Journal articles on the topic 'Neuromorphic chips'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Neuromorphic chips.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Koch, C., and B. Mathur. "Neuromorphic vision chips." IEEE Spectrum 33, no. 5 (1996): 38–46. http://dx.doi.org/10.1109/6.490055.
Full textChiang, C. T., and C. Y. Wu. "Implantable neuromorphic vision chips." Electronics Letters 40, no. 6 (2004): 361. http://dx.doi.org/10.1049/el:20040269.
Full textGreengard, Samuel. "Neuromorphic chips take shape." Communications of the ACM 63, no. 8 (2020): 9–11. http://dx.doi.org/10.1145/3403960.
Full textFan, Luwei. "Research Progress of Neuromorphic Chips." Applied and Computational Engineering 125, no. 1 (2025): 1–7. https://doi.org/10.54254/2755-2721/2025.19928.
Full textSatnam Singh, Ishita Sabharwal, Shweta Kushwaha, Dr. Shilpi Jain, and Dr. Madhur Jain. "Enhancing Human-Machine Interaction: Leveraging Neuromorphic Chips for Adaptive Learning and Control in Neural Prosthetics and Artificial Intelligence." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 10, no. 6 (2024): 933–40. http://dx.doi.org/10.32628/cseit241061135.
Full textMerolla, Paul A., John V. Arthur, Bertram E. Shi, and Kwabena A. Boahen. "Expandable Networks for Neuromorphic Chips." IEEE Transactions on Circuits and Systems I: Regular Papers 54, no. 2 (2007): 301–11. http://dx.doi.org/10.1109/tcsi.2006.887474.
Full textAndreeva, N. V., V. V. Luchinin, E. A. Ryndin, et al. "Neuromorphic Memristive Chips: Design and Technology." Nano- i Mikrosistemnaya Tehnika 23, no. 6 (2021): 285–94. http://dx.doi.org/10.17587/nmst.23.285-294.
Full textKurshan, Eren, Hai Li, Mingoo Seok, and Yuan Xie. "A Case for 3D Integrated System Design for Neuromorphic Computing and AI Applications." International Journal of Semantic Computing 14, no. 04 (2020): 457–75. http://dx.doi.org/10.1142/s1793351x20500063.
Full textSinicin, Alexey M. "OVERVIEW OF NEUROMORPHIC CHIPS FOR ARTIFICIAL INTELLIGENCE SYSTEMS." EKONOMIKA I UPRAVLENIE: PROBLEMY, RESHENIYA 9/9, no. 150 (2024): 85–94. http://dx.doi.org/10.36871/ek.up.p.r.2024.09.09.012.
Full textHampiholi, Narayan. "Revolutionizing AI and Computing the Neuromorphic Engineering Paradigm in Neuromorphic Chips." International Journal of Computer Trends and Technology 71, no. 1 (2024): 92–98. http://dx.doi.org/10.14445/22312803/ijctt-v72i1p115.
Full textTyler, Neil. "Tempo Targets Low-Power Chips for AI Applications." New Electronics 52, no. 13 (2019): 7. http://dx.doi.org/10.12968/s0047-9624(22)61557-8.
Full textAndreeva, N. V., V. V. Luchinin, E. A. Ryndin, et al. "Architecture and Technology of Neuromorphic Memristive Chips." Nanobiotechnology Reports 17, S1 (2022): S72—S79. http://dx.doi.org/10.1134/s2635167622070035.
Full textLi, Er-Ping, Hanzhi Ma, Manareldeen Ahmed, et al. "An Electromagnetic Perspective of Artificial Intelligence Neuromorphic Chips." Electromagnetic Science 1, no. 3 (2023): 1–18. http://dx.doi.org/10.23919/emsci.2023.0015.
Full textKhajooei Nejad, Arash, Mohammad (Behdad) Jamshidi, and Shahriar B. Shokouhi. "Implementing Tensor-Organized Memory for Message Retrieval Purposes in Neuromorphic Chips." Computers 12, no. 10 (2023): 189. http://dx.doi.org/10.3390/computers12100189.
Full textMerolla, Paul A., John V. Arthur, Bertram E. Shi, and Kwabena A. Boahen. "Corrections to “Expandable Networks for Neuromorphic Chips”." IEEE Transactions on Circuits and Systems I: Regular Papers 54, no. 4 (2007): 925–26. http://dx.doi.org/10.1109/tcsi.2007.895131.
Full textQu, Jingwei. "Conventional Von Neumann and Neuromorphic Architecture of AI Chips." Highlights in Science, Engineering and Technology 103 (June 26, 2024): 138–43. http://dx.doi.org/10.54097/gwgea042.
Full textLiu, Te-Yuan, Ata Mahjoubfar, Daniel Prusinski, and Luis Stevens. "Neuromorphic computing for content-based image retrieval." PLOS ONE 17, no. 4 (2022): e0264364. http://dx.doi.org/10.1371/journal.pone.0264364.
Full textZaved Md Akib. "Neuromorphic computing: Bridging AI and electronics." International Journal of Science and Research Archive 15, no. 1 (2025): 1485–87. https://doi.org/10.30574/ijsra.2025.15.1.1137.
Full textAl Abdul Wahid, Seham, Arghavan Asad, and Farah Mohammadi. "A Survey on Neuromorphic Architectures for Running Artificial Intelligence Algorithms." Electronics 13, no. 15 (2024): 2963. http://dx.doi.org/10.3390/electronics13152963.
Full textPham, Martin Do, Amedeo D’Angiulli, Maryam Mehri Dehnavi, and Robin Chhabra. "From Brain Models to Robotic Embodied Cognition: How Does Biological Plausibility Inform Neuromorphic Systems?" Brain Sciences 13, no. 9 (2023): 1316. http://dx.doi.org/10.3390/brainsci13091316.
Full textBoahen, K. A. "Point-to-point connectivity between neuromorphic chips using address events." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 47, no. 5 (2000): 416–34. http://dx.doi.org/10.1109/82.842110.
Full textLee, Matthew Kay Fei, Yingnan Cui, Thannirmalai Somu, et al. "A System-Level Simulator for RRAM-Based Neuromorphic Computing Chips." ACM Transactions on Architecture and Code Optimization 15, no. 4 (2019): 1–24. http://dx.doi.org/10.1145/3291054.
Full textFerreira de Lima, Thomas, Bhavin J. Shastri, Alexander N. Tait, Mitchell A. Nahmias, and Paul R. Prucnal. "Progress in neuromorphic photonics." Nanophotonics 6, no. 3 (2017): 577–99. http://dx.doi.org/10.1515/nanoph-2016-0139.
Full textLan, Shuqiong, Jinkui Si, Wangying Xu, Lan Yang, Jierui Lin, and Chen Wu. "Ternary Heterojunction Synaptic Transistors Based on Perovskite Quantum Dots." Nanomaterials 15, no. 9 (2025): 688. https://doi.org/10.3390/nano15090688.
Full textPartzsch, Johannes, Christian Mayr, Massimiliano Giulioni, et al. "Mean Field Approach for Configuring Population Dynamics on a Biohybrid Neuromorphic System." Journal of Signal Processing Systems 92, no. 11 (2020): 1303–21. http://dx.doi.org/10.1007/s11265-020-01556-9.
Full textOzalevli, E., and C. M. Higgins. "Reconfigurable biologically inspired visual motion systems using modular neuromorphic VLSI chips." IEEE Transactions on Circuits and Systems I: Regular Papers 52, no. 1 (2005): 79–92. http://dx.doi.org/10.1109/tcsi.2004.838307.
Full textFan, Xuemeng, and Yishu Zhang. "Foreword to the Special Issue on Deep Learning and Neuromorphic Chips." Applied Sciences 12, no. 21 (2022): 11189. http://dx.doi.org/10.3390/app122111189.
Full textChen, Guang, Jian Cao, Chenglong Zou, et al. "PAIBoard: A Neuromorphic Computing Platform for Hybrid Neural Networks in Robot Dog Application." Electronics 13, no. 18 (2024): 3619. http://dx.doi.org/10.3390/electronics13183619.
Full textK, Padmaja. "Design and Simulation of Op-Amp Based Neuron Circuit." International Journal for Research in Applied Science and Engineering Technology 10, no. 7 (2022): 4204–8. http://dx.doi.org/10.22214/ijraset.2022.45943.
Full textGrübl, Andreas, Sebastian Billaudelle, Benjamin Cramer, Vitali Karasenko, and Johannes Schemmel. "Verification and Design Methods for the BrainScaleS Neuromorphic Hardware System." Journal of Signal Processing Systems 92, no. 11 (2020): 1277–92. http://dx.doi.org/10.1007/s11265-020-01558-7.
Full textChen, Qi, Yue Zhou, Weiwei Xiong, et al. "Complementary memtransistors for neuromorphic computing: How, what and why." Journal of Semiconductors 45, no. 6 (2024): 061701. http://dx.doi.org/10.1088/1674-4926/23120051.
Full textKang, Minseon, Yongseok Lee, and Moonju Park. "Energy Efficiency of Machine Learning in Embedded Systems Using Neuromorphic Hardware." Electronics 9, no. 7 (2020): 1069. http://dx.doi.org/10.3390/electronics9071069.
Full textBhat, Pranava. "Analysis of Neuromorphic Computing Systems and its Applications in Machine Learning." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (2021): 5309–12. http://dx.doi.org/10.22214/ijraset.2021.35601.
Full textXiong, Shan, Xue Liang, Xiangjun Xing, and Yan Zhou. "Physical neural network using skyrmion-based spin torque nano-oscillators." Journal of Physics: Conference Series 2803, no. 1 (2024): 012044. http://dx.doi.org/10.1088/1742-6596/2803/1/012044.
Full textVogelstein, R. Jacob, Udayan Mallik, Eugenio Culurciello, Gert Cauwenberghs, and Ralph Etienne-Cummings. "A Multichip Neuromorphic System for Spike-Based Visual Information Processing." Neural Computation 19, no. 9 (2007): 2281–300. http://dx.doi.org/10.1162/neco.2007.19.9.2281.
Full textGao, Zhan, Yan Wang, Ziyu Lv, et al. "Ferroelectric coupling for dual-mode non-filamentary memristors." Applied Physics Reviews 9, no. 2 (2022): 021417. http://dx.doi.org/10.1063/5.0087624.
Full textGnilenko, Alexey. "HARDWARE IMPLEMENTATION DESIGN OF A SPIKING NEURON." System technologies 1, no. 132 (2021): 116–23. http://dx.doi.org/10.34185/1562-9945-1-132-2021-10.
Full textJing, Zhizhi. "The history of neuromorphic computing and its application on recognition systems." Applied and Computational Engineering 6, no. 1 (2023): 86–92. http://dx.doi.org/10.54254/2755-2721/6/20230733.
Full textArfan, Ghani, Dowrick Thomas, and J. McDaid Liam. "OSPEN: an open source platform for emulating neuromorphic hardware." International Journal of Reconfigurable and Embedded Systems (IJRES) 12, no. 1 (2023): 1–8. https://doi.org/10.11591/ijres.v12.i1.pp1-8.
Full textNeftci, Emre Ozgur, Bryan Toth, Giacomo Indiveri, and Henry D. I. Abarbanel. "Dynamic State and Parameter Estimation Applied to Neuromorphic Systems." Neural Computation 24, no. 7 (2012): 1669–94. http://dx.doi.org/10.1162/neco_a_00293.
Full textWang, Lei, Shiqing Sun, Jianhui Zhao, et al. "HfO2:Gd-based ferroelectric memristor as bio-synapse emulators." Applied Physics Letters 121, no. 25 (2022): 253502. http://dx.doi.org/10.1063/5.0101026.
Full textBag, Sankar Prasad, Suyoung Lee, Jaeyoon Song, and Jinsink Kim. "Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review." Biosensors 14, no. 3 (2024): 150. http://dx.doi.org/10.3390/bios14030150.
Full textKhajooei, Arash, Mohammad (Behdad) Jamshidi, and Shahriar B. Shokouhi. "A Super-Efficient TinyML Processor for the Edge Metaverse." Information 14, no. 4 (2023): 235. http://dx.doi.org/10.3390/info14040235.
Full textAgrawal, Vishakha. "Moore’s Law & The AI Compute Bottleneck." International Scientific Journal of Engineering and Management 04, no. 01 (2025): 1–8. https://doi.org/10.55041/isjem02229.
Full textChen, Liangliang, Zhongyuan Ma, Kangmin Leng, et al. "Artificial Synapse Consisted of TiSbTe/SiCx:H Memristor with Ultra-high Uniformity for Neuromorphic Computing." Nanomaterials 12, no. 12 (2022): 2110. http://dx.doi.org/10.3390/nano12122110.
Full textPastur-Romay, Lucas, Francisco Cedrón, Alejandro Pazos, and Ana Porto-Pazos. "Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications." International Journal of Molecular Sciences 17, no. 8 (2016): 1313. http://dx.doi.org/10.3390/ijms17081313.
Full textLiu, Hao, Mingjiang Wang, Longxin Yao, and Ming Liu. "Hardware Implementation of an Approximate Simplified Piecewise Linear Spiking Neuron." Electronics 12, no. 12 (2023): 2628. http://dx.doi.org/10.3390/electronics12122628.
Full textWu, Nanjian. "Neuromorphic vision chips." Science China Information Sciences 61, no. 6 (2018). http://dx.doi.org/10.1007/s11432-017-9303-0.
Full textDuan, Xuegang, Zelin Cao, Kaikai Gao, et al. "Memristor‐Based Neuromorphic Chips." Advanced Materials, January 2, 2024. http://dx.doi.org/10.1002/adma.202310704.
Full textKulshrestha, Sanatan. "Neuromorphic Chips Defence Applications." SSRN Electronic Journal, 2016. http://dx.doi.org/10.2139/ssrn.2773015.
Full text