans compromettre l'exigence de qualité de service de la transmission vidéo. Premièrement, nous proposons une nouvelle architecture de réseau hybride IoT pour un système de vidéosurveillance qui détecte et suit un intrus dans la zone de surveillance. Le réseau IoT hybride intègre les réseaux de capteurs visuels multi-sauts basés sur IEEE 802.11 et le réseau LoRa pour fournir un système de vidéosurveillance autonome, économe en énergie et à haut débit. Tirant parti des caractéristiques du réseau LoRa, le réseau LoRa est utilisé comme un réseau toujours actif pour la détection et le suivi préliminaires des mouvements. De plus, le réseau LoRa décide également quels nœuds de capteurs visuels réveiller en fonction des informations de suivi. Le filtre de Kalman est étudié pour suivre la trajectoire de l'intrus à partir des mesures de bruit des capteurs de mouvement à faible puissance afin d'activer uniquement les nœuds de capteurs visuels le long de la trajectoire de l'intrus pour fournir une surveillance vidéo efficace. Nous avons montré par simulation que le filtre de Kalman estime et prédit la trajectoire de l'intrus avec une précision raisonnable. De plus, l'approche de réseau hybride IoT proposée réduit considérablement la consommation d'énergie par rapport à un réseau de capteurs visuels à un seul niveau de surveillance continue traditionnelle et toujours active. Ensuite, la contribution de cette thèse se concentre sur un mécanisme de routage sensible à l'énergie et QoS pour le réseau de capteurs visuels multi-sauts basé sur IEEE 802.11 du réseau hybride IoT. Nous proposons un algorithme de routage qui route un ensemble de flux vidéo vers la passerelle avec une QoS garantie en termes de bande passante et de délai tout en minimisant le nombre de nœuds capteurs visuels impliqués dans le routage. Cela maximise le nombre de nœuds pouvant être complètement désactivés pour optimiser la consommation énergétique globale du réseau sans compromettre les performances QoS. Le problème de routage proposé est formulé comme un programme linéaire entier (ILP) et résolu à l'aide d'un algorithme branch-and-bound. Grâce à la simulation informatique, les performances de l'approche proposée sont comparées aux algorithmes de routage de pointe existants dans la littérature. Les résultats montrent clairement que le mécanisme proposé permet d'économiser une quantité significative de la consommation d'énergie globale tout en garantissant la QoS en termes de bande passante et de délai<br>Wireless visual sensor networks based on IEEE 802.11 mesh networks are effective and suitable solutions for video surveillance systems in monitoring intrusions in selected areas. The IEEE 802.11-based visual sensor networks offer high bit rate video transmissions but suffer from energy inefficiency issues. Moreover, the video transmission in the visual sensor networks requires strict quality of service (QoS) in terms of bandwidth and delay. Also, it is challenging to decrease the overall energy consumption of the network while assuring guaranteed QoS in terms of bandwidth and delay in energy-constrained wireless visual sensor networks. The main contribution of this dissertation is to provide an energy-efficient video surveillance network without compromising the QoS requirement of video transmission. First, we propose a new hybrid IoT network architecture for a video surveillance system that detects and tracks an intruder in the monitoring area. The hybrid IoT network integrates the IEEE 802.11-based multi-hop visual Sensor Networks and LoRa network to provide an autonomous, energy-efficient, high-bitrate video surveillance system. Leveraging the LoRa network characteristics, the LoRa network is utilized as an always-active network for preliminary motion detection and tracking. Moreover, the LoRa network also decides which visual sensor nodes to wake up depending on the tracking information. The Kalman filter is investigated to track the intruder's trajectory from noise measurements of low-power motion sensors to activate only the visual sensor nodes along the intruder's trajectory to provide effective video vigilance. We showed through simulation that Kalman filter estimates and predicts intruder trajectory with reasonable accuracy. Moreover, the proposed hybrid IoT network approach reduces energy consumption significantly compared with a traditional, always active continuous monitoring single-tier visual sensor network. Next, the contribution of this dissertation focuses on an energy-aware and QoS routing mechanism for the IEEE 802.11-based multi-hop visual sensor network of the hybrid IoT network. We propose a routing algorithm that routes a set of video streams to the gateway with guaranteed QoS in terms of bandwidth and delay while minimizing the number of visual sensor nodes that are involved in routing. This maximizes the number of nodes that can be turned off completely to optimize the overall energy consumption of the network without compromising QoS performance. The proposed routing problem is formulated as an Integer Linear Program (ILP) and solved using the branch-and-bound algorithm. Through computer simulation, the performance of the proposed approach is compared with the existing state-of-the-art routing algorithms from the literature. The results clearly show that the proposed mechanism saves a significant amount of the overall energy consumption while guaranteeing QoS in terms of bandwidth and delay
APA, Harvard, Vancouver, ISO, and other styles
13

Iova, Oana-Teodora. "Standards optimization and network lifetime maximization for wireless sensor networks in the Internet of things." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAD022/document.

Full text
Abstract:
De nouveaux protocoles ont été standardisés afin d'intégrer les réseaux de capteurs sans fil (WSN) dans l'Internet. Parmi eux, RPL pour la couche routage et IEEE 802.15.4 pour la couche MAC. L'objectif de cette thèse est d'améliorer ces protocoles en prenant compte des contraintes énergétiques des dispositifs du WSN. Tout d'abord, nous avons conçu une nouvelle méthode de diffusion dans la norme IEEE 802.15.4, afin d'assurer une livraison fiable des paquets de contrôle des couches supérieures. Ensuite, nous avons fourni une évaluation exhaustive de RPL, en soulignant un problème d'instabilité qui génère une surcharge d'énergie importante. Compte tenu que la durée de vie des WSN est très limitée, nous avons aussi proposé une nouvelle métrique de routage qui identifie les goulets d'étranglement énergétiques afin de maximiser la durée de vie du réseau. Enfin, en couplant cette mesure avec une version multiparent de RPL, nous avons résolu le problème d'instabilité souligné précédemment<br>New protocols have been standardized in order to integrate Wireless Sensor Networks (WSN) in the Internet. Among them, the IEEE 802.15.4 MAC layer protocol, and RPL, the IPv6 Routing Protocol for Low-power and Lossy Networks. The goal of this thesis is to improve these protocols, considering the energy constraints of the devices that compose the WSN. First, we proposed a new MAC layer broadcast mechanism in IEEE 802.15.4, to ensure a reliable delivery of the control packets from the upper layers (especially from RPL). Then, we provided an exhaustive evaluation of RPL and highlighted an instability problem. This instability generates a large overhead, consuming a lot of energy. Since the lifetime of WSN is very limited, we proposed a new routing metric that identifies the energy bottlenecks and maximizes the lifetime of the network. Finally, by coupling this metric with a multipath version of RPL, we are able to solve the instability problem previously highlighted
APA, Harvard, Vancouver, ISO, and other styles
14

Hsu, Alexander Sirui. "Automatic Internet of Things Device Category Identification using Traffic Rates." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/88421.

Full text
Abstract:
Due to the ever increasing supply of new Internet of Things (IoT) devices being added onto a network, it is vital secure the devices from incoming cyber threats. The manufacturing process of creating and developing a new IoT device allows many new companies to come out with their own device. These devices also increase the network risk because many IoT devices are created without proper security implementation. Utilizing traffic patterns as a method of device type detection will allow behavior identification using only Internet Protocol (IP) header information. The network traffic captured from 20 IoT devices belonging to 4 distinct types (IP camera, on/off switch, motion sensor, and temperature sensor) are generalized and used to identify new devices previously unseen on the network. Our results indicate some categories have patterns that are easier to generalize, while other categories are harder but we are still able recognize some unique characteristics. We also are able to deploy this in a test production network and adapted previous methods to handle streaming traffic and an additional noise categorization capable of identify non-IoT devices. The performance of our model is varied between classes, signifying that much future work has to be done to increase the classification score and overall usefulness.<br>Master of Science<br>IoT (Internet of Things) devices are an exploding field, with many devices being created, manufactured, and utilized per year. With the rise of so many internet capable devices, there is a risk that the devices may have vulnerabilities and exploits able to allow unauthorized users to access. While a problem for a consumer network, this is an increased problem in an enterprise network, since much of the information on the network is sensitive and should be kept confidential and private. While a ban of IoT devices on a network is able to solve this problem, with the rise of machine learning able to characterize and recognize patterns, a smarter approach can be created to distinguish when and which types of IoT devices enter the network. Previous attempts to identify IoT devices used signature schemes specific to a single device, but this paper aims to generalize traffic behaviors and identifying a device category rather than a specific IoT device to ensure future new devices can also be recognized. With device category identification in place on an internet network, smarter approaches can be implemented to ensure the devices remain secure while still able to be used.
APA, Harvard, Vancouver, ISO, and other styles
15

Dahbi, Abdelmounaim. "Supply Chain Discovery Services in an Internet of Things Environment." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36060.

Full text
Abstract:
Electronic Product Code (EPC) refers to a numbering standard developed to uniquely identify physical objects, loads, locations, assets and other entities which are to be tracked or otherwise identified. The tracking technology consists of assigning Radio Frequency Identification (RFID) tags, holding universally unique EPC codes, to the entities to be identified. While the EPC-RFID technology is used to identify and capture data about the physical objects to be tracked in a supply chain, the EPCglobal Network ensures the exchange of the captured data between supply chain stakeholders. Such a real-time data exchange increases visibility and efficiency throughout the supply chain, and thus it increases both company profitability and customer satisfaction. The EPCglobal Network can be regarded as the backbone for the future Internet of Things (IoT). We focus our work in this thesis on Discovery Services (DS); a suite of network lookup services enabling users to retrieve all relevant information sources with regards to a given EPC. They can be viewed as search engines for the future business infrastructure deployed in the IoT. Motivated by the unprecedented and incessantly growing amount of EPC data, the expected epidemic growth in the solicitation frequency of the lookup service, and also the foreseen exceptionally large flow of highly sensitive EPC information, we focus on proposing solutions to problems pertaining to two main challenges; architecture design of Discovery Services and their security. On the architecture design level, we propose novel DS architectures with focus directed towards meeting four major requirements; network scalability, query responsiveness, service extensibility and acceptance. On the security level, we propose probabilistic security schemes aiming at securing even further Discovery Services in the IoT in general, and in the EPCglobal network in particular.
APA, Harvard, Vancouver, ISO, and other styles
16

Abdullah, Saima. "Energy-efficient and network-aware message scheduling in internet of things environment." Thesis, University of Essex, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.653057.

Full text
Abstract:
While majority is focusing on the sensors, communication and network aspects of IoT systems. This thesis investigates into energy efficient aspect of scheduling messages by the things/ objects in IoT. Things or objects are clustered into IoT subgroups where each subgroup has a message broker that delivers the messages originating from members to the ultimate receiver of sensed data Le.sink. This work proposes message scheduling algorithms which improves the overall efficiency of the IoT systems. It considers the network layer routing aspect to keep the energy depletion low to provide a more optimal solution by applying certain degree of cross-layer design methodology. It proves the effectiveness and efficiency both in terms of service response time and energy consumption via simulation results. Furthermore, as messages have different priorities, an algorithm is designed considering this aspects as well. Messages are classified into high priority (HP) and best effort (BE) by the corresponding Quality of Service (QoS) aware scheduling in each IoT subgroup to differentiate emergency messages from non-mission critical messages. An energy efficient backup nodes selection algorithm is presented if any node becomes non responsive due to some internal error or external reason. This approach finds an energy efficient optimal level of replacement nodes for IoT systems, while keeping in view energy of sensor devices and the cost of deployment of the backup nodes.
APA, Harvard, Vancouver, ISO, and other styles
17

Ramezani, Parisa. "Extending Wireless Powered Communication Networks for Future Internet of Things." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/16850.

Full text
Abstract:
Energy limitation has always been a major concern for long-term operation of wireless networks. With today's exponential growth of wireless technologies and the rapid movement towards the so-called Internet of Things (IoT), the need for a reliable energy supply is more tangible than ever. Recently, energy harvesting has gained considerable attention in research communities as a sustainable solution for prolonging the lifetime of wireless networks. Beside conventional energy harvesting sources such as solar, wind, vibration, etc. harvesting energy from radio frequency (RF) signals has drawn significant research interest in recent years as a promising way to overcome the energy bottleneck. Lately, the integration of RF energy transfer with wireless communication networks has led to the emergence of an interesting research area, namely, wireless powered communication network (WPCN), where network users are powered by a hybrid access point (HAP) which transfers wireless energy to the users in addition to serving the functionalities of a conventional access point. The primary aim of this thesis is to extend the baseline model of WPCN to a dual-hop WPCN (DH-WPCN) in which a number of energy-limited relays are in charge of assisting the information exchange between energy-stable users and the HAP. Unlike most of the existing research in this area which has merely focused on designing methods and protocols for uplink communication, we study both uplink and downlink information transmission in the DH-WPCN. We investigate sum-throughput maximization problems in both directions and propose algorithms for optimizing the values of the related parameters. We also tackle the doubly near-far problem which occurs due to unequal distance of the relays from the HAP by proposing a fairness enhancement algorithm which guarantees throughput fairness among all users.
APA, Harvard, Vancouver, ISO, and other styles
18

Hassan, Basma Mostafa. "Monitoring the Internet of Things (IoT) Networks." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS100.

Full text
Abstract:
Les réseaux « Internet des Objets » se composent de plusieurs millions d’objets qui possèdent une adresse IP et qui peuvent connecter sur Internet. En général, ces objets sont supposé d’être autonomes et peuvent résoudre des tâches; mesurer, traiter et fournir des informations pour les systèmes connectés et pour les utilisateurs. Aussi, ces réseaux sont vulnérables (c.-à-d. : les éléments peuvent être mobiles et la topologie du réseau peut changer dynamiquement), les changements peuvent influencer le (bon) fonctionnement du réseau. De plus, ils peuvent être alimentés par des batteries de durée de vie limitée, ce que nécessite la réduction de leur consommation.Ce travail de thèse aborde un sujet important dans le domaine de l’Internet des Objets, qui consiste à savoir comment assurer la robustesse et le fonctionnement tolérant aux pannes du réseau pour répondre aux exigences des missions critiques. Avec le large déploiement des services IdO, ce problème est deventé ou de détection de pannes et de sécurité industriel où l’état des objets communicants doit être constamment vérifié pour le rétablissement rapide en cas de problème particulièrement crucial pour les applications telles que le monitorage intelligent de sames de communication inattendus. On cherche alors de minimiser le coût du monitorage et l’utilisation de l’énergie, et aussi les charges additionnelles sur les réseaux.Nous avons proposé un algorithme qui vise à réaliser un placement distribué des moniteurs avec une complexité minimale pour le calcul. L’algorithme proposé fonctionne avec RPL. L’objectif principal est d’augmenter la robustesse dans les réseaux IdO ciblant les applications critiques en temps réel via le monitorage des liaisons dans les DODAGs construits par RPL. Dans notre première contribution, le problème est modélisé comme un problème de couverture minimale des sommets (VCP) sur le DODAG. Nous avons développé un algorithme à temps polynomial qui transforme le DODAG en une décomposition arborescente (Nice-Tree Decomposition) avec une largeur arborescente (treewidth) d’unité. Cette stratégie profite de la spécificité des DODAG et a abouti à une réduction significative de la complexité de la résolution du VCP sur les DODAG. Elle peut être résolue en temps polynomial.La deuxième proposition est un modèle approché pour l’optimisation de l’ordonnancement du rôle de monitorage des nœuds dans les réseaux IdO, afin de maximiser la durée de vie des dispositifs embarqués à ressources limitées, tout en minimisant le coût global du monitorage de réseau. Le monitorage de réseau est très coûteux, en particulier pour les réseaux à ressources limitées tels que l’IdO. Par conséquent, le monitorage doit être économe en énergie et avec des frais généraux minimaux sur la performance normale du réseau. Notre travail correspondant contient une proposition d’un modèle mathématique en trois phases pour assurer l’exigence d’une couverture des moniteurs tout en minimisant la consommation d’énergie de monitorage et les frais de communication.Notre modèle proposé décompose le problème abordé en trois problèmes d’optimisation bien connus, il s’agit du problème de couverture de sommets, problème d’affectation généralisé multi-objectives et problème de voyageur de commerce.Dans cette troisième partie, une approche exacte est proposée pour résoudre le problème décrit dans (Contribution 2). Comme nous avons vu, la décomposition en trois phases ne donne pas la solution exacte. Nous avons donc proposé une formulation exacte du problème qui consiste en un problème de l'affectation minimum des tâches de surveillance avec un fonctionnement de surveillance cyclique. Pour cela, nous avons formulé un programme en nombres entiers binaires. L'ordonnancement optimal garantit la couverture du graphe pour la surveillance avec une consommation d'énergie minimale<br>By connecting billions of things to the Internet, IoT created a plethora of applications that touch every aspect of human life. Time-sensitive, mission-critical services, require robust connectivity and strict reliability constraints. On the other hand, the IoT relies mainly on Low-power Lossy Networks, which are unreliable by nature due to their limited resources, hard duty cycles, dynamic topologies, and uncertain radio connectivity. Faults in LLNs are common rather than rare events, therefore, maintaining continuous availability of devices and reliability of communication, are critical factors to guarantee a constant, reliable flow of application data.After a comprehensive literature review, and up to our knowledge, it is clear that there is a call for a new approach to monitoring the unreliable nodes and links in an optimized, energy-efficient, proactive manner, and complete interoperability with IoT protocols. To target this research gap, our contributions address the correct assignment (placement) of the monitoring nodes. This problem is known as the minimum assignment problem, which is NP-hard. We target scalable monitoring by mapping the assignment problem into the well-studied MVC problem, also NP-hard. We proposed an algorithm to convert the DODAG into a nice-tree decomposition with its parameter (treewidth) restricted to the value one. As a result of these propositions, the monitor placement becomes only Fixed-Parameter Tractable, and can also be polynomial-time solvable.To prolong network longevity, the monitoring role should be distributed and balanced between the entire set of nodes. To that end, assuming periodical functioning, we propose in a second contribution to schedule between several subsets of nodes; each is covering the entire network. A three-phase centralized computation of the scheduling was proposed. The proposition decomposes the monitoring problem and maps it into three well-known sub-problems, for which approximation algorithms already exist in the literature. Thus, the computational complexity can be reduced.However, the one major limitation of the proposed three-phase decomposition is that it is not an exact solution. We provide the exact solution to the minimum monitor assignment problem with a duty-cycled monitoring approach, by formulating a Binary Integer Program (BIP). Experimentation is designed using network instances of different topologies and sizes. Results demonstrate the effectiveness of the proposed model in realizing full monitoring coverage with minimum energy consumption and communication overhead while balancing the monitoring role between nodes.The final contribution targeted the dynamic distributed monitoring placement and scheduling. The dynamic feature of the model ensures real-time adaptation of the monitoring schedule to the frequent instabilities of networks, and the distributed feature aims at reducing the communication overhead
APA, Harvard, Vancouver, ISO, and other styles
19

Zucchetto, Daniel. "Solutions for large scale, efficient, and secure Internet of Things." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3427315.

Full text
Abstract:
The design of a general architecture for the Internet of Things (IoT) is a complex task, due to the heterogeneity of devices, communication technologies, and applications that are part of such systems. Therefore, there are significant opportunities to improve the state of the art, whether to better the performance of the system, or to solve actual issues in current systems. This thesis focuses, in particular, on three aspects of the IoT. First, issues of cyber-physical systems are analysed. In these systems, IoT technologies are widely used to monitor, control, and act on physical entities. One of the most important issue in these scenarios are related to the communication layer, which must be characterized by high reliability, low latency, and high energy efficiency. Some solutions for the channel access scheme of such systems are proposed, each tailored to different specific scenarios. These solutions, which exploit the capabilities of state of the art radio transceivers, prove effective in improving the performance of the considered systems. Positioning services for cyber-physical systems are also investigated, in order to improve the accuracy of such services. Next, the focus moves to network and service optimization for traffic intensive applications, such as video streaming. This type of traffic is common amongst non-constrained devices, like smartphones and augmented/virtual reality headsets, which form an integral part of the IoT ecosystem. The proposed solutions are able to increase the video Quality of Experience while wasting less bandwidth than state of the art strategies. Finally, the security of IoT systems is investigated. While often overlooked, this aspect is fundamental to enable the ubiquitous deployment of IoT. Therefore, security issues of commonly used IoT protocols are presented, together with a proposal for an authentication mechanism based on physical channel features. This authentication strategy proved to be effective as a standalone mechanism or as an additional security layer to improve the security level of legacy systems.
APA, Harvard, Vancouver, ISO, and other styles
20

Hummen, René [Verfasser]. "Resource-Conscious Network Security for the IP-Based Internet of Things / René Hummen." Aachen : Shaker, 2015. http://d-nb.info/1074088239/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hobring, Linus, and Philip Söderberg. "A sensor network for the Internet of Things Integrated with a bidirectional backend." Thesis, Blekinge Tekniska Högskola, Institutionen för kommunikationssystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2702.

Full text
Abstract:
Internet of Things is rapidly evolving. This thesis includes a study of single-board computers suitable for machine-to-machine communication together with the developing process of a sensor network integrated with a bidirectional communication platform. Raspberry Pi was selected as the single-board computer used in the proposed system. The Message Queuing Telemetry Transport protocol was selected as main communication protocol to handle all exchange of information between the network and the bidirectional communication platform. It was selected because of its reliability, low bandwidth and publish/subscribe architecture. Decision-making procedures were implemented to work with both local sensor data and data from different Message Queuing Telemetry Transport streams, such as GPS data, used to calculate the distance between the user’s smart phone and the office to prepare the workstation, temperature sensors and ambient light sensors controlling Philips HUE light bulbs. The finished sensor network was design to work within office environments to prepare workstations and monitor the work climate. The number of sensors connected to the single-board computer has a major impact in the CPU usage. Measurements and calculations show that 17 connected physical sensors will cause a CPU usage of 96%.
APA, Harvard, Vancouver, ISO, and other styles
22

Shaikh, Farooq Israr Ahmed. "Security Framework for the Internet of Things Leveraging Network Telescopes and Machine Learning." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7935.

Full text
Abstract:
The recent advancements in computing and sensor technologies, coupled with improvements in embedded system design methodologies, have resulted in the novel paradigm called the Internet of Things (IoT). IoT is essentially a network of small embedded devices enabled with sensing capabilities that can interact with multiple entities to relay information about their environments. This sensing information can also be stored in the cloud for further analysis, thereby reducing storage requirements on the devices themselves. The above factors, coupled with the ever increasing needs of modern society to stay connected at all times, has resulted in IoT technology penetrating all facets of modern life. In fact IoT systems are already seeing widespread applications across multiple industries such as transport, utility, manufacturing, healthcare, home automation, etc. Although the above developments promise tremendous benefits in terms of productivity and efficiency, they also bring forth a plethora of security challenges. Namely, the current design philosophy of IoT devices, which focuses more on rapid prototyping and usability, results in security often being an afterthought. Furthermore, one needs to remember that unlike traditional computing systems, these devices operate under the assumption of tight resource constraints. As such this makes IoT devices a lucrative target for exploitation by adversaries. This inherent flaw of IoT setups has manifested itself in the form of various distributed denial of service (DDoS) attacks that have achieved massive throughputs without the need for techniques such as amplification, etc. Furthermore, once exploited, an IoT device can also function as a pivot point for adversaries to move laterally across the network and exploit other, potentially more valuable, systems and services. Finally, vulnerable IoT devices operating in industrial control systems and other critical infrastructure setups can cause sizable loss of property and in some cases even lives, a very sobering fact. In light of the above, this dissertation research presents several novel strategies for identifying known and zero-day attacks against IoT devices, as well as identifying infected IoT devices present inside a network along with some mitigation strategies. To this end, network telescopes are leveraged to generate Internet-scale notions of maliciousness in conjunction with signatures that can be used to identify such devices in a network. This strategy is further extended by developing a taxonomy-based methodology which is capable of categorizing unsolicited IoT behavior by leveraging machine learning (ML) techniques, such as ensemble learners, to identify similar threats in near-real time. Furthermore, to overcome the challenge of insufficient (malicious) training data within the IoT realm, a generative adversarial network (GAN) based framework is also developed to identify known and unseen attacks on IoT devices. Finally, a software defined networking (SDN) based solution is proposed to mitigate threats from unsolicited IoT devices.
APA, Harvard, Vancouver, ISO, and other styles
23

Pawar, Nahit. "On interoperability and network architecture bottom-up heterogeneity control in Internet of Things." Electronic Thesis or Diss., Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAS009.

Full text
Abstract:
L'Internet des objets (IoT) combine de nombreuses technologies et s'est étendu à des domaines d'application divers et multidisciplinaires. Chaque domaine a son propre ensemble d'exigences d'application en termes de matériel, de communication, de logiciel, de source d'énergie, etc. Cela empêche l'utilisation de modèles de programmation conventionnels de l'informatique distribuée qui suppose que les systèmes sont toujours connectés, disposant de ressources de calcul abondantes et d'accès à l'énergie électrique infinie. De plus, l'IoT englobe une large gamme d'appareils IoT embarqués hétérogènes (unités de traitement, capteurs, actionneurs, émetteurs-récepteurs, etc.) fournis par divers fabricants, chacun avec une architecture d'appareil différente, par conséquent, les logiciels d'application développés pour ces appareils ne sont pas compatibles avec chacun. autre. Cette hétérogénéité des appareils pose de sérieux problèmes pour l'interopérabilité des appareils et également pour les outils de développement IoT harmonisés sur une large gamme d'appareils IoT hétérogènes. Un défi important non seulement pour les experts du domaine, mais aussi pour les professionnels est de réaliser une preuve de concept (PoC) lors de l'industrialisation des services IoT, ce qui implique - le développement, le déploiement et la maintenance de services d'application IoT de bout en bout nécessitant différents types et La principale contribution de cette thèse est d'introduire un nouveau framework nommé PrIoT (Prototyping Internet of Things) qui permet une programmation simple et rapide des appareils IoT, de la conception au déploiement, qui gère mieux l'hétérogénéité de l'architecture des appareils IoT. Plus précisément, le framework PrIoT est basé sur le concept selon lequel les applications IoT possèdent diverses caractéristiques invariantes que nous avons étudiées et rassemblées à partir de diverses architectures et applications IoT présentées dans la littérature. Nous avons ensuite développé un langage de programmation minimaliste de haut niveau et des API pour montrer la composabilité facile de nos fonctionnalités en variante dans le développement d'applications IoT. D'un point de vue matériel, afin de mieux contrôler l'hétérogénéité des appareils, nous proposons deux nouveaux systèmes modulaires nommés R-Bus et P-Bus pour concevoir des systèmes embarqués sous la forme d'un ensemble de modules matériels pouvant être montés et démontés en fonction des besoins des applications IoT. . Cela résout l'hétérogénéité de l'interface des périphériques et prend en charge diverses classes de périphériques de contrainte, ainsi qu'une configuration système avancée et des fonctionnalités plug-and-play pour faciliter le prototypage matériel IoT. Cette approche complète notre proposition de cadre PrIoT car elle offre une nouvelle façon de créer des prototypes d'applications IoT de bout en bout avec une flexibilité à la fois matérielle et logicielle des appareils IoT. En fait, notre objectif est de permettre un prototypage rapide de l'IoT de bout en bout en mettant en œuvre une couche d'abstraction de haut niveau qui cache les détails de diverses technologies sous-jacentes à l'IoT et en mettant en œuvre des systèmes modulaires pour une intégration flexible des appareils ciblés pour la conception de systèmes IoT. notre cadre PrIoT à travers l'implémentation de référence et aussi le développement de l'implémentation prototype de divers scénarios IoT en utilisant notre framework et en le comparant à diverses solutions existantes. Pour nos systèmes modulaires, nous avons défini deux métriques - adéquation et ratio de couverture qui mesurent la compatibilité des systèmes modulaires embarqués en ce qui concerne les unités de traitement. Nous avons utilisé ces métriques pour comparer notre solution avec les systèmes modulaires existants<br>Internet of Things (IoT) combines many technologies and it has spanned across diverse and multidisciplinary application domains. Each domain has its own set of application requirements in terms of hardware, communication, software, source of energy, etc. This inhibits the use of conventional programming models of distributed computing which assumes that the systems are always connected, having abundant computational resources and access to infinite electric energy. Additionally, IoT encompasses a wide range of heterogeneous embedded IoT devices (processing units, sensors, actuators, transceivers, etc.) provided by various manufacturers each with different device architecture, as a result the application software developed for these devices are not compatible with each other. This device heterogeneity poses serious problems for device interoperability and also for harmonized IoT development tools over a wide range of heterogeneous IoT devices. An important challenge not only for domain experts but also for professionals is to realize proof-of-concept (PoC) during industrialization of IoT services, that involves - development, deployment and maintenance of end-to-end IoT application services requiring different types and levels of expertise. The main contribution of this thesis is to introduce a new framework named PrIoT (Prototyping Internet of Things) that allows easy and rapid IoT device programming from design to deployment that better handles the heterogeneity of IoT device architecture. More specifically, the PrIoT framework is based on the concept that IoT applications possess various invariant characteristics that we studied and gathered from various IoT architectures and applications presented in the literature. We then developed a minimalist high level programming language and APIs to show the easy composability of our in-variant functionalities in the development of IoT applications. From a hardware perspective, in order to control better the device heterogeneity, we propose two novel modular systems named R-Bus and P-Bus for designing embedded systems as a set of hardware modules that can be mounted and dismounted based on the IoT applications needs. This re-solves device interface heterogeneity and accommodates various classes of constraint devices along with advance system configuration and plug-&amp;-play functionalities to ease IoT hardware prototyping. This approach complements our proposed PrIoT framework as it offers a new way to build end-to-end IoT application prototypes with flexibility in both hardware and software of the IoT devices. In fact, our objective is to enable rapid end-to-end IoT prototyping by implementing a high-level abstraction layer that hides the details of various technologies underlying IoT and implementing modular systems for flexible device integration targeted for IoT system design. We validate our PrIoT framework through reference implementation and also the development of prototype implementation of various IoT scenarios using our framework and comparing it against various existing solutions. For our modular systems we defined two metrics -suitability and coverage ratio that measure the compatibility of embedded modular systems with respect to processing units. We used these metrics to compare our solution with existing modular systems
APA, Harvard, Vancouver, ISO, and other styles
24

ALIEV, KHURSHID. "Internet of Things Applications and Artificial Neural Networks in Smart Agriculture." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2697287.

Full text
Abstract:
Internet of Things (IoT) is receiving a great attention due to its potential strength and ability to be integrated into any complex systems and it is becoming a great tool to acquire data from particular environment to the cloud. Data that are acquired from Wireless Sensor Nodes(WSN) could be predicted using Artificial Neural Network(ANN) models. One of the use case fields of IoT is smart agriculture and there are still issues on developing low cost and power efficient WSN using advanced radio technologies for short and long-range applications and implementation of prediction tools. This is the reason why the target of this thesis is to develop a low cost and power efficient WSN and IoT based control system and analyze the best predictive model for such systems. With this purpose, we developed BLESensor node for short-range IoT applications and Internet of Plant(IoP) for long distance smart agriculture applications. A non-linear prediction model is developed in order to forecast acquired data from sensor nodes. BLESensor node Experimental test results reveal that newly developed BLESensor node has a good impact on the improved lifetime and applications could possibly make this emerging technological area more useful. The Android software has been tested on Samsung Galaxy SM-T311, running Android 4.4.2 and it works without any issues and it is supposed to work on all other Android devices equipped with BLE. The working temperature range of the BLESensor node is supposed to work goes from -20 °C to 70 °C due to battery temperature limits. The system has been tested in the climatic chamber (Challenge 250 from Angelantoni) present at the Neuronica Lab, which allowed the sensor to be software calibrated. Several measurements have been proven that each node offers an uncertainty of 1.2 °C for temperature. These values are acceptable for the type of application for which they are intended. The power consumption has been measured directly from scope analysis and simulating the code step by step and calculations resulted that the lifetime of the node lasts for a month. Considering a normal use of these sensors with a reasonable sampling time the lifetime could be increased. IoP node IoP node is a prototype device that works with WiFi protocol and collects temperature, humidity and soil moisture data of plants to the cloud. For IoP node, we have implemented a firmware, tested a prototype device and designed the PCB in OrCAD software and generated a Gerber file and developed an android application. Prediction model Comparisonofthreenon-linearmodelswithOakdatasetresultedinbetterperformance of NNARX model and we used NNARX model to predict 10 days step ahead maximum and minimum temperature and described the results of performances. The performance given by trained models in terms of Mean Square Error (MSE) for maximum temperature prediction provided an error of 0.8826 on unseen data for the month of September. Similarly, the performance of model predicting minimum temperature was tested and it resulted in an error value of 0.944. In conclusion, this work must be intended only as a proof-of-concept, although, the developed BLESensor system, IoP prototype device and predictive models showed expected optimum results, both in terms of functionalities and usability.
APA, Harvard, Vancouver, ISO, and other styles
25

Tuyishimire, Emmanuel. "Internet of Things: Least Interference Beaconing Algorithms." Thesis, University of Cape Town, 2014. http://pubs.cs.uct.ac.za/archive/00000997/.

Full text
Abstract:
The emerging sensor networking applications are predicting the deployment of sensor devices in thousands of computing elements into multi-technology and multi-protocol platforms. Access to information will be available not only anytime and anywhere, but also using anything in a first-mile of the Internet referred to as the internet-of-things (IoT). The management of such a large-scale and heterogeneous network, would benefit from some of the traditional IP-based network management techniques such as load and energy balancing, which can be re-factored to achieve efficient routing of sensor network traffic. Research has shown that minimizing the path interference on nodes was necessary to improve traffic engineering in connection oriented networks. The same principle has been applied in past research in the context of the IoT to reveal that the least interference beaconing protocol (LIBP); a protocol derived from the least interference beaconing algorithm (LIBA) outperforms the Collection Tree Protocol (CTP) and Tiny OS Beaconing (ToB) protocol, in terms of energy efficiency and lifetime of the sensor network. However for the purpose of efficiency and accuracy, it is relevant, useful and critical to revisit or re-examine the LIBA algorithm in terms of correctness and investigate potential avenues for improvement. The main contributions of this research work are threefold. Firstly, we build upon formal methods to verify the correctness of the main principles underlying the LIBA, in terms of energy efficiency and interference minimization. The interference is here defined at each node by the number of routing paths carrying the sensor readings from the motes to the sink of the network that traverse the node. Our findings reveal the limitations in LIBA. Secondly, building upon these limitations, we propose two improvements to the algorithm: an algorithm called LIBA+ that improves the algorithm performance by keeping track of the energy usage of the sensor nodes, and a multi-sink version of the algorithm called LIBAMN that extends the algorithm to account for multiple sinks or gateways. These enhancements present preventive mechanisms to include in IoT platforms in order to improve traffic engineering, the security of network protocols and network stability. Lastly, we present analytical results, which reveal that the LIBA algorithm can be improved by more than 84% in terms of energy balancing. These results reveal that formal methods remain essential in the evaluation and performance improvement of wireless sensor network algorithms and protocols.
APA, Harvard, Vancouver, ISO, and other styles
26

Yelasani, kailash kumar yadav. "ECONOMIZED SENSOR DATA PROCESSING WITH VEHICLE PLATOONING." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/theses/2305.

Full text
Abstract:
We present platooning as a special case of crowd-sensing framework. After offering a policy that governs platooning, we review common scenarios and components surrounding platooning. We present a prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that beyond the commonly reported benefits of platooning, there are substantial savings in acquisition and processing of sensory data sharing the road. Our results show that data transmission can be reduced to low of 3% compared to normal data transmission using a platoon formation with sensor sharing.
APA, Harvard, Vancouver, ISO, and other styles
27

Ainchwar, Arpit. "Determination of Cycle Time Constraints in Case of Link Failure in Closed Loop Control in Internet of Things." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36906.

Full text
Abstract:
In today’s era of the Internet of Things, it is crucial to study the real-time dependencies of the web, its failures and time delays. Today, smart grids, sensible homes, wise water networks, intelligent transportation, infrastructure systems that connect our world over are developing fast. The shared vision of such systems is typically associated with one single conception Internet of Things (IoT), where through the deployment of sensors, the entire physical infrastructure is firmly fastened with information and communication technologies; where intelligent observation and management is achieved via the usage of networked embedded devices. The performance of a real-time control depends not only on the reliability of the hardware and software used but also on the time delay in estimating the output, because of the effects of computing time delay on the control system performance. For a given fixed sampling interval, the delay and loss issues are the consequences of computing time delay. The delay problem occurs when the computing time delay is non-zero but smaller than the sampling interval, while the loss problem occurs when the computing time delay is greater than, or equal to, the sampling interval, i.e., loss of the control output. These two queries are analyzed as a means of evaluating real-time control systems. First, a general analysis of the effects of computing time delay is presented along with necessary conditions for system stability. In this thesis, we will focus on the experimental study of the closed loop control system in the internet of things to determine the cycle time constraints in case of link failure.
APA, Harvard, Vancouver, ISO, and other styles
28

Aloisi, Alessandro. "Integrating wireless sensor networks and internet of things: A coap-based approach." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/8034/.

Full text
Abstract:
L'obiettivo su cui è stata basata questa Tesi di Laurea è stato quello di integrare la tecnologia delle Wireless Sensor Networks (WSN) al contesto dell'Internet delle cose (IoT). Per poter raggiungere questo obiettivo, il primo passo è stato quello di approfondire il concetto dell'Internet delle cose, in modo tale da comprendere se effettivamente fosse stato possibile applicarlo anche alle WSNs. Quindi è stata analizzata l'architettura delle WSNs e successivamente è stata fatta una ricerca per capire quali fossero stati i vari tipi di sistemi operativi e protocolli di comunicazione supportati da queste reti. Infine sono state studiate alcune IoT software platforms. Il secondo passo è stato quindi di implementare uno stack software che abilitasse la comunicazione tra WSNs e una IoT platform. Come protocollo applicativo da utilizzare per la comunicazione con le WSNs è stato usato CoAP. Lo sviluppo di questo stack ha consentito di estendere la piattaforma SensibleThings e il linguaggio di programmazione utilizzato è stato Java. Come terzo passo è stata effettuata una ricerca per comprendere a quale scenario di applicazione reale, lo stack software progettato potesse essere applicato. Successivamente, al fine di testare il corretto funzionamento dello stack CoAP, è stata sviluppata una proof of concept application che simulasse un sistema per la rilevazione di incendi. Questo scenario era caratterizzato da due WSNs che inviavano la temperatura rilevata da sensori termici ad un terzo nodo che fungeva da control center, il cui compito era quello di capire se i valori ricevuti erano al di sopra di una certa soglia e quindi attivare un allarme. Infine, l'ultimo passo di questo lavoro di tesi è stato quello di valutare le performance del sistema sviluppato. I parametri usati per effettuare queste valutazioni sono stati: tempi di durata delle richieste CoAP, overhead introdotto dallo stack CoAP alla piattaforma Sensible Things e la scalabilità di un particolare componente dello stack. I risultati di questi test hanno mostrato che la soluzione sviluppata in questa tesi ha introdotto un overheadmolto limitato alla piattaforma preesistente e inoltre che non tutte le richieste hanno la stessa durata, in quanto essa dipende dal tipo della richiesta inviata verso una WSN. Tuttavia, le performance del sistema potrebbero essere ulteriormente migliorate, ad esempio sviluppando un algoritmo che consenta la gestione concorrente di richieste CoAP multiple inviate da uno stesso nodo. Inoltre, poichè in questo lavoro di tesi non è stato considerato il problema della sicurezza, una possibile estensione al lavoro svolto potrebbe essere quello di implementare delle politiche per una comunicazione sicura tra Sensible Things e le WSNs.
APA, Harvard, Vancouver, ISO, and other styles
29

Frawley, Ryan Joseph. "Logging and Analysis of Internet of Things (IoT) Device Network Traffic and Power Consumption." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1911.

Full text
Abstract:
An increasing number of devices, from coffee makers to electric kettles, are becoming connected to the Internet. These are all a part of the Internet of Things, or IoT. Each device generates unique network traffic and power consumption patterns. Until now, there has not been a comprehensive set of data that captures these traffic and power patterns. This thesis documents how we collected 10 to 15 weeks of network traffic and power consumption data from 15 different IoT devices and provides an analysis of a subset of 6 devices. Devices including an Amazon Echo Dot, Google Home Mini, and Google Chromecast were used on a regular basis and all of their network traffic and power consumption was logged to a MySQL database. The database currently contains 64 million packets and 71 gigabytes of data and is still growing in size as more data is collected 24/7 from each device. We show that it is possible to see when users are asking their smart speaker a question or whether the lights in their home are on or off based on power consumption and network traffic from the devices. These trends can be seen even if the data being sent is encrypted.
APA, Harvard, Vancouver, ISO, and other styles
30

Daniels, Anton. "Information Security in an Internet of Things Network Based on Blockchains and User Participation." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74757.

Full text
Abstract:
The amount of connected Internet of Things devices has seen a large growth during the last couple of years and shows no signs of slowing down. Considering the momentum of the technological advancement in our society with new technologies such as blockchains, AI and machine learning, a large amount of issues could occur if not prevented beforehand, especially within security. Therefore this thesis will examine how to maintain the information security in an Internet of Things network based on blockchains and user participation, by taking an exploratory approach to create an understanding of the issues and possible solutions when implementing a network of this type. By using a case developed together with Luleå Kommun this thesis takes a qualitative approach to the research. This is done by using solutions to issues which appeared during the development of this implementation to draw a conclusion on how to maintain the information security in an Internet of Things network based on blockchains and user participation.
APA, Harvard, Vancouver, ISO, and other styles
31

Zhang, Zhi. "Networked RFID Systems for the Internet of Things." Doctoral thesis, KTH, Elektroniksystem, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-120056.

Full text
Abstract:
The Internet of Things (IoT) utilizes trillions of uniquely identifiable smart objects to connect anything at anytime and anywhere. Radio frequency identification (RFID) techniques are a powerful promising enabler for realizing the IoT. Around how to build hierarchical networked RFID systems for the IoT, this dissertation formulates and addresses problems in three key areas, i.e., communication protocols, simulation approaches, and RFID applications. Communication protocols are essential for designing high-performance networked RFID systems. First, we propose to use time hopping pulse-position modulation (TH-PPM) impulse radio ultra wideband (IR-UWB) for the tag-to-reader link. We analyze different parts of the system delay and propose relevant strategies to shorten the delay. Second, we give the concept of code division multiple access (CDMA) UWB RFID systems. We analyze the asynchronous matched filter receiver and decorrelating receiver for multi-tag detection, and propose a new communication process that fully exploits the multiple-access capability of the two detection schemes. Simulations are widely used to evaluate the performance of wireless networks. We propose a new approach for simulating networked RFID systems with multiple wireless standards within one case in OMNeT++. It is realized by partitioning and modeling the protocol stacks of different standards and designing a multi-radio module. Moreover, we propose a CO-Simulation framework with MATLAB and OMNeT++ (COSMO). COSMO has the ability of self-validation. It combines the strengths of MATLAB and OMNeT++ by compiling prebuilt models in MATLAB to header files and shared libraries and integrating them into OMNeT++. RFID technology gains popularity because it can be used to track and monitor objects in real time. We implement two typical networked RFID applications, i.e., wide area RFID sensor network and item-level indoor RFID localization. We design a two-layered wide area RFID sensor network for fresh food tracking. It adopts GSM/GPRS for the communication between the server and master nodes, and semi IR-UWB for the communication between master nodes and slave nodes. We develop the control platform and implement the all-in-one sensor nodes. For indoor RFID localization, we give insights about the influence of tag interaction on tag antenna radiation pattern and localization accuracy. Two examples, i.e., the k-NN algorithm and the Simplex algorithm, are taken to show how to utilize tag interaction analysis to improve the design of localization algorithms.<br><p>QC 20130409</p>
APA, Harvard, Vancouver, ISO, and other styles
32

NITTI, MICHELE. "Managing the Internet of Things based on its Social Structure." Doctoral thesis, Università degli Studi di Cagliari, 2014. http://hdl.handle.net/11584/266422.

Full text
Abstract:
Society is moving towards an “always connected” paradigm, where the Internet user is shifting from persons to things, leading to the so called Internet of Things (IoT) scenario. The IoT vision integrates a large number of technologies and foresees to embody a variety of smart objects around us (such as sensors, actuators, smartphones, RFID, etc.) that, through unique addressing schemes and standard communication protocols, are able to interact with each Others and cooperate with their neighbors to reach common goals [2, 3]. IoT is a hot research topic, as demonstrated by the increasing attention and the large worldwide investments devoted to it. It is believed that the IoT will be composed of trillions of elements interacting in an extremely heterogeneous way in terms of requirements, behavior and capabilities; according to [4], by 2015 the RIFD devices alone will reach hundreds of billions. Unquestionably, the IoT will pervade every aspect of our world and will have a huge impact in our everyday life: indeed, as stated by the US National Intelligence Council (NIC) [5], “by 2025 Internet nodes may reside in everyday things − food packages, furniture, paper documents, and more”. Then, communications will not only involve persons but also things thus bringing about the IoT environment in which objects will have virtual counterparts on the Internet. Such virtual entities will produce and consume services, collaborate toward common goals and should be integrated with all the other services. One of the biggest challenges that the research community is facing right now is to be able to organize such an ocean of devices so that the discovery of objects and services is performed efficiently and in a scalable way. Recently, several attempts have been made to apply concepts of social networking to the IoT. There are scientific evidences that a large number of individuals tied in a social network can provide far more accurate answers to complex problems than a single individual (or a small group of – even knowledgeable – individuals) [1]. The exploitation of such a principle, applied to smart objects, has been widely investigated in Internet-related researches. Indeed, several schemes have been proposed that use social networks to search Internet resources, to route traffic, or to select effective policies for content distribution. The idea that the convergence of the “Internet of Things” and the “Social Networks” worlds, which up to now were mostly kept separate by both scientific and industrial communities, is possible or even advisable is gaining momentum very quickly. This is due to the growing awareness that a “Social Internet of Things” (SIoT) paradigm carries with it many desirable implications in a future world populated by objects permeating the everyday life of human beings. Therefore, the goal of this thesis is to define a possible architecture for the SIoT, which includes the functionalities required to integrate things into a social network, and the needed strategies to help things to create their relationships in such a way that the resulting social network is navigable. Moreover, it focuses on the trustworthiness management, so that interaction among objects that are friends can be done in a more reliable way and proposes a possible implementation of a SIoT network. Since this thesis covers several aspects of the Social internet of Things, I will present the state of the art related to the specific research activities at the beginning of every Chapter. The rest of the thesis is structured as follows. In Chapter 1, I identify appropriate policies for the establishment and the management of social relationships between objects, describe a possible architecture for the IoT that includes the functionalities required to integrate things into a social network and analyze the characteristics of the SIoT network structure by means of simulations. Chapter 2 addresses the problem of the objects to manage a large number of friends, by analyzing possible strategies to drive the objects to select the appropriate links for the benefit of overall network navigability and to speed up the search of the services. In Chapter 3, I focus on the problem of understanding how the information provided by members of the social IoT has to be processed so as to build a reliable system on the basis of the behavior of the objects and define two models for trustworthiness management starting from the solutions proposed for P2P and social networks. Chapter 4 presents an implementation of a SIoT platform and its major functionalities: how to register a new social object to the platform, how the system manages the creation of new relationships, and how the devices create groups of members with similar characteristics. Finally, in Chapter 5, conclusions will be drawn regarding the effectiveness of the proposed Introduction 3 algorithms, and some possible future works will be sketched
APA, Harvard, Vancouver, ISO, and other styles
33

Spadazzi, Gianluca. "Middleware per Internet of Things: Java Embedded come caso di studio." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7865/.

Full text
Abstract:
Grazie al progresso dell'elettronica, ai giorni nostri, è possibile costruire dispositivi elettronici molto piccoli, che col passare del tempo lo sono sempre più. Questo ci permette di poter imboccare nuove strade nel mondo dell'informatica, sfruttando proprio questo fatto. Le dimensioni ridotte dei dispositivi in commercio, come sensori, attuatori, tag e tanto altro, sono particolarmente adatte a nuovi scenari applicativi. Internet of Things è una visione in cui Internet viene esteso alle cose. Facendo largo uso di dispositivi come sensori e tag è possibile realizzare sistemi intelligenti che possono avere riscontri positivi nella vita di tutti i giorni. Tracciare la posizione degli oggetti, monitorare pazienti da remoto, rilevare dati sull'ambiente per realizzare sistemi automatici (ad esempio regolare automaticamente la luce o la temperatura di una stanza) sono solo alcuni esempi. Internet of Things è la naturale evoluzione di Internet, ed è destinato a cambiare radicalmente la nostra vita futura, poichè la tecnologia sarà sempre più parte integrante della nostra vita, aumentando sempre più il nostro benessere e riducendo sempre più il numero delle azioni quotidiane da compiere. Sempre più sono middleware, le piattaforme e i sistemi operativi che nascono per cercare di eliminare o ridurre le problematiche relative allo sviluppo di sistemi di questo genere, e lo scopo di questa tesi è proprio sottolinearne l'importanza e di analizzare gli aspetti che questi middleware devono affrontare. La tesi è strutturata in questo modo: nel capitolo uno verrà fatta una introduzione a Internet of Things, analizzando alcuni degli innumerevoli scenari applicativi che ne derivano, insieme però alle inevitabili problematiche di tipo tecnologico e sociale. Nel secondo capitolo verranno illustrate le tecnologie abilitanti di Internet of Things, grazie alle quali è possibile realizzare sistemi intelligenti. Nel terzo capitolo verranno analizzati gli aspetti relativi ai middleware, sottolineandone l'importanza e prestando attenzione alle funzioni che devono svolgere, il tutto riportando anche degli esempi di middleware esistenti. Nel quarto capitolo verrà approfondito il middleware Java Embedded di Oracle.
APA, Harvard, Vancouver, ISO, and other styles
34

Bhebhe, Mbongeni. "Performance of narrow band internet of things (NBIoT) networks." Master's thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/31533.

Full text
Abstract:
Narrow Band Internet of Things (NBIoT) is a Low Power Wide Area Network (LPWAN) technology that has been standardised by 3GPP in Release 13 to work in cellular networks [15]. The main characteristics of NBIoT are its extended coverage compared to other cellular technologies such as LTE; its high capacity is due to its narrow channel bandwidth of 180 KHz, which also supports the possibility of these devices having a long battery life of up to 10 years, as well as low device complexity - all of which result in low device costs [2]. NBIoT can be deployed in one of three different options, namely: a) standalone, b) in-band and c) guard band deployment mode. These characteristics of NBIoT makes it very useful in the IoT industry, allowing the technology to be used in a wide range of applications, such as health, smart cities, farming, wireless sensor networks and many more [1] [25]. NBIoT can be used to realise the maximum possible spectral efficiency, thereby increasing the capacity of the network. Penetration of NBIoT in the market has dominated other LPWANs like Sigfox and LoRA, with NBIoT having a technology share of close to 50 percent [31]. This study is aimed at exploring the deployment options of NBIoT and determining how network operators can realise the greatest value for their investment by efficiently utilising their allocated spectrum. The main target is to derive the best parameter combination for deployment of the NBIoT network with acceptable error rates in both the uplink and the downlink. Different characteristics of NBIoT were discussed in this study, and the performance of the various approaches investigated to determine their efficiency in relation to the needs of the IoT industry. The error rates of NBIoT, when used in an existing LTE network, were the main focus of this study. Software simulations were used to compare the different parameter settings to see which options provide the best efficiency and cost trade-offs for structuring an NBIoT network. The results of the tests done in this study showed that the error rates are lower for standalone deployment mode than for in-band mode, which is mainly due to less interference in standalone mode than in in-band mode. The results also show that data transmitted in smaller Transport Block Size (TBS) in the Down Link (DL) has less errors than if it’s transmitted in larger blocks. The results also show that the error rate gets lower as the number of subframe repetition increases in the downlink, which is mainly due to the redundancy in sending the same data multiple times. However in the uplink, the results show that the error rates are comparable when the signal has poor quality.
APA, Harvard, Vancouver, ISO, and other styles
35

Besson, Lilian. "Multi-Players Bandit Algorithms for Internet of Things Networks." Thesis, CentraleSupélec, 2019. http://www.theses.fr/2019CSUP0005.

Full text
Abstract:
Dans cette thèse de doctorat, nous étudions les réseaux sans fil et les appareils reconfigurables qui peuvent accéder à des réseaux de type radio intelligente, dans des bandes non licenciées et sans supervision centrale. Nous considérons notamment des réseaux actuels ou futurs de l’Internet des Objets (IoT), avec l’objectif d’augmenter la durée de vie de la batterie des appareils, en les équipant d’algorithmes d’apprentissage machine peu coûteux mais efficaces, qui leur permettent d’améliorer automatiquement l’efficacité de leurs communications sans fil. Nous proposons deux modèles de réseaux IoT, et nous montrons empiriquement, par des simulations numériques et une validation expérimentale réaliste, le gain que peuvent apporter nos méthodes, qui se reposent sur l’apprentissage par renforcement. Les différents problèmes d’accès au réseau sont modélisés avec des Bandits Multi-Bras (MAB), mais l’analyse de la convergence d’un grand nombre d’appareils jouant à un jeu collaboratif sans communication ni aucune coordination reste délicate, lorsque les appareils suivent tous un modèle d’activation aléatoire. Le reste de ce manuscrit étudie donc deux modèles restreints, d’abord des banditsmulti-joueurs dans des problèmes stationnaires, puis des bandits mono-joueur non stationnaires. Nous détaillons également une autre contribution, la bibliothèque Python open-source SMPyBandits, qui permet des simulations numériques de problèmes MAB, qui couvre les modèles étudiés et d’autres<br>In this PhD thesis, we study wireless networks and reconfigurable end-devices that can access Cognitive Radio networks, in unlicensed bands and without central control. We focus on Internet of Things networks (IoT), with the objective of extending the devices’ battery life, by equipping them with low-cost but efficient machine learning algorithms, in order to let them automatically improve the efficiency of their wireless communications. We propose different models of IoT networks, and we show empirically on both numerical simulations and real-world validation the possible gain of our methods, that use Reinforcement Learning. The different network access problems are modeled as Multi-Armed Bandits (MAB), but we found that analyzing the realistic models was intractable, because proving the convergence of many IoT devices playing a collaborative game, without communication nor coordination is hard, when they all follow random activation patterns. The rest of this manuscript thus studies two restricted models, first multi-players bandits in stationary problems, then non-stationary single-player bandits. We also detail another contribution, SMPyBandits, our open-source Python library for numerical MAB simulations, that covers all the studied models and more
APA, Harvard, Vancouver, ISO, and other styles
36

Krishna, Ashwin. "Composing and connecting devices in animal telemetry network." Kansas State University, 2016. http://hdl.handle.net/2097/32882.

Full text
Abstract:
Master of Science<br>Department of Computing and Information Sciences<br>Venkatesh P. Ranganath<br>As the Internet of Things (IoT) continues to grow, the need for services that span multiple application domains will continue to increase to realise the numerous possibilities enabled by IoT. Today, however, heterogeneity among devices leads to interoperability issues while building a system of systems and often give rise to closed ecosystems. The issues with interoperability are driven by the inability of devices and apps from different vendors to communicate with each other. The interoperability problem forces the users to stick to one particular vendor, leading to vendor lock-in. To achieve interoperability, the users have to do the heavy lifting (at times impossible) of connecting heterogeneous devices. As we slowly move towards system-of-systems and IoT, there is a real need to support heterogeneity and interoperability. A recent effort in Santos Lab developed Medical Device Coordination Framework (MDCF), which was a step to address these issues in the space of human medical systems. Subsequently, we have been wondering if a similar solution can be employed in the area of animal science. In this effort, by borrowing observations from MDCF and knowledge from on-field experience, we have created a demonstration showcasing how a combination of precise component descriptions (via DSL) and communication patterns can be used in software development and deployment to overcome barriers due to heterogeneity, interoperability and to enable an open ecosystem of apps and devices in the space of animal telemetry.
APA, Harvard, Vancouver, ISO, and other styles
37

Ahmid, Abdel. "More than downloading : Toward a scale with wireless connectivity." Thesis, KTH, Kommunikationssystem, CoS, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-97936.

Full text
Abstract:
Sensors are light-weight, low powered devices that measure some aspect of a physical or virtual environment and transmit this information in some format. This thesis describes how to integrate a sensor onto devices to enable network connectivity. The phrase “internet of things” suggests that within a few years many devices will be connected to an internet. Devices, including common household appliances, will transmit and receive data over a network. The CEO of Ericsson has stated that there will be more than 50 billion connected devices by 2020[1]. These devices could be microwaves, fridges, lights, or temperature sensors. Devices that are usually not associated with internet connectivity will be integrated into networks and play a larger role in providing information and controlling other devices. Sensors will have a major role in “the internet of things”. These small computers could be integrated in any appliances and transmit data over the network. The sensors’ low power and low cost, as well as their light weight, makes them very attractive to integrate them into many devices. The goal of this thesis project is to build upon this trend toward “The internet of things” by integrating a sensor into a bathroom scale thus enabling the scale to have networking connectivity. The sensor will be low cost and simple. It should wirelessly or via USB transmit the current weight that it measures to a receiver (specifically a gateway). This gateway will forward the message over the network to a website or mobile phone for visual presentation of the data. This thesis describes different techniques and approaches toward developing this sensor. The thesis also evaluates these different choices in order to select one technique that will be implemented. This solution will be evaluated in terms of its cost and ease of integration into an existing commercially produced scale.<br>Sensorer är små, energieffektiva apparater som upptäcker variationer i förhållande till någon stimulans och skickar informationen i ett godtyckligt format. Den här uppsatsen beskriver hur man kan integrera en sensor med en apparat för att möjliggöra nätverksuppkoppling. Uttrycket ”The Internet of things”, översatt på svenska som ”Internet av saker”, konstaterar att inom några år så kommer den mesta av vardaglig elektronik vara uppkopplad mot Internet. Hemelektroniken kommer att skicka och ta emot data över ett nätverk. Ericsson tror att det kommer att vara över 50 miljarder uppkopplade apparater år 2020[1]. Sådana apparater kan vara mikrovågsugnar, frysar, lampor eller termometrar. Apparater som vanligtvis inte förväntas vara uppkopplade mot ett nätverk kommer att bli uppkopplade för att tillföra eller kontrollera information och andra apparater. Sensorer har en viktig roll i denna utveckling. De är små datorer som kan kopplas upp mot flertalet elektroniska apparater och förse dem med en nätverksuppkoppling för att skicka betydelsefull data över ett nätverk. Energieffektiviteten och de låga kostnaderna, så väl som deras små storlekar, gör dem dessutom väldigt attraktiva. Målet med den här uppsatsen är att påbygga ”The Internet of things” genom att tillförse en personvåg med en sensor för att möjliggöra nätverksuppkoppling. Sensor ska vara enkel och billig. Den kommer att trådlöst eller via USB skicka vikter till en mottagare som sedan skickar vidare informationen över nätverket till en hemsida eller mobiltelefon för en grafisk presentation av informationen. Den här rapporten beskriver dem olika teknikerna och approachen mot utvecklingen av sensorn.
APA, Harvard, Vancouver, ISO, and other styles
38

Ben, Saied Yosra. "Collaborative security for the internet of things." Phd thesis, Institut National des Télécommunications, 2013. http://tel.archives-ouvertes.fr/tel-00879790.

Full text
Abstract:
This thesis addresses new security challenges in the Internet of Things (IoT). The current transition from legacy Internet to Internet of Things leads to multiple changes in its communication paradigms. Wireless sensor networks (WSNs) initiated this transition by introducing unattended wireless topologies, mostly made of resource constrained nodes, in which radio spectrum therefore ceased to be the only resource worthy of optimization. Today's Machine to Machine (M2M) and Internet of Things architectures further accentuated this trend, not only by involving wider architectures but also by adding heterogeneity, resource capabilities inconstancy and autonomy to once uniform and deterministic systems. The heterogeneous nature of IoT communications and imbalance in resources capabilities between IoT entities make it challenging to provide the required end-to-end secured connections. Unlike Internet servers, most of IoT components are characterized by low capabilities in terms of both energy and computing resources, and thus, are unable to support complex security schemes. The setup of a secure end-to-end communication channel requires the establishment of a common secret key between both peers, which would be negotiated relying on standard security key exchange protocols such as Transport Layer Security (TLS) Handshake or Internet Key Exchange (IKE). Nevertheless, a direct use of existing key establishment protocols to initiate connections between two IoT entities may be impractical because of the technological gap between them and the resulting inconsistencies in their cryptographic primitives. The issue of adapting existing security protocols to fulfil these new challenges has recently been raised in the international research community but the first proposed solutions failed to satisfy the needs of resource-constrained nodes. In this thesis, we propose novel collaborative approaches for key establishment designed to reduce the requirements of existing security protocols, in order to be supported by resource-constrained devices. We particularly retained TLS handshake, Internet key Exchange and HIP BEX protocols as the best keying candidates fitting the end-to-end security requirements of the IoT. Then we redesigned them so that the constrained peer may delegate its heavy cryptographic load to less constrained nodes in neighbourhood exploiting the spatial heterogeneity of IoT nodes. Formal security verifications and performance analyses were also conducted to ensure the security effectiveness and energy efficiency of our collaborative protocols. However, allowing collaboration between nodes may open the way to a new class of threats, known as internal attacks that conventional cryptographic mechanisms fail to deal with. This introduces the concept of trustworthiness within a collaborative group. The trustworthiness level of a node has to be assessed by a dedicated security mechanism known as a trust management system. This system aims to track nodes behaviours to detect untrustworthy elements and select reliable ones for collaborative services assistance. In turn, a trust management system is instantiated on a collaborative basis, wherein multiple nodes share their evidences about one another's trustworthiness. Based on an extensive analysis of prior trust management systems, we have identified a set of best practices that provided us guidance to design an effective trust management system for our collaborative keying protocols. This effectiveness was assessed by considering how the trust management system could fulfil specific requirements of our proposed approaches for key establishment in the context of the IoT. Performance analysis results show the proper functioning and effectiveness of the proposed system as compared with its counterparts that exist in the literature
APA, Harvard, Vancouver, ISO, and other styles
39

Ngqakaza, Lutando. "Multi-Layered Security in the Internet of the Things." Thesis, University of Cape Town, 2014. http://pubs.cs.uct.ac.za/archive/00000998/.

Full text
Abstract:
It is well discussed and understood that there is still a need for suitable security for the Internet of Things. It is however still not clear how existing or emerging security paradigms can be effectively applied to a network of constrained nodes in a lossy communications environment. This thesis provides a survey into what routing protocols can be used with network security in mind. What will also be discussed, is an implementation, that in conjunction which a robust routing protocol, can provide security for a network of constrained devices with a certain level of confidence. The implementation and design involves including communications encryption and centralized non-cryptographic methods for securing the network. This thesis basically explores the use of multiple security mechanisms in an Internet of Things environment by using Contiki OS as the platform of choice for simulations and testing.
APA, Harvard, Vancouver, ISO, and other styles
40

Park, Taehyeun. "Distributed Wireless Resource Management in the Internet of Things." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99055.

Full text
Abstract:
The Internet of Things (IoT) is a promising networking technology that will interconnect a plethora of heterogeneous wireless devices. To support the connectivity across a massive-scale IoT, the scarce wireless communication resources must be appropriately allocated among the IoT devices, while considering the technical challenges that arise from the unique properties of the IoT, such as device heterogeneity, strict communication requirements, and limited device capabilities in terms of computation and memory. The primary goal of this dissertation is to develop novel resource management frameworks using which resource-constrained IoT devices can operate autonomously in a dynamic environment. First, a comprehensive overview on the use of various learning techniques for wireless resource management in an IoT is provided, and potential applications for each learning framework are proposed. Moreover, to capture the heterogeneity among IoT devices, a framework based on cognitive hierarchy theory is discussed, and its implementation with learning techniques of different complexities for IoT devices with varying capabilities is analyzed. Next, the problem of dynamic, distributed resource allocation in an IoT is studied when there are heterogeneous messages. Particularly, a novel finite memory multi-state sequential learning is proposed to enable diverse IoT devices to reallocate the limited communication resources in a self-organizing manner to satisfy the delay requirement of critical messages, while minimally affecting the delay-tolerant messages. The proposed learning framework is shown to be effective for the IoT devices with limited memory and observation capabilities to learn the number of critical messages. The results show that the performance of learning framework depends on memory size and observation capability of IoT devices and that the learning framework can realize low delay transmission in a massive IoT. Subsequently, the problem of one-to-one association between resource blocks and IoT devices is studied, when the IoT devices have partial information. The one-to-one association is formulated as Kolkata Paise Restaurant (KPR) game in which an IoT device tries to choose a resource block with highest gain, while avoiding duplicate selection. Moreover, a Nash equilibrium (NE) of IoT KPR game is shown to coincide with socially optimal solution. A proposed learning framework for IoT KPR game is shown to significantly increase the number of resource blocks used to successful transmit compared to a baseline. The KPR game is then extended to consider age of information (AoI), which is a metric to quantify the freshness of information in the perspective of destination. Moreover, to capture heterogeneity in an IoT, non-linear AoI is introduced. To minimize AoI, centralized and distributed approaches for the resource allocation are proposed to enable the sharing of limited communication resources, while delivering messages to the destination in a timely manner. Moreover, the proposed distributed resource allocation scheme is shown to converge to an NE and to significantly lower the average AoI compared to a baseline. Finally, the problem of dynamically partitioning the transmit power levels in non-orthogonal multiple access is studied when there are heterogeneous messages. In particular, an optimization problem is formulated to determine the number of power levels for different message types, and an estimation framework is proposed to enable the network base station to adjust power level partitioning to satisfy the performance requirements. The proposed framework is shown to effectively increase the transmission success probability compared to a baseline. Furthermore, an optimization problem is formulated to increase sum-rate and reliability by adjusting target received powers. Under different fading channels, the optimal target received powers are analyzed, and a tradeoff between reliability and sum-rate is shown. In conclusion, the theoretical and performance analysis of the frameworks proposed in this dissertation will prove essential for implementing an appropriate distributed resource allocation mechanisms for dynamic, heterogeneous IoT environments.<br>Doctor of Philosophy<br>The Internet of Things (IoT), which is a network of smart devices such as smart phones, wearable devices, smart appliances, and environment sensors, will transform many aspects of our society with numerous innovative IoT applications. Those IoT applications include interactive education, remote healthcare, smart grids, home automation, intelligent transportation, industrial monitoring, and smart agriculture. With the increasing complexity and scale of an IoT, it becomes more difficult to quickly manage the IoT devices through a cloud, and a centralized management approach may not be viable for certain IoT scenarios. Therefore, distributed solutions are needed for enabling IoT devices to fulfill their services and maintain seamless connectivity. Here, IoT device management refers to the fact that the system needs to decide which devices access the network and using which resources (e.g., frequencies). For distributed management of an IoT, the unique challenge is to allocate scarce communication resources to many IoT devices appropriately. With distributed resource management, diverse IoT devices can share the limited communication resources in a self-organizing manner. Distributed resource management overcomes the limitations of centralized resource management by satisfying strict service requirements in a massive, complex IoT. Despite the advantages and the opportunities of distributed resource management, it is necessary to address the challenges related to an IoT, such as analyzing intricate interaction of heterogeneous devices, designing viable frameworks for constrained devices, and quickly adapting to a dynamic IoT. Furthermore, distributed resource management must enable IoT devices to communicate with high reliability and low delay. In this regard, this dissertation investigates these critical IoT challenges and introduces novel distributed resource management frameworks for an IoT. In particular, the proposed frameworks are tailored to realistic IoT scenarios and consider different performance metrics. To this end, mathematical frameworks and effective algorithms are developed by significantly extending tools from wireless communication, game theory, and machine learning. The results show that the proposed distributed wireless resource management frameworks can optimize key performance metrics and meet strict communication requirements while coping with device heterogeneity, massive scale, dynamic environment, and scarce wireless resources in an IoT.
APA, Harvard, Vancouver, ISO, and other styles
41

Mekonnen, T. (Tenager). "Efficient resource management in Multimedia Internet of Things." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526221861.

Full text
Abstract:
Abstract Multimedia Internet of Things (MIoT) refers to IP-enabled Wireless Multimedia Sensor Networks (WMSN) which are used to retrieve, not only scalar data, but also video and audio streams, and still images from the physical environment. Despite the prominent growth in demand of MIoT, several technical challenges still arise when dealing with practical deployments of WMSN. Most technical challenges in MIoT-and IoT in general-are, one way or another, related to the constrained nature of devices. This thesis provides novel contributions towards optimizing the most precious resource of wireless multimedia sensor nodeꟷthe energy. First, the dissertation proposes sleepyCAM power management model, which uses hierarchy in sensor-node architecture to minimize the idle power consumption of a camera node. Second, a prototype is developed to realize the energy saving potential of sleepyCAM in an event driven live video streaming application. Third, a heterogeneous multi-tier WMSN is developed to improve idle power consumption of camera nodes in large scale deployment. It applies hierarchy in sensor-network design, where low-power sensor nodes wake up more energy-consuming multimedia sensor nodes only when needed. A simple power consumption model is also formulated and applied to estimate the battery-life of MIoT devices. Finally, this thesis offers solutions to enhance manageability and service orchestration of WMSN software using container based virtualization, and study their energy implications. The measurement results show that both hierarchy in sensor-node and multi-tier network architecture significantly reduce the idle power consumption of WMSNs. Moreover, the empirical results also indicate that containers add fixed overhead during the boot-up and shutdown phase of the cameras, but nevertheless, have negligible impact during the video streaming session<br>Tiivistelmä Multimediakyvykkäällä esineiden internetillä (Multimedia IoT, MIoT) viitataan IP-pohjaisiin langattomiin sensoriverkkoihin, jotka kykenevät perinteisen skalaarisen sensoridatan lisäksi tallentamaan ympäristöstään myös video- ja ääni- ja kuvadataa. Vaikka multimediakyvykkään esineiden internetin tarve kasvaa jatkuvasti useilla alueilla, teknologian kannattavan hyödyntämisen tiellä on vielä useita haasteita. Suurin osa näistä haasteista liittyy tavalla tai toisella esineiden internetin laitteiden rajoitettuun laitteisto- ja energiakapasiteettiin. Tämä väitöskirja esittelee uusia tapoja multimediakyvykkään esineiden internetin energiatehokkuuden parantamiseen, sillä esineiden internetin laitteiden käytettävissä oleva energiakapasiteetti on tyypillisesti erittäin rajallinen. Työn ensimmäisessä vaiheessa kehitettiin hierarkkinen sensorilaitearkkitehtuuri, sleepyCAM, joka tähtää kameralaitteen valmiustilan energiankulutuksen minimointiin herättämällä laitteen enemmän energiaa kuluttavat multimediasensoritoiminnot vain tarvittaessa. Työn seuraavassa vaiheessa sleepyCAM-mallista kehitettiin prototyyppi, jolla tutkittiin mallin energiansäästöpotentiaalia todellisen maailman videovalvontasovelluksessa. Kolmannessa vaiheessa kehitettiin hierarkkinen sensoriverkkoarkkitehtuuri, jossa matalamman energiatason sensorilaitteet herättävät enemmän energiaa kuluttavia multimediasensorilaitteita vain tarvittaessa, mikä parantaa valmiustilan energiatehokkuutta laajemmissa multimediasensoriverkoissa. Työssä kehitettiin myös yksinkertainen energiankulutusmalli multimediakyvykkäiden esineiden internetin laitteiden akunkeston arviointiin. Lopuksi väitöskirjassa tutkittiin multimediasensoriverkon palveluiden hallittavuuden parantamista konttipohjaisella orkestroidulla virtualisoinnilla sekä tutkittiin ratkaisun vaikutuksia energiankulutukseen. Prototyypeillä tehdyt todellisen maailman mittaukset osoittavat, että sekä sleepyCAM että hierarkkinen verkkoarkkitehtuuri vähentävät huomattavasti multimediasensorijärjestelmän kokonaisenergiankulutusta. Tulokset osoittavat myös, että virtualisoinnin käyttö lisää energiankulutusta videosensorilaitteen käynnistyksen ja sammutuksen yhteydessä, mutta videonsiirron aikana konttipohjaisen virtualisoinnin vaikutus energiankulutukseen on olematon
APA, Harvard, Vancouver, ISO, and other styles
42

KALYONCU, Samet. "Wireless Solutions and Authentication Mechanisms for Contiki Based Internet of Things Networks." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-27158.

Full text
Abstract:
Internet of Things, is a new expression described as the future of the internet, promises a new world surrounded by tiny smart objects interacting with the environment, communicating with each other, and controlled over internet. Investigating which low power wireless solution and authentication mechanism fits best for IoT networks, and applying these technologies on simulator and real hardware is the main task of this project. Bluetooth Low Energy, ANT, 6LoWPAN and ZigBee are investigated low power wireless technologies which might be used to create an IoT network. Yet, BLTE and ANT have narrower application areas compared to the others, therefore ZigBee and 6LoWPAN technologies are investigated in depth and compared as the 2 promising solutions for implementation and integration of Internet of things concept. SPINS, TinySec, TinyECC, SenSec, MiniSec, ContikiSec and AES CCM are the main security frameworks especially designed for wireless sensor networks providing confidentiality, authentication and integrity. These frameworks were described and compared to find out most suitable authentication mechanism for IoT networks. Contiki OS is used as the operating system of nodes during the implementation of network both on simulator Cooja and real hardware. ZigBee and 6LoWPAN were compared considering interoperability, packet overhead, security and availability. As a result 6LoWPAN came forward due to providing high interoperability and slightly less packet overhead features. ZigBee devices require extra hardware to operate with different technologies. Among the discussed security frameworks, ContikiSec and AES CCM were highlighted because of flexibility, providing different levels of security. Resource limited characteristic and diversity of IoT applications make flexibility a very useful feature while implementing a security framework. Experiments committed to implement a working IoT network were not hundred percent successful. 6LoWPAN was successfully implemented but implementation of the security framework was failed due to compatibility issues between the sensor and the router node. Firmware of the sensor node is not designed to provide any kind of security, therefore security features of the router node is also disabled.
APA, Harvard, Vancouver, ISO, and other styles
43

Seekins, Ryan N. (Ryan Nicholas). "The Internet of things applied to command and control networks." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/106263.

Full text
Abstract:
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, School of Engineering, System Design and Management Program, Engineering and Management Program, 2016.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 92-96).<br>The number of people and things connected to the Internet continue growing at an exponential rate. This record setting growth along with the reduction in small sensor costs and machine learning enabled a concept called the Internet of Things (IoT) to thrive. With numerous applications in both commercial and government spaces, the IoT has the ability to transform any organizations network capabilities. The Air Force has a unique set of requirements centered on cyberspace superiority and the ability to command and control people and things. This paper leverages the traditional systems engineering "'V" model as a framework to develop and analyze a concept for an Air Force command and control network. Methods and tools such as stakeholder analysis, hierarchical control structures and object-process diagrams are used to develop the concept of operations, system architecture, and the preliminary design. The programs technology readiness is also assessed before outlining key milestones and deliverables required for transitioning the program forward in the acquisition life-cycle.<br>by Ryan N. Seekins.<br>S.M. in Engineering and Management
APA, Harvard, Vancouver, ISO, and other styles
44

Bragg, Graeme McLachlan. "Standards-based Internet of Things sub-GHz environmental sensor networks." Thesis, University of Southampton, 2017. https://eprints.soton.ac.uk/415864/.

Full text
Abstract:
In recent years there has been shift in the use of wireless sensor networks from standalone systems that use bespoke methods of communication and data transfer to systems that use Internet standards and can interact more directly with the Internet. This has allowed wireless sensor networks to become a key enabler of the Internet of Things; however, the same is not true for environmental sensor networks as the focus of most existing research into Internet of Things wireless sensor networks has been on 2.4 GHz designs for indoor, urban and agricultural applications. In these applications, power, Internet connectivity and physical access are less of a challenge when compared to a typical environmental sensor network. Environmental sensor networks are used for monitoring natural processes and are generally deployed in harsh, remote environments where these factors are more of a concern. Sub-GHz radios are commonly used for communication due to their increased range and desirable propagation characteristics. Unlike wireless sensor networks, environmental sensor networks have been slow to adopt Internet standards and have continued to rely on bespoke methods of communication and data transfer, keeping their usability low. This has impeded the adoption of environmental sensor networks for earth sciences research. This thesis investigates whether the Internet standards that have helped to make wireless sensor network an important part of the Internet of Things can be applied to sub-GHz environmental sensor networks. It is demonstrated that 6LoWPAN can successfully be used with an 868 MHz network in a series of real-world deployments in the Highlands of Scotland that collected usable earth science data and facilitated research in other fields. Additionally, the suitability of these standards for real-world networks is assessed in terms of energy, throughput and latency performance and compared to a theoretical 2.4 GHz network. An publicly available open source Contiki radio driver for the CC1120 was developed as part of this work. Additionally, timing parameters for using ContikiMAC with 868 MHz radios were determines and shared with researchers at other institutions, facilitating further research into sub-GHz IoT ESNs by other researchers.
APA, Harvard, Vancouver, ISO, and other styles
45

Tarek, mohamed ibrahim hafez Dina. "Development of Spectrum Sharing Protocol for Cognitive Radio Internet of Things." Thesis, Avignon, 2020. http://www.theses.fr/2020AVIG0280.

Full text
Abstract:
L'Internet des objets (IoT) présente un nouveau style de vie en développant des maisons intelligentes, des réseaux intelligents, des villes intelligentes, des transports intelligents… etc., alors l'IoT se développe rapidement. Cependant, des recherches récentes se concentrent sur le développement des applications IoT sans tenir compte du problème de rareté du spectre IoT ont recontrant. L'intégration de la technologie de l'Internet des objets (IoT) et des réseaux radio cognitifs (CRN), formant l'Internet des objets par radio cognitive (CRIoT), est une solution économique pour battre la rareté du spectre IoT. Le but de cette thèse est de résoudre le problème du partage du spectre pour CRIoT; le travail en thèse est présenté en trois parties.Notre première contribution est de proposer deux nouveaux protocoles pour résoudre le problème de la prédiction de l'état des canaux pour les CRN entrelacés.Les deux protocoles utilisent le modèle de Markov caché (HMM). Dans la phase d'entrainement des deux protocoles, les données disponibles sont utilisées pour produire deux modèles HMM, un modèle HMM occupé et un modèle pas occupé.Les deux modèles sont utilisés ensemble pour produire le HMM à 2 modèles (2-model HMM). Dans la phase de prédiction, le premier protocole utilise le théorème de Bayes et le modèle HMM à 2 modèles, tandis que le second protocole utilise la machine à vecteur de support (SVM) qui emploie les paramètres produits à partir de l'application du modèle HMM à 2 modèles. Le HMM-SVM à 2 modèles est supérieure l’ HMM classique et le HMM à 2 modèles en termes de pourcentage réel, d'imprécision et de probabilité de collision des utilisateurs principaux(prédiction de faux négatifs). Dans notre deuxième contribution, nous avons proposé un protocole central pour ordonner les de paquets pour CRIoT à créneaux temporels. On applique l'optimisation des essaims de particules à permutation discrète (DP-PSO) pour programmer les paquets IoT parmi les créneaux libres obtenus en appliquant la technique d'estimation de canal des réseaux radio cognitifs proposée dans la première partie. Notre protocole proposé est appliqué aux établissements de santé intelligents.On a compose trois blocs de construction principaux pour la construction d'application utilisée; Blocage des appareils IoT, blocage des nœuds de brouillard de première couche et serveur de brouillard central. Chaque groupe d'appareils IoT est connecté à un nœud de brouillard, tous les nœuds de brouillard du système sont connectés au nœud de brouillard central. Le protocole proposé est nommé Planification basée sur l'optimisation des essaims de particules à permutation discrète(SDP-PSO). Une fonction de fitness objective est formulée avec trois paramètres;maximiser l'indice d'équité entre les nœuds de brouillard, minimiser le délai de mise en file d'attente des paquets et minimiser le nombre de paquets abandonnés qui ont dépassé leur temps dans le réseau sans être envoyés. Les performances du protocole SDP-PSO proposé surmontent un ancien protocole appelé vente aux enchères de spectre en termes d'équité entre les nœuds de brouillard, le délai moyen de mise enfile d'attente, le nombre de paquets abandonnés et la complexité temporelle et spatiale.Enfin, dans la troisième contribution, nous avons proposé un protocole d'ordonnancement de paquets distribués pour CRIoT. Notre proposition de protocole est appliquée à un contrôle de la circulation urbaine. Le système configuré dans cette partie se compose de trois blocs de construction principaux: le bloc d'appareils IoT,le premier bloc de couche de brouillard (unités routières (RSU)) et le deuxième bloc de couche de brouillard. Chaque groupe d'appareils IoT est connecté à une RSU, chaque groupe de RSU est connecté à un noeud de brouillard qui est en de tête du groupe. Les noeuds de brouillard sont connectés ensemble pour former un réseau maillé partiel<br>Internet of Things (IoT) presents a new life style by developing smart homes, smart grids, smart city, smart transportation, etc., so IoT is developing rapidly. However recent researches focus on developing the IoT applications disregarding the IoT spectrum scarcity problem facing it. Integrating Internet of Things (IoT) technology and Cognitive Radio Networks (CRNs), forming Cognitive Radio Internet of Things (CRIoTs), is an economical solution for overcoming the IoT spectrum scarcity. The aim of this thesis is to solve the problem of spectrum sharing for CRIoT; the work in thesis is presented in three parts, each represents a contribution. Our first contribution is to propose two new protocols to solve the problem of channel status prediction for interweave CRNs. Both protocols use Hidden Markov Model (HMM). In the training stage of both protocols, the available data are trained to produce two HMM models, an idle HMM model and a busy one. Both models are used together to produce the 2-model HMM. In the prediction stage the first protocol uses Bayes theorem and the 2-model HMM, while the second protocol uses Support Vector Machine (SVM) employing the parameters produced from applying the 2-model HMM, named 2-model HMM-SVM. The 2-model HMM-SVM outperforms the classical HMM and 2-model HMM in terms of the true percentage, the inaccuracy and the probability of primary users’ collision (false negative prediction). In our second contribution, we proposed a centralized time slotted packet scheduling protocol for CRIoTs. It uses Discrete Permutation Particle Swarm Optimization (DP-PSO) for scheduling the IoT device packets among the free slots obtained from applying cognitive radio networks' channel estimation technique proposed in the first part. Our proposed protocol is applied to smart healthcare facility. Configuring three main building blocks for the used application architecture; the IoT devices block, the first layer fog nodes block and the central fog server. Each group of IoT devices is connected to a fog node, the entire fog nodes in the system are connected to the central fog node. The proposed protocol is named Scheduling based-on Discrete Permutation Particle Swarm Optimization (SDP-PSO). An objective fitness function is formulated with three parameters; maximizing the fairness index among fog nodes, minimizing the packets' queuing delay and minimizing the number of dropped packets that exceeded their allowed time in the network without being sent. The performance of the proposed SDP-PSO protocol overcomes an old protocol named spectrum auction in terms of the fairness between fog nodes, the average queuing delay, the number of dropped packets and the time and the space complexity. Finally, in the third contribution, we proposed a distributed packets' scheduling protocol for CRIoTs. Our proposed protocol can be applied to an urban traffic control. The configured system in this part consists of three main building blocks; the IoT devices block, the first fog layer block (Road Side Units (RSUs)) and the second fog layer block. Each group of IoT devices is connected to a RSU, each group of RSU are connected to a fog node which acts as their cluster head. The fog nodes are connected together forming a partial mesh network. The proposed distributed packets' scheduling protocol for CRIoTs is applying three distributed access strategies together with the SDP-PSO proposed in the second part to schedule the packets on the estimated free slots resulted from applying the protocol proposed in the first part. The used access strategies are the classical round robin, in addition to two proposed ones named; the vertex cover and the enhanced round robin. An objective fitness function near similar to that used in the centralized protocol, was applied but with some differences to make it suitable for distributed scheduling
APA, Harvard, Vancouver, ISO, and other styles
46

Galanis, Ioannis. "RESOURCE MANAGEMENT IN EDGE COMPUTING FOR INTERNET OF THINGS APPLICATIONS." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1871.

Full text
Abstract:
The Internet of Things (IoT) computing paradigm has connected smart objects “things” and has brought new services at the proximity of the user. Edge Computing, a natural evolution of the traditional IoT, has been proposed to deal with the ever-increasing (i) number of IoT devices and (ii) the amount of data traffic that is produced by the IoT endpoints. EC promises to significantly reduce the unwanted latency that is imposed by the multi-hop communication delays and suggests that instead of uploading all the data to the remote cloud for further processing, it is beneficial to perform computation at the “edge” of the network, close to where the data is produced. However, bringing computation at the edge level has created numerous challenges as edge devices struggle to keep up with the growing application requirements (e.g. Neural Networks, or video-based analytics). In this thesis, we adopt the EC paradigm and we aim at addressing the open challenges. Our goal is to bridge the performance gap that is caused by the increased requirements of the IoT applications with respect to the IoT platform capabilities and provide latency- and energy-efficient computation at the edge level. Our first step is to study the performance of IoT applications that are based on Deep Neural Networks (DNNs). The exploding need to deploy DNN-based applications on resource-constrained edge devices has created several challenges, mainly due to the complex nature of DNNs. DNNs are becoming deeper and wider in order to fulfill users expectations for high accuracy, while they also become power hungry. For instance, executing a DNN on an edge device can drain the battery within minutes. Our solution to make DNNs more energy and inference friendly is to propose hardware-aware method that re-designs a given DNN architecture. Instead of proxy metrics, we measure the DNN performance on real edge devices and we capture their energy and inference time. Our method manages to find alternative DNN architectures that consume up to 78.82% less energy and are up to35.71% faster than the reference networks. In order to achieve end-to-end optimal performance, we also need to manage theedge device resources that will execute a DNN-based application. Due to their unique characteristics, we distinguish the edge devices into two categories: (i) a neuromorphic platform that is designed to execute Spiking Neural Networks (SNNs), and (ii) a general-purpose edge device that is suitable to host a DNN. For the first category, we train a traditional DNN and then we convert it to a spiking representation. We target the SpiNNaker neuromorphic platform and we develop a novel technique that efficiently configures the platform-dependent parameters, in order to achieve the highest possible SNN accuracy.Experimental results show that our technique is 2.5× faster than an exhaustive approach and can reach up to 0.8% higher accuracy compared to a CPU-based simulation method. Regarding the general-purpose edge devices, we show that a DNN-unaware platform can result in sub-optimal DNN performance in terms of power and inference time. Our approachconfigures the frequency of the device components (GPU, CPU, Memory) and manages to achieve average of 33.4% and up to 66.3% inference time improvements and an average of 42.8% and up to 61.5% power savings compared to the predefined configuration of an edge device. The last part of this thesis is the offloading optimization between the edge devicesand the gateway. The offloaded tasks create contention effects on gateway, which can lead to application slowdown. Our proposed solution configures (i) the number of application stages that are executed on each edge device, and (ii) the achieved utility in terms of Quality of Service (QoS) on each edge device. Our technique manages to (i) maximize theoverall QoS, and (ii) simultaneously satisfy network constraints (bandwidth) and user expectations (execution time). In case of multi-gateway deployments, we tackled the problem of unequal workload distribution. In particular, we propose a workload-aware management scheme that performs intra- and inter-gateway optimizations. The intra-gateway mechanism provides a balanced execution environment for the applications, and it achieves up to 95% performance deviation improvement, compared to un-optimized systems. The presented inter-gateway method manages to balance the workload among multiple gateways and is able to achieve a global performance threshold.
APA, Harvard, Vancouver, ISO, and other styles
47

Ben, Saied Yosra. "Collaborative security for the internet of things." Electronic Thesis or Diss., Evry, Institut national des télécommunications, 2013. http://www.theses.fr/2013TELE0013.

Full text
Abstract:
Cette thèse aborde des nouveaux défis de sécurité dans l'Internet des Objets (IdO). La transition actuelle de l'Internet classique vers l'Internet des Objets conduit à de nombreux changements dans les modèles de communications sous-jacents. La nature hétérogène des communications de l’IdO et le déséquilibre entre les capacités des entités communicantes qui le constituent rendent difficile l'établissement de connexions sécurisées de bout en bout. Contrairement aux nœuds de l’Internet traditionnel, la plupart des composants de l'Internet des Objets sont en effet caractérisés par de faibles capacités en termes d'énergie et de puissance calcul. Par conséquent, ils ne sont pas en mesure de supporter des systèmes de sécurité complexes. En particulier, la mise en place d'un canal de communication sécurisé de bout en bout nécessite l’établissement d'une clé secrète commune entre les deux nœuds souhaitant communiquer, qui sera négociée en s'appuyant sur un protocole d'échange de clés tels que le Transport Layer Security (TLS) Handshake ou l’Internet Key Exchange (IKE). Or, une utilisation directe de ces protocoles pour établir des connexions sécurisées entre deux entités de l’IdO peut être difficile en raison de l'écart technologique entre celles-ci et des incohérences qui en résultent sur le plan des primitives cryptographiques supportées. Le sujet de l'adaptation des protocoles de sécurité existants pour répondre à ces nouveaux défis a récemment été soulevé dans la communauté scientifique. Cependant, les premières solutions proposées n'ont pas réussi à répondre aux besoins des nœuds à ressources limitées. Dans cette thèse, nous proposons de nouvelles approches collaboratives pour l'établissement de clés, dans le but de réduire les exigences des protocoles de sécurité existants, afin que ceux-ci puissent être mis en œuvre par des nœuds à ressources limitées. Nous avons particulièrement retenu les protocoles TLS Handshake, IKE et HIP BEX comme les meilleurs candidats correspondant aux exigences de sécurité de bout en bout pour l'IdO. Puis nous les avons modifiés de sorte que le nœud contraint en énergie puisse déléguer les opérations cryptographiques couteuses à un ensemble de nœuds au voisinage, tirant ainsi avantage de l'hétérogénéité spatiale qui caractérise l’IdO. Nous avons entrepris des vérifications formelles de sécurité et des analyses de performance qui prouvent la sureté et l'efficacité énergétique des protocoles collaboratifs proposés. Dans une deuxième partie, nous avons porté notre attention sur une classe d’attaques internes que la collaboration entre les nœuds peut induire et que les mécanismes cryptographiques classiques, tels que la signature et le chiffrement, s'avèrent impuissants à contrer. Cela nous a amené à introduire la notion de confiance au sein d'un groupe collaboratif. Le niveau de fiabilité d'un nœud est évalué par un mécanisme de sécurité dédié, connu sous le nom de système de gestion de confiance. Ce système est lui aussi instancié sur une base collaborative, dans laquelle plusieurs nœuds partagent leurs témoignages respectifs au sujet de la fiabilité des autres nœuds. En nous appuyant sur une analyse approfondie des systèmes de gestion de confiance existants et des contraintes de l’IoD, nous avons conçu un système de gestion de confiance efficace pour nos protocoles collaboratifs. Cette efficacité a été évaluée en tenant compte de la façon dont le système de gestion de la confiance répond aux exigences spécifiques à nos approches proposées pour l'établissement de clés dans le contexte de l'IdO. Les résultats des analyses de performance que nous avons menées démontrent le bon fonctionnement du système proposé et une efficacité accrue par rapport à la littérature<br>This thesis addresses new security challenges in the Internet of Things (IoT). The current transition from legacy Internet to Internet of Things leads to multiple changes in its communication paradigms. Wireless sensor networks (WSNs) initiated this transition by introducing unattended wireless topologies, mostly made of resource constrained nodes, in which radio spectrum therefore ceased to be the only resource worthy of optimization. Today's Machine to Machine (M2M) and Internet of Things architectures further accentuated this trend, not only by involving wider architectures but also by adding heterogeneity, resource capabilities inconstancy and autonomy to once uniform and deterministic systems. The heterogeneous nature of IoT communications and imbalance in resources capabilities between IoT entities make it challenging to provide the required end-to-end secured connections. Unlike Internet servers, most of IoT components are characterized by low capabilities in terms of both energy and computing resources, and thus, are unable to support complex security schemes. The setup of a secure end-to-end communication channel requires the establishment of a common secret key between both peers, which would be negotiated relying on standard security key exchange protocols such as Transport Layer Security (TLS) Handshake or Internet Key Exchange (IKE). Nevertheless, a direct use of existing key establishment protocols to initiate connections between two IoT entities may be impractical because of the technological gap between them and the resulting inconsistencies in their cryptographic primitives. The issue of adapting existing security protocols to fulfil these new challenges has recently been raised in the international research community but the first proposed solutions failed to satisfy the needs of resource-constrained nodes. In this thesis, we propose novel collaborative approaches for key establishment designed to reduce the requirements of existing security protocols, in order to be supported by resource-constrained devices. We particularly retained TLS handshake, Internet key Exchange and HIP BEX protocols as the best keying candidates fitting the end-to-end security requirements of the IoT. Then we redesigned them so that the constrained peer may delegate its heavy cryptographic load to less constrained nodes in neighbourhood exploiting the spatial heterogeneity of IoT nodes. Formal security verifications and performance analyses were also conducted to ensure the security effectiveness and energy efficiency of our collaborative protocols. However, allowing collaboration between nodes may open the way to a new class of threats, known as internal attacks that conventional cryptographic mechanisms fail to deal with. This introduces the concept of trustworthiness within a collaborative group. The trustworthiness level of a node has to be assessed by a dedicated security mechanism known as a trust management system. This system aims to track nodes behaviours to detect untrustworthy elements and select reliable ones for collaborative services assistance. In turn, a trust management system is instantiated on a collaborative basis, wherein multiple nodes share their evidences about one another's trustworthiness. Based on an extensive analysis of prior trust management systems, we have identified a set of best practices that provided us guidance to design an effective trust management system for our collaborative keying protocols. This effectiveness was assessed by considering how the trust management system could fulfil specific requirements of our proposed approaches for key establishment in the context of the IoT. Performance analysis results show the proper functioning and effectiveness of the proposed system as compared with its counterparts that exist in the literature
APA, Harvard, Vancouver, ISO, and other styles
48

Azari, Amin. "Energy Efficient Machine-Type Communications over Cellular Networks : A Battery Lifetime-Aware Cellular Network Design Framework." Licentiate thesis, KTH, Kommunikationssystem, CoS, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194416.

Full text
Abstract:
Internet of Things (IoT) refers to the interconnection of uniquely identifiable smart devices which enables them to participate more actively in everyday life. Among large-scale applications, machine-type communications (MTC) supported by cellular networks will be one of the most important enablers for the success of IoT. The existing cellular infrastructure has been optimized for serving a small number of long-lived human-oriented communications (HoC) sessions, originated from smartphones whose batteries are charged in a daily basis. As a consequence, serving a massive number of non-rechargeable machine-type devices demanding a long battery lifetime is a big challenge for cellular networks. The present work is devoted to energy consumption modeling, battery lifetime analysis, and lifetime-aware network design for massive MTC services over cellular networks. At first, we present a realistic model for energy consumption of machine devices in cellular connectivity, which is employed subsequently in deriving the key performance indicator, i.e. network battery lifetime. Then, we develop an efficient mathematical foundation and algorithmic framework for lifetime-aware clustering design for serving a massive number of machine devices. Also, by extending the developed framework to non-clustered MTC, lifetime-aware uplink scheduling and power control solutions are derived. Finally, by investigating the delay, energy consumption, spectral efficiency, and battery lifetime tradeoffs in serving coexistence of HoC and MTC traffic, we explore the ways in which energy saving for the access network and quality of service for HoC traffic can be traded to prolong battery lifetime for machine devices. The numerical and simulation results show that the proposed solutions can provide substantial network lifetime improvement and network maintenance cost reduction in comparison with the existing approaches.<br><p>QC 20161103</p>
APA, Harvard, Vancouver, ISO, and other styles
49

Ghiro, Lorenzo. "Centrality Routing and Blockchain Technologies in Distributed Networks." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/305233.

Full text
Abstract:
This thesis contributes to the development of distributed networks proposing: • a technique to enhance the reliability of DV routing protocols; • a critical analysis of the integration of blockchains in distributed networks. First, a novel algorithm for the distributed computation of the Load Centrality (LC), a graph centrality metric, is proposed and then applied for steering the optimization of the route recovery process of Distance-Vector (DV) routing protocols: this way the algorithm contributes to the enhancement of the network reliability. The algorithm convergence is proved also identifying time complexity bounds that are later confirmed by computer simulations. The proposed algorithm is designed as an extension to the Bellman-Ford one and can thus be integrated with any DV routing protocol. An implementation of the algorithm in Babel, a real world DV protocol, is provided in support of this claim. Then an application of the algorithm is presented: the LC is used to find an optimal tuning for the generation frequency of the Babel control messages. This tuning technique effectively reduces the impact of losses consequent to random node failures in the emulations of several real world wireless mesh networks, without increasing the control overhead. A second version of the algorithm is designed to be incrementally deployable. This version can be deployed gradually in production networks also by uncoordinated administrators. When only a fraction of nodes is upgraded so to participate in the protocol, these upgraded nodes estimate their LC indexes approximating the theoretical ones. The approximation error is studied analytically and it is also shown that, even for low penetration ratios of upgraded nodes in the network, the algorithm accurately ranks nodes according to their theoretical centrality. The second contribution of the thesis is the critical discussion of the integration of blockchain technologies in distributed networks. An initial analysis of the literature concerning blockchain based applications reveals an ambiguity around the term "blockchain" itself. The term is used, apparently, to identify a number of similar but different technologies proposed to empower a surprisingly broad range of applications. This thesis prompts therefore the need of formulating a restrictive definition for the term blockchain, necessary for clarifying the role of the same blockchain in distributed networks. The proposed definition is grounded in the critical analysis of the blockchain from a distributed systems perspective: Blockchains are only those platforms that implement an open, verifiable and immutable Shared Ledger, independent of any trusted authority. Observing that the blockchain security grows with the amount of resources consumed to generate blocks, this thesis concludes that a secure blockchain is necessarily resource hungry, therefore, its integration in the constrained domain of distributed networks is not advised. The thesis draws recommendations for a use of the blockchain not in contrast with the definition. For example, it warns about applications that require data to be kept confidential or users to be registered, because the blockchain naturally supports the openness and transparency of data together with the anonymity of users. Finally a feasible role for the blockchain in the Internet of Things (IoT) is outlined: while most of the IoT transactions will be local and Off-Chain, a blockchain can still act as an external and decentralized platform supporting global transactions, offering an alternative to traditional banking services. The enhanced reliability of DV routing protocols encourages a wider adoption of distributed networks, moreover, the distributed algorithm for the computation of centrality enables applications previously restricted to centralized networks also in distributed ones. The discussion about the blockchain increases instead the awareness about the limits and the scope of this technology, inspiring engineers and practitioners in the development of more secure applications for distributed networks. This discussion highlights, for instance, the important role of the networking protocols and communication infrastructure on the blockchain security, pointing out that large delays in the dissemination of blocks of transactions make the blockchain more vulnerable to attacks. Furthermore, it is observed that a high ability to take control over the communications in the network favors eclipse attacks and makes more profitable the so called selfish mining strategy, which is detrimental to the decentralization and the security of blockchains. The two main contributions of this thesis blended together inspire the exploitation of centrality to optimize gossip protocols, minimizing block propagation delays and thus the exposure of the blockchain to attacks. Furthermore, the notion of centrality may be used by the community of miners to measure the nodes influence over the communication of blocks, so it might be used as a security index to warn against selfish mining and eclipse attack.
APA, Harvard, Vancouver, ISO, and other styles
50

Галкін, П. В. "Модель визначення координат вузлів бездротової сенсорної мережі для реалізації концепції інтернету речей". Thesis, ХНУРЕ, 2016. http://openarchive.nure.ua/handle/document/4220.

Full text
Abstract:
Литература: 1. Галкин П. В. Анализ энергопотребления узлов беспроводных сенсорных сетей / Павел Галкин // ScienceRise. – 2014. – № 2 (2). - С. 55-61. 2. Галкин П. В. Модель определения координат узлов беспроводной сенсорной сети [Электронный ресурс] / П. В. Галкин // Проблеми телекомунікацій. – 2015. – № 1 (16). – С. 16 - 41. – 3. Zhang H. An adaptive localization algorithm based on RSSI in wireless sensor networks [Text]/ H. Zhang, J. Zhang, H. Wu // Cloud Computing and Intelligent Systems (CCIS), 2012 IEEE 2nd International Conference on.– 2012.– Hangzhou: IEEE, Oct. 30 2012-Nov. 1 2012.– P. 1133 – 1136. 4. Спосіб визначення координат вузла бездротової сенсорної мережі. Патент на корисну модель 99932, Україна. Поданий 12.02.2015 Опубл. 25.06.2015 Бюл. №12.<br>The model is proposed for determining coordinates of the nodes wireless sensor network using RSSI and ToF for the implementation concept of the Internet of Things.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography