Journal articles on the topic 'Neural state-space models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Neural state-space models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Korbicz, Józef, Marcin Mrugalski, and Thomas Parisini. "DESIGNING STATE-SPACE MODELS WITH NEURAL NETWORKS." IFAC Proceedings Volumes 35, no. 1 (2002): 459–64. http://dx.doi.org/10.3182/20020721-6-es-1901.01630.
Full textSchüssler, Max. "Machine learning with nonlinear state space models." at - Automatisierungstechnik 70, no. 11 (October 27, 2022): 1027–28. http://dx.doi.org/10.1515/auto-2022-0089.
Full textHe, Mingjian, Proloy Das, Gladia Hotan, and Patrick L. Purdon. "Switching state-space modeling of neural signal dynamics." PLOS Computational Biology 19, no. 8 (August 28, 2023): e1011395. http://dx.doi.org/10.1371/journal.pcbi.1011395.
Full textForgione, Marco, and Dario Piga. "Neural State-Space Models: Empirical Evaluation of Uncertainty Quantification." IFAC-PapersOnLine 56, no. 2 (2023): 4082–87. http://dx.doi.org/10.1016/j.ifacol.2023.10.1736.
Full textRaol, J. R. "Parameter estimation of state space models by recurrent neural networks." IEE Proceedings - Control Theory and Applications 142, no. 2 (March 1, 1995): 114–18. http://dx.doi.org/10.1049/ip-cta:19951733.
Full textBendtsen, J. D., and K. Trangbaek. "Robust quasi-LPV control based on neural state-space models." IEEE Transactions on Neural Networks 13, no. 2 (March 2002): 355–68. http://dx.doi.org/10.1109/72.991421.
Full textPaninski, Liam, Yashar Ahmadian, Daniel Gil Ferreira, Shinsuke Koyama, Kamiar Rahnama Rad, Michael Vidne, Joshua Vogelstein, and Wei Wu. "A new look at state-space models for neural data." Journal of Computational Neuroscience 29, no. 1-2 (August 1, 2009): 107–26. http://dx.doi.org/10.1007/s10827-009-0179-x.
Full textGhahramani, Zoubin, and Geoffrey E. Hinton. "Variational Learning for Switching State-Space Models." Neural Computation 12, no. 4 (April 1, 2000): 831–64. http://dx.doi.org/10.1162/089976600300015619.
Full textAghaee, Mohammad, Stephane Krau, Melih Tamer, and Hector Budman. "Graph Neural Network Representation of State Space Models of Metabolic Pathways." IFAC-PapersOnLine 58, no. 14 (2024): 464–69. http://dx.doi.org/10.1016/j.ifacol.2024.08.380.
Full textMangion, Andrew Zammit, Ke Yuan, Visakan Kadirkamanathan, Mahesan Niranjan, and Guido Sanguinetti. "Online Variational Inference for State-Space Models with Point-Process Observations." Neural Computation 23, no. 8 (August 2011): 1967–99. http://dx.doi.org/10.1162/neco_a_00156.
Full textLi, Jiahao, Yang Lu, Yuan Xie, and Yanyun Qu. "MaskViM: Domain Generalized Semantic Segmentation with State Space Models." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 5 (April 11, 2025): 4752–60. https://doi.org/10.1609/aaai.v39i5.32502.
Full textTimm, Luís Carlos, Daniel Takata Gomes, Emanuel Pimentel Barbosa, Klaus Reichardt, Manoel Dornelas de Souza, and José Flávio Dynia. "Neural network and state-space models for studying relationships among soil properties." Scientia Agricola 63, no. 4 (August 2006): 386–95. http://dx.doi.org/10.1590/s0103-90162006000400010.
Full textBao, Yajie, Javad Mohammadpour Velni, Aditya Basina, and Mahdi Shahbakhti. "Identification of State-space Linear Parameter-varying Models Using Artificial Neural Networks." IFAC-PapersOnLine 53, no. 2 (2020): 5286–91. http://dx.doi.org/10.1016/j.ifacol.2020.12.1209.
Full textChakrabarty, Ankush, Gordon Wichern, and Christopher R. Laughman. "Meta-Learning of Neural State-Space Models Using Data From Similar Systems." IFAC-PapersOnLine 56, no. 2 (2023): 1490–95. http://dx.doi.org/10.1016/j.ifacol.2023.10.1843.
Full textMentzer, Katherine L., and J. Luc Peterson. "Neural network surrogate models for equations of state." Physics of Plasmas 30, no. 3 (March 2023): 032704. http://dx.doi.org/10.1063/5.0126708.
Full textShen, Shuaijie, Chao Wang, Renzhuo Huang, Yan Zhong, Qinghai Guo, Zhichao Lu, Jianguo Zhang, and Luziwei Leng. "SpikingSSMs: Learning Long Sequences with Sparse and Parallel Spiking State Space Models." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 19 (April 11, 2025): 20380–88. https://doi.org/10.1609/aaai.v39i19.34245.
Full textMalik, Wasim Q., Leigh R. Hochberg, John P. Donoghue, and Emery N. Brown. "Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces." IEEE Transactions on Biomedical Engineering 62, no. 2 (February 2015): 570–81. http://dx.doi.org/10.1109/tbme.2014.2360393.
Full textSUYKENS, JOHAN A. K., BART L. R. DE MOOR, and JOOS VANDEWALLE. "Nonlinear system identification using neural state space models, applicable to robust control design." International Journal of Control 62, no. 1 (July 1995): 129–52. http://dx.doi.org/10.1080/00207179508921536.
Full textBendtsen, Jan Dimon, and Jakob Stoustrup. "Gain Scheduling Control of Non linear Systems Based on Neural State Space Models." IFAC Proceedings Volumes 36, no. 11 (June 2003): 573–78. http://dx.doi.org/10.1016/s1474-6670(17)35725-7.
Full textCox, Benjamin, Santiago Segarra, and Víctor Elvira. "Learning state and proposal dynamics in state-space models using differentiable particle filters and neural networks." Signal Processing 234 (September 2025): 109998. https://doi.org/10.1016/j.sigpro.2025.109998.
Full textBonatti, Colin, and Dirk Mohr. "One for all: Universal material model based on minimal state-space neural networks." Science Advances 7, no. 26 (June 2021): eabf3658. http://dx.doi.org/10.1126/sciadv.abf3658.
Full textWang, Zhiyuan, Xovee Xu, Goce Trajcevski, Kunpeng Zhang, Ting Zhong, and Fan Zhou. "PrEF: Probabilistic Electricity Forecasting via Copula-Augmented State Space Model." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 12200–12207. http://dx.doi.org/10.1609/aaai.v36i11.21480.
Full textCANELON, JOSE I., LEANG S. SHIEH, SHU M. GUO, and HEIDAR A. MALKI. "NEURAL NETWORK-BASED DIGITAL REDESIGN APPROACH FOR CONTROL OF UNKNOWN CONTINUOUS-TIME CHAOTIC SYSTEMS." International Journal of Bifurcation and Chaos 15, no. 08 (August 2005): 2433–55. http://dx.doi.org/10.1142/s021812740501340x.
Full textRuciński, Dariusz. "Artificial Neural Network based on mathematical models used in quantum computing." Studia Informatica. System and information technology 27, no. 2 (January 11, 2023): 27–48. http://dx.doi.org/10.34739/si.2022.27.02.
Full textXie, Yusen, and Yingjie Mi. "Optimizing inverted pendulum control: Integrating neural network adaptability." Applied and Computational Engineering 101, no. 1 (November 8, 2024): 213–23. http://dx.doi.org/10.54254/2755-2721/101/20241008.
Full textRashid, Mustafa, and Prashant Mhaskar. "Are Neural Networks the Right Tool for Process Modeling and Control of Batch and Batch-like Processes?" Processes 11, no. 3 (February 24, 2023): 686. http://dx.doi.org/10.3390/pr11030686.
Full textFaramarzi, Mojtaba, Mohammad Amini, Akilesh Badrinaaraayanan, Vikas Verma, and Sarath Chandar. "PatchUp: A Feature-Space Block-Level Regularization Technique for Convolutional Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (June 28, 2022): 589–97. http://dx.doi.org/10.1609/aaai.v36i1.19938.
Full textDreyfus, Gérard, and Yizhak Idan. "The Canonical Form of Nonlinear Discrete-Time Models." Neural Computation 10, no. 1 (January 1, 1998): 133–64. http://dx.doi.org/10.1162/089976698300017926.
Full textWang, RuiXue, Kaikang Chen, Bo Zhao, Liming Zhou, Licheng Zhu, Chengxu Lv, Zhenhao Han, Kunlei Lu, Xuguang Feng, and Siyuan Zhao. "Construction of Full-Space State Model and Prediction of Plant Growth Information." Journal of the ASABE 68, no. 2 (2025): 133–46. https://doi.org/10.13031/ja.16165.
Full textJohn, Dr Jogi, Babita Prasad, Bhushan Murkute, Manav Patil, Aditya Agrawal, and Uday Shahu. "Battery Lifespan Prediction Using Machine Learning and NASA Aging Dataset." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 04 (April 3, 2025): 1–9. https://doi.org/10.55041/ijsrem43585.
Full textWang, Niannian, Weiyi Du, Hongjin Liu, Kuankuan Zhang, Yongbin Li, Yanquan He, and Zejun Han. "Fine-Grained Leakage Detection for Water Supply Pipelines Based on CNN and Selective State-Space Models." Water 17, no. 8 (April 9, 2025): 1115. https://doi.org/10.3390/w17081115.
Full textMeng, Wenjie, Aiming Mu, and Huajun Wang. "Efficient UNet fusion of convolutional neural networks and state space models for medical image segmentation." Digital Signal Processing 158 (March 2025): 104937. https://doi.org/10.1016/j.dsp.2024.104937.
Full textKotta, Ü., F. N. Chowdhury, and S. Nõmm. "On realizability of neural networks-based input–output models in the classical state-space form." Automatica 42, no. 7 (July 2006): 1211–16. http://dx.doi.org/10.1016/j.automatica.2006.03.003.
Full textKrikelis, Konstantinos, Jin-Song Pei, Koos van Berkel, and Maarten Schoukens. "Identification of structured nonlinear state–space models for hysteretic systems using neural network hysteresis operators." Measurement 224 (January 2024): 113966. http://dx.doi.org/10.1016/j.measurement.2023.113966.
Full textPang, Shuwei, Haoyuan Lu, Qiuhong Li, and Ziyu Gu. "An Improved Onboard Adaptive Aero-Engine Model Based on an Enhanced Neural Network and Linear Parameter Variance for Parameter Prediction." Energies 17, no. 12 (June 12, 2024): 2888. http://dx.doi.org/10.3390/en17122888.
Full textSimionato, Riccardo, and Stefano Fasciani. "Modeling Time-Variant Responses of Optical Compressors With Selective State Space Models." Journal of the Audio Engineering Society 73, no. 3 (April 7, 2025): 144–65. https://doi.org/10.17743/jaes.2022.0194.
Full textChen, Hanlin, Li'an Zhuo, Baochang Zhang, Xiawu Zheng, Jianzhuang Liu, David Doermann, and Rongrong Ji. "Binarized Neural Architecture Search." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (April 3, 2020): 10526–33. http://dx.doi.org/10.1609/aaai.v34i07.6624.
Full textZhou, Xun, Xingyu Wu, Liang Feng, Zhichao Lu, and Kay Chen Tan. "Design Principle Transfer in Neural Architecture Search via Large Language Models." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 21 (April 11, 2025): 23000–23008. https://doi.org/10.1609/aaai.v39i21.34463.
Full textLiu, Qiao, Jiaze Xu, Rui Jiang, and Wing Hung Wong. "Density estimation using deep generative neural networks." Proceedings of the National Academy of Sciences 118, no. 15 (April 8, 2021): e2101344118. http://dx.doi.org/10.1073/pnas.2101344118.
Full textXie, Guotian. "Redundancy-Aware Pruning of Convolutional Neural Networks." Neural Computation 32, no. 12 (December 2020): 2532–56. http://dx.doi.org/10.1162/neco_a_01330.
Full textZhang, Peng, Wenjie Hui, Benyou Wang, Donghao Zhao, Dawei Song, Christina Lioma, and Jakob Grue Simonsen. "Complex-valued Neural Network-based Quantum Language Models." ACM Transactions on Information Systems 40, no. 4 (October 31, 2022): 1–31. http://dx.doi.org/10.1145/3505138.
Full textLee, JoonSeong, and . "Analysis Methodology of Inelastic Constitutive Parameter Using State Space Method and Neural Network." International Journal of Engineering & Technology 7, no. 3.34 (September 1, 2018): 163. http://dx.doi.org/10.14419/ijet.v7i3.34.18938.
Full textCHEN, CHEN-YUAN, JOHN RONG-CHUNG HSU, and CHENG-WU CHEN. "FUZZY LOGIC DERIVATION OF NEURAL NETWORK MODELS WITH TIME DELAYS IN SUBSYSTEMS." International Journal on Artificial Intelligence Tools 14, no. 06 (December 2005): 967–74. http://dx.doi.org/10.1142/s021821300500248x.
Full textAbbas, H., and H. Werner. "LPV Design of Charge Control for an SI Engine Based on LFT Neural State-Space Models." IFAC Proceedings Volumes 41, no. 2 (2008): 7427–32. http://dx.doi.org/10.3182/20080706-5-kr-1001.01255.
Full textAbbas, H., and H. Werner. "Polytopic Quasi-LPV Models Based on Neural State-Space Models and Application to Air Charge Control of a SI Engine." IFAC Proceedings Volumes 41, no. 2 (2008): 6466–71. http://dx.doi.org/10.3182/20080706-5-kr-1001.01090.
Full textWang, Yiren, Lijun Wu, Yingce Xia, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. "Transductive Ensemble Learning for Neural Machine Translation." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 6291–98. http://dx.doi.org/10.1609/aaai.v34i04.6097.
Full textZhang, Dongxiang, Ziyang Xiao, Yuan Wang, Mingli Song, and Gang Chen. "Neural TSP Solver with Progressive Distillation." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 10 (June 26, 2023): 12147–54. http://dx.doi.org/10.1609/aaai.v37i10.26432.
Full textRule, Michael, and Guido Sanguinetti. "Autoregressive Point Processes as Latent State-Space Models: A Moment-Closure Approach to Fluctuations and Autocorrelations." Neural Computation 30, no. 10 (October 2018): 2757–80. http://dx.doi.org/10.1162/neco_a_01121.
Full textTuli, Shikhar, Bhishma Dedhia, Shreshth Tuli, and Niraj K. Jha. "FlexiBERT: Are Current Transformer Architectures too Homogeneous and Rigid?" Journal of Artificial Intelligence Research 77 (May 6, 2023): 39–70. http://dx.doi.org/10.1613/jair.1.13942.
Full textSensoy, Murat, Lance Kaplan, Federico Cerutti, and Maryam Saleki. "Uncertainty-Aware Deep Classifiers Using Generative Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 5620–27. http://dx.doi.org/10.1609/aaai.v34i04.6015.
Full text