Academic literature on the topic 'Neural Network Embeddings'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neural Network Embeddings.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Neural Network Embeddings"
Che, Feihu, Dawei Zhang, Jianhua Tao, Mingyue Niu, and Bocheng Zhao. "ParamE: Regarding Neural Network Parameters as Relation Embeddings for Knowledge Graph Completion." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 03 (2020): 2774–81. http://dx.doi.org/10.1609/aaai.v34i03.5665.
Full textHuang, Junjie, Huawei Shen, Liang Hou, and Xueqi Cheng. "SDGNN: Learning Node Representation for Signed Directed Networks." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 1 (2021): 196–203. http://dx.doi.org/10.1609/aaai.v35i1.16093.
Full textSrinidhi, K., T. L.S Tejaswi, CH Rama Rupesh Kumar, and I. Sai Siva Charan. "An Advanced Sentiment Embeddings with Applications to Sentiment Based Result Analysis." International Journal of Engineering & Technology 7, no. 2.32 (2018): 393. http://dx.doi.org/10.14419/ijet.v7i2.32.15721.
Full textArmandpour, Mohammadreza, Patrick Ding, Jianhua Huang, and Xia Hu. "Robust Negative Sampling for Network Embedding." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 3191–98. http://dx.doi.org/10.1609/aaai.v33i01.33013191.
Full textKamath, S., K. G. Karibasappa, Anvitha Reddy, Arati M. Kallur, B. B. Priyanka, and B. P. Bhagya. "Improving the Relation Classification Using Convolutional Neural Network." IOP Conference Series: Materials Science and Engineering 1187, no. 1 (2021): 012004. http://dx.doi.org/10.1088/1757-899x/1187/1/012004.
Full textGu, Haishuo, Jinguang Sui, and Peng Chen. "Graph Representation Learning for Street-Level Crime Prediction." ISPRS International Journal of Geo-Information 13, no. 7 (2024): 229. http://dx.doi.org/10.3390/ijgi13070229.
Full textZhang, Lei, Feng Qian, Jie Chen, and Shu Zhao. "An Unsupervised Rapid Network Alignment Framework via Network Coarsening." Mathematics 11, no. 3 (2023): 573. http://dx.doi.org/10.3390/math11030573.
Full textTruică, Ciprian-Octavian, Elena-Simona Apostol, Maria-Luiza Șerban, and Adrian Paschke. "Topic-Based Document-Level Sentiment Analysis Using Contextual Cues." Mathematics 9, no. 21 (2021): 2722. http://dx.doi.org/10.3390/math9212722.
Full textJang, Youngjin, and Harksoo Kim. "Reliable Classification of FAQs with Spelling Errors Using an Encoder-Decoder Neural Network in Korean." Applied Sciences 9, no. 22 (2019): 4758. http://dx.doi.org/10.3390/app9224758.
Full textGuo, Lei, Haoran Jiang, Xiyu Liu, and Changming Xing. "Network Embedding-Aware Point-of-Interest Recommendation in Location-Based Social Networks." Complexity 2019 (November 4, 2019): 1–18. http://dx.doi.org/10.1155/2019/3574194.
Full textDissertations / Theses on the topic "Neural Network Embeddings"
Embretsén, Niklas. "Representing Voices Using Convolutional Neural Network Embeddings." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261415.
Full textBopaiah, Jeevith. "A recurrent neural network architecture for biomedical event trigger classification." UKnowledge, 2018. https://uknowledge.uky.edu/cs_etds/73.
Full textPALUMBO, ENRICO. "Knowledge Graph Embeddings for Recommender Systems." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2850588.
Full textPettersson, Fredrik. "Optimizing Deep Neural Networks for Classification of Short Texts." Thesis, Luleå tekniska universitet, Datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76811.
Full textRevanur, Vandan, and Ayodeji Ayibiowu. "Automatic Generation of Descriptive Features for Predicting Vehicle Faults." Thesis, Högskolan i Halmstad, CAISR Centrum för tillämpade intelligenta system (IS-lab), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-42885.
Full textMurugan, Srikala. "Determining Event Outcomes from Social Media." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703427/.
Full textDe, Vine Lance. "Analogical frames by constraint satisfaction." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/198036/1/Lance_De%20Vine_Thesis.pdf.
Full textHorn, Franziska Verfasser], Klaus-Robert [Akademischer Betreuer] [Gutachter] [Müller, Alan [Gutachter] Akbik, and Ziawasch [Gutachter] Abedjan. "Similarity encoder: A neural network architecture for learning similarity preserving embeddings / Franziska Horn ; Gutachter: Klaus-Robert Müller, Alan Akbik, Ziawasch Abedjan ; Betreuer: Klaus-Robert Müller." Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1210998386/34.
Full textHorn, Franziska [Verfasser], Klaus-Robert [Akademischer Betreuer] [Gutachter] Müller, Alan [Gutachter] Akbik, and Ziawasch [Gutachter] Abedjan. "Similarity encoder: A neural network architecture for learning similarity preserving embeddings / Franziska Horn ; Gutachter: Klaus-Robert Müller, Alan Akbik, Ziawasch Abedjan ; Betreuer: Klaus-Robert Müller." Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1210998386/34.
Full textŠůstek, Martin. "Word2vec modely s přidanou kontextovou informací." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2017. http://www.nusl.cz/ntk/nusl-363837.
Full textBooks on the topic "Neural Network Embeddings"
Unger, Herwig, and Wolfgang A. Halang, eds. Autonomous Systems 2016. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783186848109.
Full textBook chapters on the topic "Neural Network Embeddings"
Zhang, Yuan, Jian Cao, Jue Chen, Wenyu Sun, and Yuan Wang. "Razor SNN: Efficient Spiking Neural Network with Temporal Embeddings." In Artificial Neural Networks and Machine Learning – ICANN 2023. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44192-9_33.
Full textMarkov, Ilia, Helena Gómez-Adorno, Juan-Pablo Posadas-Durán, Grigori Sidorov, and Alexander Gelbukh. "Author Profiling with Doc2vec Neural Network-Based Document Embeddings." In Advances in Soft Computing. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62428-0_9.
Full textBajaj, Ahsaas, Shubham Krishna, Hemant Tiwari, and Vanraj Vala. "Learning Mobile App Embeddings Using Multi-task Neural Network." In Natural Language Processing and Information Systems. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23281-8_3.
Full textRöchert, Daniel, German Neubaum, and Stefan Stieglitz. "Identifying Political Sentiments on YouTube: A Systematic Comparison Regarding the Accuracy of Recurrent Neural Network and Machine Learning Models." In Disinformation in Open Online Media. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61841-4_8.
Full textPicone, Rico A. R., Dane Webb, Finbarr Obierefu, and Jotham Lentz. "New Methods for Metastimuli: Architecture, Embeddings, and Neural Network Optimization." In Augmented Cognition. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78114-9_21.
Full textCalderaro, Salvatore, Giosué Lo Bosco, Filippo Vella, and Riccardo Rizzo. "Breast Cancer Histologic Grade Identification by Graph Neural Network Embeddings." In Bioinformatics and Biomedical Engineering. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-34960-7_20.
Full textBiswas, Arijit, Mukul Bhutani, and Subhajit Sanyal. "MRNet-Product2Vec: A Multi-task Recurrent Neural Network for Product Embeddings." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71273-4_13.
Full textSalsal, Sura Khalid, and Wafaa ALhamed. "Document Retrieval in Text Archives Using Neural Network-Based Embeddings Compared to TFIDF." In Intelligent Systems and Networks. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2094-2_63.
Full textMolokwu, Bonaventure C., Shaon Bhatta Shuvo, Narayan C. Kar, and Ziad Kobti. "Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network." In Lecture Notes in Computer Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50433-5_15.
Full textBarbaglia, Luca, Sergio Consoli, and Sebastiano Manzan. "Exploring the Predictive Power of News and Neural Machine Learning Models for Economic Forecasting." In Mining Data for Financial Applications. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66981-2_11.
Full textConference papers on the topic "Neural Network Embeddings"
Luo, Dixin, Haoran Cheng, Qingbin Li, and Hongteng Xu. "Coupled Point Process-based Sequence Modeling for Privacy-preserving Network Alignment." In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/678.
Full textDong, Yuxiao, Ziniu Hu, Kuansan Wang, Yizhou Sun, and Jie Tang. "Heterogeneous Network Representation Learning." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/677.
Full textLiu, Bing, Wei Luo, Gang Li, Jing Huang, and Bo Yang. "Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks?" In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/242.
Full textAspis, Yaniv, Krysia Broda, Jorge Lobo, and Alessandra Russo. "Embed2Sym - Scalable Neuro-Symbolic Reasoning via Clustered Embeddings." In 19th International Conference on Principles of Knowledge Representation and Reasoning {KR-2022}. International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/kr.2022/44.
Full textGarcia-Romero, Daniel, David Snyder, Gregory Sell, Daniel Povey, and Alan McCree. "Speaker diarization using deep neural network embeddings." In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. http://dx.doi.org/10.1109/icassp.2017.7953094.
Full textHamaguchi, Takuo, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. "Knowledge Transfer for Out-of-Knowledge-Base Entities : A Graph Neural Network Approach." In Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/250.
Full textCheng, Weiyu, Yanyan Shen, Yanmin Zhu, and Linpeng Huang. "DELF: A Dual-Embedding based Deep Latent Factor Model for Recommendation." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/462.
Full textRomero, Hector E., Ning Ma, and Guy J. Brown. "Snorer Diarisation Based On Deep Neural Network Embeddings." In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9053683.
Full textSnyder, David, Daniel Garcia-Romero, Daniel Povey, and Sanjeev Khudanpur. "Deep Neural Network Embeddings for Text-Independent Speaker Verification." In Interspeech 2017. ISCA, 2017. http://dx.doi.org/10.21437/interspeech.2017-620.
Full textSettle, Shane, and Karen Livescu. "Discriminative acoustic word embeddings: Tecurrent neural network-based approaches." In 2016 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2016. http://dx.doi.org/10.1109/slt.2016.7846310.
Full text