Academic literature on the topic 'Networks anomalies detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Networks anomalies detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Networks anomalies detection"
Mažeika, Dalius, and Saulius Jasonis. "NETWORK TRAFFIC ANOMALIES DETECTING USING MAXIMUM ENTROPY METHOD / KOMPIUTERIŲ TINKLO SRAUTO ANOMALIJŲ ATPAŽINIMAS MAKSIMALIOS ENTROPIJOS METODU." Mokslas – Lietuvos ateitis 6, no. 2 (2014): 162–67. http://dx.doi.org/10.3846/mla.2014.22.
Full textRačys, Donatas, and Dalius Mažeika. "NETWORK TRAFFIC ANOMALIES IDENTIFICATION BASED ON CLASSIFICATION METHODS / TINKLO SRAUTO ANOMALIJŲ IDENTIFIKAVIMAS, TAIKANT KLASIFIKAVIMO METODUS." Mokslas – Lietuvos ateitis 7, no. 3 (2015): 340–44. http://dx.doi.org/10.3846/mla.2015.796.
Full textRejito, Juli, Deris Stiawan, Ahmed Alshaflut, and Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.p122-129.
Full textRejito, Juli, Deris Stiawan, Ahmed Alshaflut, and Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.pp122-129.
Full textLiao, Xiao Ju, Yi Wang, and Hai Lu. "Rule Anomalies Detection in Firewalls." Key Engineering Materials 474-476 (April 2011): 822–27. http://dx.doi.org/10.4028/www.scientific.net/kem.474-476.822.
Full textGutiérrez-Gómez, Leonardo, Alexandre Bovet, and Jean-Charles Delvenne. "Multi-Scale Anomaly Detection on Attributed Networks." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 01 (2020): 678–85. http://dx.doi.org/10.1609/aaai.v34i01.5409.
Full textRana, Samir. "Anomaly Detection in Network Traffic using Machine Learning and Deep Learning Techniques." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 10, no. 2 (2019): 1063–67. http://dx.doi.org/10.17762/turcomat.v10i2.13626.
Full textJiang, Ding De, Cheng Yao, Zheng Zheng Xu, Peng Zhang, Zhen Yuan, and Wen Da Qin. "An Continuous Wavelet Transform-Based Detection Approach to Traffic Anomalies." Applied Mechanics and Materials 130-134 (October 2011): 2098–102. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2098.
Full textA, Nandini. "Anomaly Detection Using CNN with I3D Feature Extraction." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 03 (2024): 1–5. http://dx.doi.org/10.55041/ijsrem29371.
Full textBadr, Malek, Shaha Al-Otaibi, Nazik Alturki, and Tanvir Abir. "Deep Learning-Based Networks for Detecting Anomalies in Chest X-Rays." BioMed Research International 2022 (July 23, 2022): 1–10. http://dx.doi.org/10.1155/2022/7833516.
Full textDissertations / Theses on the topic "Networks anomalies detection"
Sithirasenan, Elankayer. "Substantiating Anomalies in Wireless Networks Using Outlier Detection Techniques." Thesis, Griffith University, 2009. http://hdl.handle.net/10072/365690.
Full textAbuaitah, Giovani Rimon. "ANOMALIES IN SENSOR NETWORK DEPLOYMENTS: ANALYSIS, MODELING, AND DETECTION." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1376594068.
Full textVerner, Alexander. "LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data." Diss., NSUWorks, 2019. https://nsuworks.nova.edu/gscis_etd/1074.
Full textKamat, Sai Shyamsunder. "Analyzing Radial Basis Function Neural Networks for predicting anomalies in Intrusion Detection Systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259187.
Full textKabore, Raogo. "Hybrid deep neural network anomaly detection system for SCADA networks." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0190.
Full textJin, Fang. "Algorithms for Modeling Mass Movements and their Adoption in Social Networks." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/72292.
Full textMdini, Maha. "Anomaly detection and root cause diagnosis in cellular networks." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0144/document.
Full textMoussa, Mohamed Ali. "Data gathering and anomaly detection in wireless sensors networks." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1082/document.
Full textAudibert, Julien. "Unsupervised anomaly detection in time-series." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS358.
Full textOrman, Keziban. "Contribution to the interpretation of evolving communities in complex networks : Application to the study of social interactions." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0072/document.
Full textBooks on the topic "Networks anomalies detection"
T, Feagin, Overland D, University of Houston--Clear Lake. Research Institute for Computing and Information Systems., and Lyndon B. Johnson Space Center., eds. Communications and tracking expert systems study. Research Institute for Computing and Information Systems, University of Houston--Clear Lake, 1987.
Find full textParisi, Alessandro. Hands-On Artificial Intelligence for Cybersecurity: Implement Smart AI Systems for Preventing Cyber Attacks and Detecting Threats and Network Anomalies. Packt Publishing, Limited, 2019.
Find full textHands-On Artificial Intelligence for Cybersecurity: Implement Smart AI Systems for Preventing Cyber Attacks and Detecting Threats and Network Anomalies. de Gruyter GmbH, Walter, 2019.
Find full textBook chapters on the topic "Networks anomalies detection"
Krzysztoń, Mateusz, Marcin Lew, and Michał Marks. "NAD: Machine Learning Based Component for Unknown Attack Detection in Network Traffic." In Cybersecurity of Digital Service Chains. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04036-8_4.
Full textAkashi, Osamu, Atsushi Terauchi, Kensuke Fukuda, Toshio Hirotsu, Mitsuru Maruyama, and Toshiharu Sugawara. "Detection and Diagnosis of Inter-AS Routing Anomalies by Cooperative Intelligent Agents." In Ambient Networks. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11568285_16.
Full textČermák, Milan, Pavel Čeleda, and Jan Vykopal. "Detection of DNS Traffic Anomalies in Large Networks." In Lecture Notes in Computer Science. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13488-8_20.
Full textDawoud, Ahmed, Seyed Shahristani, and Chun Raun. "Unsupervised Deep Learning for Software Defined Networks Anomalies Detection." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59540-4_9.
Full textHossain, Md Azam, Iqram Hussain, Baseem Al-Athwari, and Santosh Dahit. "Network Traffic Anomalies Detection Using Machine Learning Algorithm: A Performance Study." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9480-6_26.
Full textBhattacharya, Saurabh, and Manju Pandey. "Anomalies Detection on Contemporary Industrial Internet of Things Data for Securing Crucial Devices." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9228-5_2.
Full textLaRock, Timothy, Vahan Nanumyan, Ingo Scholtes, Giona Casiraghi, Tina Eliassi-Rad, and Frank Schweitzer. "HYPA: Efficient Detection of Path Anomalies in Time Series Data on Networks." In Proceedings of the 2020 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2020. http://dx.doi.org/10.1137/1.9781611976236.52.
Full textRomero, Santiago Felipe Luna, and Luis Serpa-Andrade. "Intelligent Agent Proposal in a Building Electricity Monitoring System for Anomalies’ Detection Using Reinforcement Learning." In Lecture Notes in Networks and Systems. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80624-8_26.
Full textRajendra, S., Chittaranjan Pradhan, and Jayavel Kanniappan. "An Adaptive Detection Mechanism for IoT Devices Anomalies Using AI/ML Based on User Pattern." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9043-6_2.
Full textWankhade, Kapil Keshao, Snehlata Dongre, Ravi Chandra, Kishore V. Krishnan, and Srikanth Arasavilli. "Machine Learning-Based Detection of Attacks and Anomalies in Industrial Internet of Things (IIoT) Networks." In Applied Soft Computing and Communication Networks. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2004-0_7.
Full textConference papers on the topic "Networks anomalies detection"
Huang, Hao, Tapan Shah, John Karigiannis, and Scott Evans. "Deep Root Cause Analysis: Unveiling Anomalies and Enhancing Fault Detection in Industrial Time Series." In 2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650906.
Full textMosayebi, Reza, and Lutz Lampe. "Anomaly Detection in Optical Fiber: A Change-Point Detection Perspective." In Signal Processing in Photonic Communications. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/sppcom.2024.spth2g.4.
Full textKolodziej, Joanna, Mateusz Krzyszton, and Pawel Szynkiewicz. "Anomaly Detection In TCP/IP Networks." In 37th ECMS International Conference on Modelling and Simulation. ECMS, 2023. http://dx.doi.org/10.7148/2023-0542.
Full textLi, Jundong, Harsh Dani, Xia Hu, and Huan Liu. "Radar: Residual Analysis for Anomaly Detection in Attributed Networks." In Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/299.
Full textZhang, Jiaqiang, Senzhang Wang, and Songcan Chen. "Reconstruction Enhanced Multi-View Contrastive Learning for Anomaly Detection on Attributed Networks." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/330.
Full textLiu, Chen, Shibo He, Qihang Zhou, Shizhong Li, and Wenchao Meng. "Large Language Model Guided Knowledge Distillation for Time Series Anomaly Detection." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/239.
Full textZhang, Zheng, and Liang Zhao. "Unsupervised Deep Subgraph Anomaly Detection (Extended Abstract)." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/730.
Full textShekhar, Prashant, and Rahul Rai. "Anomaly Detection in Complex Spatiotemporal Networks Through Location Aware Geospatial Big Data Sets." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59587.
Full textBarker, Jack W., and Toby P. Breckon. "PANDA: Perceptually Aware Neural Detection of Anomalies." In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9534399.
Full textLiu, Ninghao, Xiao Huang, and Xia Hu. "Accelerated Local Anomaly Detection via Resolving Attributed Networks." In Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/325.
Full textReports on the topic "Networks anomalies detection"
Kirichek, Galina, Vladyslav Harkusha, Artur Timenko, and Nataliia Kulykovska. System for detecting network anomalies using a hybrid of an uncontrolled and controlled neural network. [б. в.], 2020. http://dx.doi.org/10.31812/123456789/3743.
Full textTayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Full textLeón, Carlos. Detecting anomalous payments networks: A dimensionality reduction approach. Banco de la República de Colombia, 2019. http://dx.doi.org/10.32468/be.1098.
Full textValdez, Luis, and Alexander Heifetz. Detection of Anomalies in Environmental Gamma Radiation Background with Hopfield Artificial Neural Network - Consortium on Nuclear Security Technologies (CONNECT) Q3 Report. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1827413.
Full text