Academic literature on the topic 'Networks anomalies detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Networks anomalies detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Networks anomalies detection"
Liao, Xiao Ju, Yi Wang, and Hai Lu. "Rule Anomalies Detection in Firewalls." Key Engineering Materials 474-476 (April 2011): 822–27. http://dx.doi.org/10.4028/www.scientific.net/kem.474-476.822.
Full textRejito, Juli, Deris Stiawan, Ahmed Alshaflut, and Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.pp122-129.
Full textRejito, Juli, Deris Stiawan, Ahmed Alshaflut, and Rahmat Budiarto. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (2024): 122–29. http://dx.doi.org/10.11591/csit.v5i2.p122-129.
Full textJuli, Rejito, Stiawan Deris, Alshaflut Ahmed, and Budiarto Rahmat. "Machine learning-based anomaly detection for smart home networks under adversarial attack." Computer Science and Information Technologies 5, no. 2 (2024): 122–29. https://doi.org/10.11591/csit.v5i2.pp122-129.
Full textNavale, Manisha Pandurang, and Brijendra P. Gupta. "DEEP LEARNING ALGORITHMS FOR DETECTION AND CLASSIFICATION OF CONGENITAL BRAIN ANOMALY." ICTACT Journal on Image and Video Processing 13, no. 4 (2023): 2995–3001. http://dx.doi.org/10.21917/ijivp.2023.0426.
Full textKumar D,, Ravi. "Anomaly Detection in Networks." International Scientific Journal of Engineering and Management 04, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem47520.
Full textAlfardus, Asma, and Danda B. Rawat. "Machine Learning-Based Anomaly Detection for Securing In-Vehicle Networks." Electronics 13, no. 10 (2024): 1962. http://dx.doi.org/10.3390/electronics13101962.
Full textGonela Kavya Pavani, Bobba Veeramallu. "Hybrid Machine Learning Framework for Anomaly Detection in 5G Networks." Journal of Information Systems Engineering and Management 10, no. 32s (2025): 733–39. https://doi.org/10.52783/jisem.v10i32s.5406.
Full textMažeika, Dalius, and Saulius Jasonis. "NETWORK TRAFFIC ANOMALIES DETECTING USING MAXIMUM ENTROPY METHOD / KOMPIUTERIŲ TINKLO SRAUTO ANOMALIJŲ ATPAŽINIMAS MAKSIMALIOS ENTROPIJOS METODU." Mokslas – Lietuvos ateitis 6, no. 2 (2014): 162–67. http://dx.doi.org/10.3846/mla.2014.22.
Full textRizwan, Ramsha, Farrukh Aslam Khan, Haider Abbas, and Sajjad Hussain Chauhdary. "Anomaly Detection in Wireless Sensor Networks Using Immune-Based Bioinspired Mechanism." International Journal of Distributed Sensor Networks 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/684952.
Full textDissertations / Theses on the topic "Networks anomalies detection"
Sithirasenan, Elankayer. "Substantiating Anomalies in Wireless Networks Using Outlier Detection Techniques." Thesis, Griffith University, 2009. http://hdl.handle.net/10072/365690.
Full textAbuaitah, Giovani Rimon. "ANOMALIES IN SENSOR NETWORK DEPLOYMENTS: ANALYSIS, MODELING, AND DETECTION." Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1376594068.
Full textVerner, Alexander. "LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data." Diss., NSUWorks, 2019. https://nsuworks.nova.edu/gscis_etd/1074.
Full textKamat, Sai Shyamsunder. "Analyzing Radial Basis Function Neural Networks for predicting anomalies in Intrusion Detection Systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259187.
Full textKabore, Raogo. "Hybrid deep neural network anomaly detection system for SCADA networks." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0190.
Full textJin, Fang. "Algorithms for Modeling Mass Movements and their Adoption in Social Networks." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/72292.
Full textMdini, Maha. "Anomaly detection and root cause diagnosis in cellular networks." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0144/document.
Full textMoussa, Mohamed Ali. "Data gathering and anomaly detection in wireless sensors networks." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1082/document.
Full textKy, Joël Roman. "Anomaly Detection and Root Cause Diagnosis for Low-Latency Applications in Time-Varying Capacity Networks." Electronic Thesis or Diss., Université de Lorraine, 2025. http://www.theses.fr/2025LORR0026.
Full textAudibert, Julien. "Unsupervised anomaly detection in time-series." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS358.
Full textBooks on the topic "Networks anomalies detection"
T, Feagin, Overland D, University of Houston--Clear Lake. Research Institute for Computing and Information Systems., and Lyndon B. Johnson Space Center., eds. Communications and tracking expert systems study. Research Institute for Computing and Information Systems, University of Houston--Clear Lake, 1987.
Find full textParisi, Alessandro. Hands-On Artificial Intelligence for Cybersecurity: Implement Smart AI Systems for Preventing Cyber Attacks and Detecting Threats and Network Anomalies. Packt Publishing, Limited, 2019.
Find full textHands-On Artificial Intelligence for Cybersecurity: Implement Smart AI Systems for Preventing Cyber Attacks and Detecting Threats and Network Anomalies. de Gruyter GmbH, Walter, 2019.
Find full textBook chapters on the topic "Networks anomalies detection"
Krzysztoń, Mateusz, Marcin Lew, and Michał Marks. "NAD: Machine Learning Based Component for Unknown Attack Detection in Network Traffic." In Cybersecurity of Digital Service Chains. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04036-8_4.
Full textAkashi, Osamu, Atsushi Terauchi, Kensuke Fukuda, Toshio Hirotsu, Mitsuru Maruyama, and Toshiharu Sugawara. "Detection and Diagnosis of Inter-AS Routing Anomalies by Cooperative Intelligent Agents." In Ambient Networks. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11568285_16.
Full textČermák, Milan, Pavel Čeleda, and Jan Vykopal. "Detection of DNS Traffic Anomalies in Large Networks." In Lecture Notes in Computer Science. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13488-8_20.
Full textDoshi, Vyom, Danish Sheikh, Nishtha Sharma, and Pramod Bide. "Behavioral Anomalies Detection via Human Pose Estimation: A Study on Cheating Detection." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-2179-8_26.
Full textDawoud, Ahmed, Seyed Shahristani, and Chun Raun. "Unsupervised Deep Learning for Software Defined Networks Anomalies Detection." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59540-4_9.
Full textHossain, Md Azam, Iqram Hussain, Baseem Al-Athwari, and Santosh Dahit. "Network Traffic Anomalies Detection Using Machine Learning Algorithm: A Performance Study." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9480-6_26.
Full textFañez, Mirko, Enrique A. de la Cal, Javier Sedano, Juan Luis Carús Candas, and Jairo Ramírez Ávila. "Human Acoustic Events Detection as Anomalies in Industrial Environments Using Shallow Unsupervised Techniques." In Lecture Notes in Networks and Systems. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-75013-7_10.
Full textBhattacharya, Saurabh, and Manju Pandey. "Anomalies Detection on Contemporary Industrial Internet of Things Data for Securing Crucial Devices." In Lecture Notes in Networks and Systems. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9228-5_2.
Full textLaRock, Timothy, Vahan Nanumyan, Ingo Scholtes, Giona Casiraghi, Tina Eliassi-Rad, and Frank Schweitzer. "HYPA: Efficient Detection of Path Anomalies in Time Series Data on Networks." In Proceedings of the 2020 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2020. http://dx.doi.org/10.1137/1.9781611976236.52.
Full textWankhade, Kapil Keshao, Snehlata Dongre, Ravi Chandra, Kishore V. Krishnan, and Srikanth Arasavilli. "Machine Learning-Based Detection of Attacks and Anomalies in Industrial Internet of Things (IIoT) Networks." In Applied Soft Computing and Communication Networks. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2004-0_7.
Full textConference papers on the topic "Networks anomalies detection"
Mukunthan, M. A., Jose Anand A., Stalin Kesavan, Malini Mutyala, R. Kesavan, and R. Geetha. "Detection of Physical Anomalies in IoT Networks Using Machine Learning Techniques." In 2024 International Conference on Advancement in Renewable Energy and Intelligent Systems (AREIS). IEEE, 2024. https://doi.org/10.1109/areis62559.2024.10893610.
Full textRamantanis, Petros, Sébastien Bigo, Fabien Boitier, et al. "Detection of Fiber Macro-Bending Anomalous Events in Operator Networks." In Optical Fiber Communication Conference. Optica Publishing Group, 2025. https://doi.org/10.1364/ofc.2025.w2a.30.
Full textThakre, N. K., M. Misba, Sri Lavanya Sajja, Shyam K. Fardale, Veera Ankalu Vuyyuru, and M. K. Mohamed Faizal. "Unveiling Market Anomalies: Harnessing Convolutional Neural Networks for Fraud Detection in Finance." In 2024 International Conference on Communication, Control, and Intelligent Systems (CCIS). IEEE, 2024. https://doi.org/10.1109/ccis63231.2024.10931899.
Full textTure, Omkar D., Adbelkhan A. Pathan, Varun R. Kawade, Prasad N. Patil, Nutan V. Bansode, and Sonali Y. Sawant. "Early Detection of Fetal Skull Anomalies using Web-Based Convolutional Neural Networks." In 2024 8th International Conference on Computing, Communication, Control and Automation (ICCUBEA). IEEE, 2024. https://doi.org/10.1109/iccubea61740.2024.10774903.
Full textHuang, Hao, Tapan Shah, John Karigiannis, and Scott Evans. "Deep Root Cause Analysis: Unveiling Anomalies and Enhancing Fault Detection in Industrial Time Series." In 2024 International Joint Conference on Neural Networks (IJCNN). IEEE, 2024. http://dx.doi.org/10.1109/ijcnn60899.2024.10650906.
Full textGupta, Sachin, Bhoomi Gupta, and Babita Yadav. "Implementation of AI-Driven Intrusion Detection Systems to Analyze Anomalies and Network Traffic Patterns in Healthcare Networks." In 2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0. IEEE, 2025. https://doi.org/10.1109/otcon65728.2025.11070588.
Full textCigiri, Rashmi, Gotte Ranjith Kumar, Haider Alabdeli, Y. M. Mahaboob John, and S. Kaliappan. "Harris Corner Detection Algorithm based Long Short-Term Memory for Detecting Distributed Denial of Service Anomalies in Software Defined Networks." In 2024 International Conference on Distributed Systems, Computer Networks and Cybersecurity (ICDSCNC). IEEE, 2024. https://doi.org/10.1109/icdscnc62492.2024.10941199.
Full textA, Padmavathi, Muntather Muhsin Hassan, Jashanpreet Singh, F. Anitha Florence Vinola, and N. Naga Saranya. "Securing Blockchain based Supply Chain in Agriculture using Isolated Forests with Local Outlier Factor for Anomalies Detection." In 2024 4th International Conference on Mobile Networks and Wireless Communications (ICMNWC). IEEE, 2024. https://doi.org/10.1109/icmnwc63764.2024.10872393.
Full textKannadasan, Tamilarasan. "Twin Support Vector Machine with Minkowski Gaussian Kernel Based Performance Anomalies Detection in Software Application During Runtime." In 2024 4th International Conference on Mobile Networks and Wireless Communications (ICMNWC). IEEE, 2024. https://doi.org/10.1109/icmnwc63764.2024.10872212.
Full textKolodziej, Joanna, Mateusz Krzyszton, and Pawel Szynkiewicz. "Anomaly Detection In TCP/IP Networks." In 37th ECMS International Conference on Modelling and Simulation. ECMS, 2023. http://dx.doi.org/10.7148/2023-0542.
Full textReports on the topic "Networks anomalies detection"
Kirichek, Galina, Vladyslav Harkusha, Artur Timenko, and Nataliia Kulykovska. System for detecting network anomalies using a hybrid of an uncontrolled and controlled neural network. [б. в.], 2020. http://dx.doi.org/10.31812/123456789/3743.
Full textTayeb, Shahab. Taming the Data in the Internet of Vehicles. Mineta Transportation Institute, 2022. http://dx.doi.org/10.31979/mti.2022.2014.
Full textLeón, Carlos. Detecting anomalous payments networks: A dimensionality reduction approach. Banco de la República de Colombia, 2019. http://dx.doi.org/10.32468/be.1098.
Full textAlonso-Robisco, Andrés, Andrés Alonso-Robisco, José Manuel Carbó, et al. Empowering financial supervision: a SupTech experiment using machine learning in an early warning system. Banco de España, 2025. https://doi.org/10.53479/39320.
Full textValdez, Luis, and Alexander Heifetz. Detection of Anomalies in Environmental Gamma Radiation Background with Hopfield Artificial Neural Network - Consortium on Nuclear Security Technologies (CONNECT) Q3 Report. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1827413.
Full textRinehart, Aaron, M. Gregory, and Wendy Wright. Fixed-station water-quality monitoring at Canaveral National Seashore: 2012 data summary. National Park Service, 2013. https://doi.org/10.36967/2195325.
Full text