Academic literature on the topic 'Neural time series'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neural time series.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Neural time series"

1

Kajitani, Yoshio. "Forecasting time series with neural nets." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ39836.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Andreux, Mathieu. "Foveal autoregressive neural time-series modeling." Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE073.

Full text
Abstract:
Cette thèse s'intéresse à la modélisation non-supervisée de séries temporelles univariées. Nous abordons tout d'abord le problème de prédiction linéaire des valeurs futures séries temporelles gaussiennes sous hypothèse de longues dépendances, qui nécessitent de tenir compte d'un large passé. Nous introduisons une famille d'ondelettes fovéales et causales qui projettent les valeurs passées sur un sous-espace adapté au problème, réduisant ainsi la variance des estimateurs associés. Dans un deuxième temps, nous cherchons sous quelles conditions les prédicteurs non-linéaires sont plus performants
APA, Harvard, Vancouver, ISO, and other styles
3

Bonato, Tommaso. "Time Series Predictions With Recurrent Neural Networks." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
L'obiettivo principale di questa tesi è studiare come gli algoritmi di apprendimento automatico (machine learning in inglese) e in particolare le reti neurali LSTM (Long Short Term Memory) possano essere utilizzati per prevedere i valori futuri di una serie storica regolare come, per esempio, le funzioni seno e coseno. Una serie storica è definita come una sequenza di osservazioni s_t ordinate nel tempo. Inoltre cercheremo di applicare gli stessi principi per prevedere i valori di una serie storica prodotta utilizzando i dati di vendita di un prodotto cosmetico durante un periodo di tre anni.
APA, Harvard, Vancouver, ISO, and other styles
4

Brax, Christoffer. "Recurrent neural networks for time-series prediction." Thesis, University of Skövde, Department of Computer Science, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-480.

Full text
Abstract:
<p>Recurrent neural networks have been used for time-series prediction with good results. In this dissertation recurrent neural networks are compared with time-delayed feed forward networks, feed forward networks and linear regression models on a prediction task. The data used in all experiments is real-world sales data containing two kinds of segments: campaign segments and non-campaign segments. The task is to make predictions of sales under campaigns. It is evaluated if more accurate predictions can be made when only using the campaign segments of the data.</p><p>Throughout the entire proje
APA, Harvard, Vancouver, ISO, and other styles
5

ABELEM, ANTONIO JORGE GOMES. "ARTIFICIAL NEURAL NETWORKS IN TIME SERIES FORECASTING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1994. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8489@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>Esta dissertação investiga a utilização de Redes Neurais Artificiais (RNAs) na previsão de séries temporais, em particular de séries financeiras, consideradas uma classe especial de séries temporais, caracteristicamente ruídos e sem periodicidade aparente. O trabalho envolve quatro partes principais: um estudo sobre redes neurais artificiais e séries temporais; a modelagem das RNAs para previsão de séries temporais; o desenvolvimento de um ambiente de simulação; e o estudo de caso. No estudo sobre Redes Neurais Artificiais
APA, Harvard, Vancouver, ISO, and other styles
6

ZANDONADE, ELIANA. "USING NEURAL NETWORK IN TIME SERIES FORECASTING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1993. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8641@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>Este trabalho associa previsão de Séries Temporais a uma nova metodologia de processamento de informação: REDE NEURAL. Usaremos o modelo de Retropropagação, que consiste em uma Rede Neural multicamada com as unidades conectadas apenas com a unidades conectadas apenas com as unidades da camada subseqüente e com a informação passando em uma única direção. Aplicaremos o modelo de retropropagação na análise de quatro séries temporais: uma série ruidosa. Uma série com tendência, uma série sazonal e uma série de Consumo de Ene
APA, Harvard, Vancouver, ISO, and other styles
7

MELLEM, MARCELO TOURASSE NASSIM. "AUTOREGRESSIVE-NEURAL HYBRID MODELS FOR TIME SERIES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1997. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=14541@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>Este trabalho apresenta um modelo linear por partes chamado de modelo ARN. Trata-se de uma estrutura híbrida que envolve modelos autoregressivos e redes neurais. Este modelo é comparado com o modelo AR de coeficientes fixos e com a rede neural estática aplicada à previsão. Os resultados mostram que o ARN consegue identificar a estrutura não-linear dos dados simulados e que na maioria dos casos ele possui melhor habilidade preditiva do que os modelos supracitados.<br>In this thesis we develop a piece-wise linear model named ARN mod
APA, Harvard, Vancouver, ISO, and other styles
8

Han, Ying. "Analysing time series using artificial neural networks." Thesis, University of the West of Scotland, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rana, Md Mashud. "Energy time series prediction." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/11745.

Full text
Abstract:
Reliable operations and economical utilization of power systems require electricity load forecasting at a wide range of forecasting horizons. The objective of this thesis is two-fold: developing accurate prediction models for electricity load forecasting, and quantifying the load forecasting uncertainty. At first, we consider the task of feature selection for electricity load forecasting. We propose a two-step approach - identifying a set of candidate features based on the data characteristics and then selecting a subset of them using four different methods. We evaluate the performance of th
APA, Harvard, Vancouver, ISO, and other styles
10

SOTO, CLAVER PARI. "TEMPORAL NEURAL NETWORKS FOR TREATING TIME VARIANT SERIES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1999. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7437@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>As RNA Temporais, em função de sua estrutura, consideram o tempo na sua operação, incorporando memória de curto prazo distribuída na rede em todos os neurônios escondidos e em alguns dos casos nos neurônios de saída. Esta classe de redes é utilizada para representar melhor a natureza temporal dos sistemas dinâmicos. Em contraste, a RNA estática tem uma estrutura apropriada para tarefas de reconhecimento de padrões, classificação e outras de natureza estática ou estacionária tendo sido utilizada com sucesso em diversas apl
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!