Academic literature on the topic 'Neural state-space models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neural state-space models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Neural state-space models"
Korbicz, Józef, Marcin Mrugalski, and Thomas Parisini. "DESIGNING STATE-SPACE MODELS WITH NEURAL NETWORKS." IFAC Proceedings Volumes 35, no. 1 (2002): 459–64. http://dx.doi.org/10.3182/20020721-6-es-1901.01630.
Full textSchüssler, Max. "Machine learning with nonlinear state space models." at - Automatisierungstechnik 70, no. 11 (October 27, 2022): 1027–28. http://dx.doi.org/10.1515/auto-2022-0089.
Full textHe, Mingjian, Proloy Das, Gladia Hotan, and Patrick L. Purdon. "Switching state-space modeling of neural signal dynamics." PLOS Computational Biology 19, no. 8 (August 28, 2023): e1011395. http://dx.doi.org/10.1371/journal.pcbi.1011395.
Full textForgione, Marco, and Dario Piga. "Neural State-Space Models: Empirical Evaluation of Uncertainty Quantification." IFAC-PapersOnLine 56, no. 2 (2023): 4082–87. http://dx.doi.org/10.1016/j.ifacol.2023.10.1736.
Full textRaol, J. R. "Parameter estimation of state space models by recurrent neural networks." IEE Proceedings - Control Theory and Applications 142, no. 2 (March 1, 1995): 114–18. http://dx.doi.org/10.1049/ip-cta:19951733.
Full textBendtsen, J. D., and K. Trangbaek. "Robust quasi-LPV control based on neural state-space models." IEEE Transactions on Neural Networks 13, no. 2 (March 2002): 355–68. http://dx.doi.org/10.1109/72.991421.
Full textPaninski, Liam, Yashar Ahmadian, Daniel Gil Ferreira, Shinsuke Koyama, Kamiar Rahnama Rad, Michael Vidne, Joshua Vogelstein, and Wei Wu. "A new look at state-space models for neural data." Journal of Computational Neuroscience 29, no. 1-2 (August 1, 2009): 107–26. http://dx.doi.org/10.1007/s10827-009-0179-x.
Full textGhahramani, Zoubin, and Geoffrey E. Hinton. "Variational Learning for Switching State-Space Models." Neural Computation 12, no. 4 (April 1, 2000): 831–64. http://dx.doi.org/10.1162/089976600300015619.
Full textAghaee, Mohammad, Stephane Krau, Melih Tamer, and Hector Budman. "Graph Neural Network Representation of State Space Models of Metabolic Pathways." IFAC-PapersOnLine 58, no. 14 (2024): 464–69. http://dx.doi.org/10.1016/j.ifacol.2024.08.380.
Full textMangion, Andrew Zammit, Ke Yuan, Visakan Kadirkamanathan, Mahesan Niranjan, and Guido Sanguinetti. "Online Variational Inference for State-Space Models with Point-Process Observations." Neural Computation 23, no. 8 (August 2011): 1967–99. http://dx.doi.org/10.1162/neco_a_00156.
Full textDissertations / Theses on the topic "Neural state-space models"
Beck, Amanda M. "State space models for isolating neural oscillations." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120408.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 55-56).
Information communication in the brain depends on the spiking patterns of neurons. The interaction of these cells at the population level can be observed as oscillations of varying frequency and power, in local field potential recordings as well as non-invasive scalp electroencephalograms (EEG). These oscillations are thought to be responsible for coordinating activity across larger brain regions and conveying information across the brain, directing processes such as attention, consciousness, sensory and information processing. A common approach for analyzing these electrical potentials is to apply a band pass filter in the frequency band of interest. Canonical frequency bands have been defined and applied in many previous studies, but their specific definitions vary within the field, and are to some degree arbitrary. We propose an alternative approach that uses state space models to represent basic physiological and dynamic principles, whose detailed structure and parameterization are informed by observed data. We find that this method can more accurately represent oscillatory power, effectively separating it from background broadband noise power. This approach provides a way of separating oscillations in the time domain and while also quantifying their structure efficiently with a small number of parameters.
by Amanda M. Beck.
S.M. in Computer Science and Engineering
Hache, Alexandre. "Modélisation et commande de systèmes non-linéaires par apprentissage sous contraintes SDP de réseaux de neurones paramétrés." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2025. http://www.theses.fr/2025IMTA0458.
Full textThis thesis lies at the crossroad between learning theory and control theory, proposing a data-driven methodology for modeling and controlling nonlinear dynamical systems. Drawing from the absolute stability theory,and from a general representation of neural state-space models, several stability theorems are presented. Facing the limitations of traditional optimization approaches under LMI constraints for neural networks, we develop a complete theoretical framework for neural network parameterization, compatible with gradient algorithms and classical automatic differentiation tools. With the help of feedback linearization theory, a single-step learning method of an approximately linearizing controller and a reference model with guaranteed stability properties is presented. The theoretical results are validated on academic examples of disturbance attenuation, paving the way for more systematic use of neural networks in controllers’ design
Ogunc, Fethi. "Estimating The Neutral Real Interest Rate For Turkey By Using An Unobserved Components Model." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607426/index.pdf.
Full textRodrigues, Júnior Selmo Eduardo. "Metodologia evolutiva para previsão inteligente de séries temporais sazonais baseada em espaço de estados não-observáveis." Universidade Federal do Maranhão, 2017. http://tedebc.ufma.br:8080/jspui/handle/tede/1723.
Full textMade available in DSpace on 2017-07-03T18:32:31Z (GMT). No. of bitstreams: 1 SelmoRodrigues.pdf: 1374245 bytes, checksum: 96afcfa04ba5cc18c4db55e4c92cdf23 (MD5) Previous issue date: 2017-01-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
This paper proposes a new methodology for modelling based on an evolving Neuro-Fuzzy Network Takagi-Sugeno (NFN-TS) for seasonal time series forecasting. The NFN-TS use the unobservable components extracted from the time series to evolve, i.e., to adapt and to adjust its structure, where the number of fuzzy rules of this network can increase or reduced according the components behavior. The method used to extract the components is a recursive version developed in this paper based on the Spectral Singular Analysis (SSA) technique. The proposed methodology has the principle divide to conquer, i.e., it divides a problem into easier subproblems, forecasting separately each component because they present dynamic behaviors that are simpler to forecast. The consequent propositions of fuzzy rules are linear state space models, where the states are the unobservable components data. When there are available observations from the time series, the training stage of NFN-TS is performed, i.e., the NFN-TS evolves its structure and adapts its parameters to carry out the mapping between the components data and the available sample of original time series. On the other hand, if this observation is not available, the network considers the forecasting stage, keeping its structure fixed and using the states of consequent fuzzy rules to feedback the components data to NFN-TS. The NFN-TS was evaluated and compared with other recent and traditional techniques for forecasting seasonal time series, obtaining competitive and advantageous results in relation to other papers. This paper also presents a case study of proposed methodology for real-time detection of anomalies based on a patient’s electrocardiogram data.
Esse trabalho propõe uma nova metodologia para modelagem baseada em uma Rede Neuro- Fuzzy Takagi-Sugeno (RNF-TS) evolutiva para a previsão de séries temporais sazonais. A RNF-TS considera as componentes não-observáveis extraídas a partir da série para evoluir, ou seja, adaptar e ajustar sua estrutura, sendo que a quantidade de regras fuzzy dessa rede pode aumentar ou ser reduzida conforme o comportamento das componentes. O método utilizado para extrair as componentes é uma versão recursiva desenvolvida nessa pesquisa baseada na técnica de Análise Espectral Singular (AES). A metodologia proposta tem como princípio dividir para conquistar, isto é, dividir um problema em subproblemas mais fáceis de lidar, realizando a previsão separadamente de cada componente já que apresentam comportamentos dinâmicos mais simples de prever. As proposições do consequente das regras fuzzy são modelos lineares no espaço de estados, sendo que os estados são os próprios dados das componentes não-observáveis. Quando há observações disponíveis da série temporal, o estágio de treinamento da RNF-TS é realizado, ou seja, a RNF-TS evolui sua estrutura e adapta seus parâmetros para realizar o mapeamento entre os dados das componentes e a amostra disponível da série temporal original. Caso contrário, se essa observação não está disponível, a rede aciona o estágio de previsão, mantendo sua estrutura fixa e usando os estados dos consequentes das regras fuzzy para realimentar os dados das componentes para a RNF-TS. A RNF-TS foi avaliada e comparada com outras técnicas recentes e tradicionais para previsão de séries temporais sazonais, obtendo resultados competitivos e vantajosos em relação a outras pesquisas. Este trabalho apresenta também um estudo de caso da metodologia proposta para detecção em tempo-real de anomalias baseada em dados de eletrocardiogramas de um paciente.
Vidne, Michael. "State-Space Models and Latent Processes in the Statistical Analysis of Neural Data." Thesis, 2011. https://doi.org/10.7916/D88058JW.
Full textDeng, Xinyi. "Point process modeling and estimation: advances in the analysis of dynamic neural spiking data." Thesis, 2016. https://hdl.handle.net/2144/17719.
Full textTao, Long. "Contributions to statistical analysis methods for neural spiking activity." Thesis, 2018. https://hdl.handle.net/2144/33172.
Full textBartoš, Samuel. "Predikce profilů spotřeby elektrické energie." Master's thesis, 2017. http://www.nusl.cz/ntk/nusl-365100.
Full textBooks on the topic "Neural state-space models"
Vidne, Michael. State-Space Models and Latent Processes in the Statistical Analysis of Neural Data. [New York, N.Y.?]: [publisher not identified], 2011.
Find full textChen, Zhe. Advanced State Space Methods for Neural and Clinical Data. Cambridge University Press, 2015.
Find full textChen, Zhe. Advanced State Space Methods for Neural and Clinical Data. Cambridge University Press, 2015.
Find full textChen, Zhe. Advanced State Space Methods for Neural and Clinical Data. Cambridge University Press, 2015.
Find full textMARQUÉS, Felicidad. AUTOMATIC TIME SERIES FORECASTING Using NEURAL NETWORKS, STATE SPACE and ARIMAX MODELS. Examples with R. Independently Published, 2021.
Find full textA Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding. Providence, USA: Brown University, 2019.
Find full textAshby, F. Gregory, and Fabian A. Soto. Multidimensional Signal Detection Theory. Edited by Jerome R. Busemeyer, Zheng Wang, James T. Townsend, and Ami Eidels. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199957996.013.2.
Full textButz, Martin V., and Esther F. Kutter. Top-Down Predictions Determine Perceptions. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780198739692.003.0009.
Full textNolte, David D. Introduction to Modern Dynamics. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198844624.001.0001.
Full textMittelbach, Gary G., and Brian J. McGill. Community Ecology. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198835851.001.0001.
Full textBook chapters on the topic "Neural state-space models"
Ławryńczuk, Maciej. "MPC Algorithms Based on Neural State-Space Models." In Studies in Systems, Decision and Control, 139–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04229-9_4.
Full textLiitiäinen, Elia, and Amaury Lendasse. "Long-Term Prediction of Time Series Using State-Space Models." In Artificial Neural Networks – ICANN 2006, 181–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11840930_19.
Full textWang, Fan, Keli Wang, and Boyu Yao. "Time Series Anomaly Detection with Reconstruction-Based State-Space Models." In Artificial Neural Networks and Machine Learning – ICANN 2023, 74–86. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44213-1_7.
Full textEden, Uri T., Loren M. Frank, and Long Tao. "Characterizing Complex, Multi-Scale Neural Phenomena Using State-Space Models." In Dynamic Neuroscience, 29–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71976-4_2.
Full textKung, S. Y., and J. N. Huang. "Systolic Designs for State Space Models: Kalman Filtering and Neural Networks." In Concurrent Computations, 619–43. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5511-3_31.
Full textŁawryńczuk, Maciej. "Computationally Efficient Nonlinear Predictive Control Based on State-Space Neural Models." In Parallel Processing and Applied Mathematics, 350–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14390-8_36.
Full textMphale, Ofaletse, and V. Lakshmi Narasimhan. "Comparative Forecasts of Confirmed COVID-19 Cases in Botswana Using Box-Jenkin's ARIMA and Exponential Smoothing State-Space Models." In Recurrent Neural Networks, 355–81. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003307822-23.
Full textRigatos, Gerasimos G. "Validation of Financial Options Models Using Neural Networks with Invariance to Fourier Transform." In State-Space Approaches for Modelling and Control in Financial Engineering, 167–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52866-3_9.
Full textChen, Zhe, and Emery N. Brown. "State-Space Models for the Analysis of Neural Spike Train and Behavioral Data." In Encyclopedia of Computational Neuroscience, 2864–67. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_410.
Full textChen, Zhe, and Emery N. Brown. "State-Space Models for the Analysis of Neural Spike Train and Behavioral Data." In Encyclopedia of Computational Neuroscience, 1–4. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_410-1.
Full textConference papers on the topic "Neural state-space models"
Fan, Yiming, Peiyuan Zhou, David Forrester, Brian Ju, and Fotis Kopsaftopoulos. "Evaluation of Local and Global Diagnostics for the Integration of Stochastic Time Series Models and Variational Autoencoders: Experimental Assessment on a Full Scale Helicopter Blade." In Vertical Flight Society 80th Annual Forum & Technology Display, 1–10. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1371.
Full textDeng, Weihao, Fei Han, Qinghua Ling, Qing Liu, and Henry Han. "Causal fMRI-Mamba: Causal State Space Model for Neural Decoding and Brain Task States Recognition." In ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. IEEE, 2025. https://doi.org/10.1109/icassp49660.2025.10889151.
Full textZhu, YanZong, Yuesong Yang, Feng Li, and Zhou Zhou. "Identification Modelling of the Hammerstein Nonlinear Systems Utilizing Adaptive Neural Fuzzy Networks and State Space Model." In 2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS), 1494–98. IEEE, 2024. http://dx.doi.org/10.1109/ddcls61622.2024.10606730.
Full textMurakami, Ryo, Satoshi Mori, and Haichong K. Zhang. "Thermal Ablation Therapy Control with Tissue Necrosis-driven Temperature Feedback Enabled by Neural State Space Model with Extended Kalman Filter." In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2373–79. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10801769.
Full textAghagolzadeh, Mehdi, and Wilson Truccolo. "Latent state-space models for neural decoding." In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6944262.
Full textBeck, Amanda M., Emily P. Stephen, and Patrick L. Purdon. "State Space Oscillator Models for Neural Data Analysis." In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8513215.
Full textBendtsen, Jan. "A Right Coprime Factorization of Neural State Space Models." In Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007). IEEE, 2007. http://dx.doi.org/10.1109/isda.2007.111.
Full textBendtsen, Jan. "A Right Coprime Factorization of Neural State Space Models." In Seventh International Conference on Intelligent Systems Design and Applications (ISDA 2007). IEEE, 2007. http://dx.doi.org/10.1109/isda.2007.4389605.
Full textGrigorievskiy, Alexander, and Juha Karhunen. "Gaussian Process kernels for popular state-space time series models." In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727628.
Full textSong, Christian Y., Han-Lin Hsieh, and Maryam M. Shanechi. "Decoder for Switching State-Space Models with Spike-Field Observations." In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2019. http://dx.doi.org/10.1109/ner.2019.8716970.
Full textReports on the topic "Neural state-space models"
Pavlyuk, Іhor. Культурно-інформаційний простір України в роки німецько-фашистської окупації: за матеріалами україномовної колаборантської преси. Ivan Franko National University of Lviv, March 2023. http://dx.doi.org/10.30970/vjo.2023.52-53.11719.
Full textBARKHATOV, NIKOLAY, and SERGEY REVUNOV. A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind. SIB-Expertise, December 2021. http://dx.doi.org/10.12731/er0519.07122021.
Full text