Academic literature on the topic 'Neumann problems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neumann problems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Neumann problems"

1

Manning, Robert S. "Conjugate Points Revisited and Neumann–Neumann Problems." SIAM Review 51, no. 1 (2009): 193–212. http://dx.doi.org/10.1137/060668547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Szajewska, Marzena, and Agnieszka Tereszkiewicz. "TWO-DIMENSIONAL HYBRIDS WITH MIXED BOUNDARY VALUE PROBLEMS." Acta Polytechnica 56, no. 3 (2016): 245. http://dx.doi.org/10.14311/ap.2016.56.0245.

Full text
Abstract:
Boundary value problems are considered on a simplex <em>F</em> in the real Euclidean space R<sup>2</sup>. The recent discovery of new families of special functions, orthogonal on <em>F</em>, makes it possible to consider not only the Dirichlet or Neumann boundary value problems on <em>F</em>, but also the mixed boundary value problem which is a mixture of Dirichlet and Neumann type, ie. on some parts of the boundary of <em>F</em> a Dirichlet condition is fulfilled and on the other Neumann’s works.
APA, Harvard, Vancouver, ISO, and other styles
3

Gasiński, Leszek, Liliana Klimczak, and Nikolaos S. Papageorgiou. "Nonlinear noncoercive Neumann problems." Communications on Pure and Applied Analysis 15, no. 4 (2016): 1107–23. http://dx.doi.org/10.3934/cpaa.2016.15.1107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mugnai, Dimitri, and Edoardo Proietti Proietti Lippi. "Quasilinear Fractional Neumann Problems." Mathematics 13, no. 1 (2024): 85. https://doi.org/10.3390/math13010085.

Full text
Abstract:
We study an elliptic quasilinear fractional problem with fractional Neumann boundary conditions, proving an existence and multiplicity result without assuming the classical Ambrosetti–Rabinowitz condition. Improving previous results, we also provide the weak formulation of solutions without regularity assumptions and we provide an example, even in the linear case, for which no regularity can indeed be assumed.
APA, Harvard, Vancouver, ISO, and other styles
5

Gasiński, Leszek, and Nikolaos S. Papageorgiou. "Anisotropic nonlinear Neumann problems." Calculus of Variations and Partial Differential Equations 42, no. 3-4 (2011): 323–54. http://dx.doi.org/10.1007/s00526-011-0390-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Motreanu, D., V. V. Motreanu, and N. S. Papageorgiou. "On resonant Neumann problems." Mathematische Annalen 354, no. 3 (2011): 1117–45. http://dx.doi.org/10.1007/s00208-011-0763-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nittka, Robin. "Inhomogeneous parabolic Neumann problems." Czechoslovak Mathematical Journal 64, no. 3 (2014): 703–42. http://dx.doi.org/10.1007/s10587-014-0127-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dudko, Anastasia, and Vyacheslav Pivovarchik. "Three spectra problem for Stieltjes string equation and Neumann conditions." Proceedings of the International Geometry Center 12, no. 1 (2019): 41–55. http://dx.doi.org/10.15673/tmgc.v12i1.1367.

Full text
Abstract:
Spectral problems are considered which appear in description of small transversal vibrations of Stieltjes strings. It is shown that the eigenvalues of the Neumann-Neumann problem, i.e. the problem with the Neumann conditions at both ends of the string interlace with the union of the spectra of the Neumann-Dirichlet problems, i.e. problems with the Neumann condition at one end and Dirichlet condition at the other end on two parts of the string. It is shown that the spectrum of Neumann-Neumann problem on the whole string, the spectrum of Neumann-Dirichlet problem on the left part of the string,
APA, Harvard, Vancouver, ISO, and other styles
9

Gasiński, Leszek, and Nikolaos S. Papageorgiou. "Nonlinear Neumann Problems with Constraints." Funkcialaj Ekvacioj 56, no. 2 (2013): 249–70. http://dx.doi.org/10.1619/fesi.56.249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Motreanu, D., V. V. Motreanu, and N. S. Papageorgiou. "Nonlinear Neumann problems near resonance." Indiana University Mathematics Journal 58, no. 3 (2009): 1257–80. http://dx.doi.org/10.1512/iumj.2009.58.3565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Neumann problems"

1

Michetti, Marco. "Steklov and Neumann eigenvalues : inequalities, asymptotic and mixed problems." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0109.

Full text
Abstract:
Cette thèse est consacrée à l'étude des valeurs propres de Neumann, des valeurs propres de Steklov et des relations entre elles. La motivation initiale de cette thèse était de prouver que, dans le plan, le produit entre le périmètre et la première valeur propre de Steklov est toujours inférieur au produit entre l'aire et la première valeur propre de Neumann. Motivés par la recherche de contre-exemples à cette inégalité, nous donnons, dans la première partie de cette thèse, une description complète du comportement asymptotique des valeurs propres de Steklov dans un domaine en haltère constitué
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Xue. "Neumann problems for second order elliptic operators with singular coefficients." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/neumann-problems-for-second-order-elliptic-operators-with-singular-coefficients(2e65b780-df58-4429-89df-6d87777843c8).html.

Full text
Abstract:
In this thesis, we prove the existence and uniqueness of the solution to a Neumann boundary problem for an elliptic differential operator with singular coefficients, and reveal the relationship between the solution to the partial differential equation (PDE in abbreviation) and the solution to a kind of backward stochastic differential equations (BSDE in abbreviation).This study is motivated by the research on the Dirichlet problem for an elliptic operator (\cite{Z}). But it turns out that different methods are needed to deal with the reflecting diffusion on a bounded domain. For example, the i
APA, Harvard, Vancouver, ISO, and other styles
3

Kulkarni, Mandar S. "Multi-coefficient Dirichlet Neumann type elliptic inverse problems with application to reflection seismology." Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2010r/kulkarni.pdf.

Full text
Abstract:
Thesis (Ph. D.)--University of Alabama at Birmingham, 2009.<br>Title from PDF t.p. (viewed July 21, 2010). Additional advisors: Thomas Jannett, Tsun-Zee Mai, S. S. Ravindran, Günter Stolz, Gilbert Weinstein. Includes bibliographical references (p. 59-64).
APA, Harvard, Vancouver, ISO, and other styles
4

Pomponio, Alessio. "Singularity perturbed elliptic problems." Doctoral thesis, SISSA, 2004. http://hdl.handle.net/20.500.11767/4172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karimianpour, Camelia. "The Stone-von Neumann Construction in Branching Rules and Minimal Degree Problems." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34240.

Full text
Abstract:
In Part I, we investigate the principal series representations of the n-fold covering groups of the special linear group over a p-adic field. Such representations are constructed via the Stone-von Neumann theorem. We have three interrelated results. We first compute the K-types of these representations. We then give a complete set of reducibility points for the unramified principal series representations. Among these are the unitary unramified principal series representations, for which we further investigate the distribution of the K-types among its irreducible components. In Part II, we
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Sheng. "On Neumann Problems for Fully Nonlinear Elliptic and Parabolic Equations on Manifolds." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1571696906482925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

PERROTTA, Antea. "Differential Formulation coupled to the Dirichlet-to-Neumann operator for scattering problems." Doctoral thesis, Università degli studi di Cassino, 2020. http://hdl.handle.net/11580/75845.

Full text
Abstract:
This Thesis proposes the use of the Dirichlet-to-Neumann (DtN) operator to improve the accuracy and the efficiency of the numerical solution of an electromagnetic scattering problem, described in terms of a differential formulation. From a general perspective, the DtN operator provides the “connection” (the mapping) between the Dirichlet and the Neumann data onto a proper closed surface. This allows truncation of the computational domain when treating a scattering problem in an unbounded media. Moreover, the DtN operator provides an exact boundary condition, in contrast to other methods such a
APA, Harvard, Vancouver, ISO, and other styles
8

Alcántara, Bode Julio, and J. Yngvason. "Algebraic quantum field theory and noncommutative moment problems I." Pontificia Universidad Católica del Perú, 2013. http://repositorio.pucp.edu.pe/index/handle/123456789/96072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alsaedy, Ammar, and Nikolai Tarkhanov. "Normally solvable nonlinear boundary value problems." Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6507/.

Full text
Abstract:
We study a boundary value problem for an overdetermined elliptic system of nonlinear first order differential equations with linear boundary operators. Such a problem is solvable for a small set of data, and so we pass to its variational formulation which consists in minimising the discrepancy. The Euler-Lagrange equations for the variational problem are far-reaching analogues of the classical Laplace equation. Within the framework of Euler-Lagrange equations we specify an operator on the boundary whose zero set consists precisely of those boundary data for which the initial problem is solvabl
APA, Harvard, Vancouver, ISO, and other styles
10

Orey, Maria de Serpa Salema Reis de. "Factorization of elliptic boundary value problems by invariant embedding and application to overdetermined problems." Doctoral thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/8677.

Full text
Abstract:
Dissertação para obtenção do Grau de Doutor em Matemática<br>The purpose of this thesis is the factorization of elliptic boundary value problems defined in cylindrical domains, in a system of decoupled first order initial value problems. We begin with the Poisson equation with mixed boundary conditions, and use the method of invariant embedding: we embed our initial problem in a family of similar problems, defined in sub-domains of the initial domain, with a moving boundary, and an additional condition in the moving boundary. This factorization is inspired by the technique of invariant tempor
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Neumann problems"

1

Elliot, Tonkes, ed. On the nonlinear Neumann problem with critical and supercritical nonlinearities. Polska Akademia Nauk, Instytut Matematyczny, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Benedek, Agnes Ilona. Remarks on a theorem of Å. Pleijel and related topics. INMABB-CONICET, Universidad Nacional del Sur, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tao, Yunzhe. Nonlocal Neumann volume-constrained problems and their application to local-nonlocal coupling. [publisher not identified], 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Society, European Mathematical, ed. Lectures on the L2-Sobolev theory of the [d-bar]-Neumann problem. European Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tie, Jingzhi. Analysis of the Heisenberg group and applications to the d-bar-Neumann problem. [s.n.], 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Benson, Alexander. A new approach to the boundary integral method for the three dimensional Neumann problem. University of Salford, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abdulhussain, T. H. The solution of the exterior Neumann problem for arbitrary shaped bodies with particular application to ellipsoids. University of Salford, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sun, Xian-He. A high-order direct solver for Helmholtz equations with Neumann boundary conditions. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Neumann problems"

1

Gander, Martin J., and Liu-Di Lu. "Dirichlet-Neumann and Neumann-Neumann Methods for Elliptic Control Problems." In Lecture Notes in Computational Science and Engineering. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-50769-4_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sayas, Francisco-Javier, Thomas S. Brown, and Matthew E. Hassell. "Poincaré inequalities and Neumann problems." In Variational Techniques for Elliptic Partial Differential Equations. CRC Press, 2019. http://dx.doi.org/10.1201/9780429507069-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Serov, Valery. "The Dirichlet and Neumann Problems." In Applied Mathematical Sciences. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65262-7_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pflüger, Klaus. "On Indefinite Nonlinear Neumann Problems." In Partial Differential and Integral Equations. Springer US, 1999. http://dx.doi.org/10.1007/978-1-4613-3276-3_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schaaf, Renate. "Neumann problems, period maps and semilinear dirichlet problems." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0098348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Azevedo, A., J. F. Rodrigues, and L. Santos. "The N-membranes Problem with Neumann Type Boundary Condition." In Free Boundary Problems. Birkhäuser Basel, 2006. http://dx.doi.org/10.1007/978-3-7643-7719-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bjørstad, Petter E., and Piotr Krzyżanowski. "A Flexible 2-Level Neumann-Neumann Method for Structural Analysis Problems." In Parallel Processing and Applied Mathematics. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-48086-2_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mortini, Raymond, and Rudolf Rupp. "Polynomial, Noetherian, and von Neumann regular rings." In Extension Problems and Stable Ranks. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73872-3_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Feltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Existence Results." In Positive Solutions to Indefinite Problems. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Feltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Multiplicity Results." In Positive Solutions to Indefinite Problems. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Neumann problems"

1

Chien, C. S., and B. W. Jneg. "Continuation-Conjugate Gradient Algorithms for Semilinear Elliptic Neumann Problems." In Proceedings of the Third International Conference on Difference Equations. CRC Press, 2017. http://dx.doi.org/10.4324/9780203745854-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hasni, Mohd Mughti, Zanariah Abdul Majid, and Norazak Senu. "Solving linear Neumann boundary value problems using block methods." In PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES: Research in Mathematical Sciences: A Catalyst for Creativity and Innovation. AIP, 2013. http://dx.doi.org/10.1063/1.4801145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ciric, I. R. "Formal expressions for the solution of Dirichlet and Neumann problems." In 11th International Symposium on Antenna Technology and Applied Electromagnetics [ANTEM 2005]. IEEE, 2005. http://dx.doi.org/10.1109/antem.2005.7852052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gámez, José L. "Local bifurcation for elliptic problems: Neumann versus Dirichlet boundary conditions." In The First 60 Years of Nonlinear Analysis of Jean Mawhin. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702906_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Karachik, V. V., and B. Kh Turmetov. "On a class of Neumann type problems for polyharmonic equation." In PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE’19). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5133491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jahanshahi, M. "Reduction of Two Dimensional Neumann and Mixed Boundary Value Problems to Dirichlet Boundary Value Problems." In Proceedings of the 4th International ISAAC Congress. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701732_0017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bendahmane, M., M. Chrif, and S. El Manouni. "Existence and multiplicity results for some p(x)-Laplacian Neumann problems." In Proceedings of the Conference in Mathematics and Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814295574_0014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

DI FALCO, ANTONIO GIUSEPPE. "INFINITELY MANY SOLUTIONS TO DIRICHLET AND NEUMANN PROBLEMS FOR QUASILINEAR ELLIPTIC SYSTEMS." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mauro Felix Squarcio, Roberto. "APPLYING THE MONTE CARLO λ-NEUMANN MODEL TO STOCHASTIC REACTION-DIFFUSION PROBLEMS". У 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-2894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moretti, Rocco, and Marc Errera. "Comparison between Dirichlet-Robin and Neumann-Robin Interface Conditions in CHT Problems." In International Conference of Fluid Flow, Heat and Mass Transfer. Avestia Publishing, 2018. http://dx.doi.org/10.11159/ffhmt18.112.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Neumann problems"

1

Bernstein, Carlos A. On an Overdetermined Neumann Problem,. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada187451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!