Academic literature on the topic 'Neuromuscular junction (NMJ)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neuromuscular junction (NMJ).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Neuromuscular junction (NMJ)"

1

Iyer, Shama R., Sameer B. Shah, and Richard M. Lovering. "The Neuromuscular Junction: Roles in Aging and Neuromuscular Disease." International Journal of Molecular Sciences 22, no. 15 (2021): 8058. http://dx.doi.org/10.3390/ijms22158058.

Full text
Abstract:
The neuromuscular junction (NMJ) is a specialized synapse that bridges the motor neuron and the skeletal muscle fiber and is crucial for conversion of electrical impulses originating in the motor neuron to action potentials in the muscle fiber. The consideration of contributing factors to skeletal muscle injury, muscular dystrophy and sarcopenia cannot be restricted only to processes intrinsic to the muscle, as data show that these conditions incur denervation-like findings, such as fragmented NMJ morphology and corresponding functional changes in neuromuscular transmission. Primary defects in the NMJ also influence functional loss in motor neuron disease, congenital myasthenic syndromes and myasthenia gravis, resulting in skeletal muscle weakness and heightened fatigue. Such findings underscore the role that the NMJ plays in neuromuscular performance. Regardless of cause or effect, functional denervation is now an accepted consequence of sarcopenia and muscle disease. In this short review, we provide an overview of the pathologic etiology, symptoms, and therapeutic strategies related to the NMJ. In particular, we examine the role of the NMJ as a disease modifier and a potential therapeutic target in neuromuscular injury and disease.
APA, Harvard, Vancouver, ISO, and other styles
2

Panenic, Robert, and Phillip F. Gardiner. "The Case for Adaptability of the Neuromuscular Junction to Endurance Exercise Training." Canadian Journal of Applied Physiology 23, no. 4 (1998): 339–60. http://dx.doi.org/10.1139/h98-019.

Full text
Abstract:
Although the adaptability of the neuromuscular junction (NMJ) has been demonstrated using the models of denervation/reinnervation, electrical stimulation, development, aging, and pathological states, relatively little is known about the effects of increased chronic voluntary use on the morphology and physiological function of the NMJ. A review of findings relating to adaptations in the various pre- and postsynaptic components of the NMJ with exercise training is presented. These findings are discussed as they pertain to NMJ function during exercise. Other physiological modulators of the NMJ, such as trophic factors released by nerve terminals and muscles, and circulating substances are discussed in terms of possible roles they may play in training-induced adaptations. Key words: neuromuscular junction, endurance exercise, adaptations, morphology, acetylcholinesterase, physiology, trophic factors
APA, Harvard, Vancouver, ISO, and other styles
3

Lepore, Elisa, Irene Casola, Gabriella Dobrowolny, and Antonio Musarò. "Neuromuscular Junction as an Entity of Nerve-Muscle Communication." Cells 8, no. 8 (2019): 906. http://dx.doi.org/10.3390/cells8080906.

Full text
Abstract:
One of the crucial systems severely affected in several neuromuscular diseases is the loss of effective connection between muscle and nerve, leading to a pathological non-communication between the two tissues. The neuromuscular junction (NMJ) represents the critical region at the level of which muscle and nerve communicate. Defects in signal transmission between terminal nerve endings and muscle membrane is a common feature of several physio-pathologic conditions including aging and Amyotrophic Lateral Sclerosis (ALS). Nevertheless, controversy exists on whether pathological events beginning at the NMJ precede or follow loss of motor units. In this review, the role of NMJ in the physio-pathologic interplay between muscle and nerve is discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Deschenes, Michael R., Rachel Flannery, Alexis Hawbaker, Leah Patek, and Mia Mifsud. "Adaptive Remodeling of the Neuromuscular Junction with Aging." Cells 11, no. 7 (2022): 1150. http://dx.doi.org/10.3390/cells11071150.

Full text
Abstract:
Aging is associated with gradual degeneration, in mass and function, of the neuromuscular system. This process, referred to as “sarcopenia”, is considered a disease by itself, and it has been linked to a number of other serious maladies such as type II diabetes, osteoporosis, arthritis, cardiovascular disease, and even dementia. While the molecular causes of sarcopenia remain to be fully elucidated, recent findings have implicated the neuromuscular junction (NMJ) as being an important locus in the development and progression of that malady. This synapse, which connects motor neurons to the muscle fibers that they innervate, has been found to degenerate with age, contributing both to senescent-related declines in muscle mass and function. The NMJ also shows plasticity in response to a number of neuromuscular diseases such as amyotrophic lateral sclerosis (ALS) and Lambert-Eaton myasthenic syndrome (LEMS). Here, the structural and functional degradation of the NMJ associated with aging and disease is described, along with the measures that might be taken to effectively mitigate, if not fully prevent, that degeneration.
APA, Harvard, Vancouver, ISO, and other styles
5

Nemeth, Colin, Naren L. Banik, and Azizul Haque. "Disruption of Neuromuscular Junction Following Spinal Cord Injury and Motor Neuron Diseases." International Journal of Molecular Sciences 25, no. 6 (2024): 3520. http://dx.doi.org/10.3390/ijms25063520.

Full text
Abstract:
The neuromuscular junction (NMJ) is a crucial structure that connects the cholinergic motor neurons to the muscle fibers and allows for muscle contraction and movement. Despite the interruption of the supraspinal pathways that occurs in spinal cord injury (SCI), the NMJ, innervated by motor neurons below the injury site, has been found to remain intact. This highlights the importance of studying the NMJ in rodent models of various nervous system disorders, such as amyotrophic lateral sclerosis (ALS), Charcot–Marie–Tooth disease (CMT), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). The NMJ is also involved in myasthenic disorders, such as myasthenia gravis (MG), and is vulnerable to neurotoxin damage. Thus, it is important to analyze the integrity of the NMJ in rodent models during the early stages of the disease, as this may allow for a better understanding of the condition and potential treatment options. The spinal cord also plays a crucial role in the functioning of the NMJ, as the junction relays information from the spinal cord to the muscle fibers, and the integrity of the NMJ could be disrupted by SCI. Therefore, it is vital to study SCI and muscle function when studying NMJ disorders. This review discusses the formation and function of the NMJ after SCI and potential interventions that may reverse or improve NMJ dysfunction, such as exercise, nutrition, and trophic factors.
APA, Harvard, Vancouver, ISO, and other styles
6

Minty, Gavin, Alex Hoppen, Ines Boehm, et al. "aNMJ-morph: a simple macro for rapid analysis of neuromuscular junction morphology." Royal Society Open Science 7, no. 4 (2020): 200128. http://dx.doi.org/10.1098/rsos.200128.

Full text
Abstract:
Large-scale data analysis of synaptic morphology is becoming increasingly important to the field of neurobiological research (e.g. ‘connectomics’). In particular, a detailed knowledge of neuromuscular junction (NMJ) morphology has proven to be important for understanding the form and function of synapses in both health and disease. The recent introduction of a standardized approach to the morphometric analysis of the NMJ—‘NMJ-morph’—has provided the first common software platform with which to analyse and integrate NMJ data from different research laboratories. Here, we describe the design and development of a novel macro—‘automated NMJ-morph’ or ‘aNMJ-morph’—to update and streamline the original NMJ-morph methodology. ImageJ macro language was used to encode the complete NMJ-morph workflow into seven navigation windows that generate robust data for 19 individual pre-/post-synaptic variables. The aNMJ-morph scripting was first validated against reference data generated by the parent workflow to confirm data reproducibility. aNMJ-morph was then compared with the parent workflow in large-scale data analysis of original NMJ images (240 NMJs) by multiple independent investigators. aNMJ-morph conferred a fourfold increase in data acquisition rate compared with the parent workflow, with average analysis times reduced to approximately 1 min per NMJ. Strong concordance was demonstrated between the two approaches for all 19 morphological variables, confirming the robust nature of aNMJ-morph. aNMJ-morph is a freely available and easy-to-use macro for the rapid and robust analysis of NMJ morphology and offers significant improvements in data acquisition and learning curve compared to the original NMJ-morph workflow.
APA, Harvard, Vancouver, ISO, and other styles
7

Yi, Jianxun, Ang Li, Xuejun Li, et al. "MG53 Preserves Neuromuscular Junction Integrity and Alleviates ALS Disease Progression." Antioxidants 10, no. 10 (2021): 1522. http://dx.doi.org/10.3390/antiox10101522.

Full text
Abstract:
Respiratory failure from progressive respiratory muscle weakness is the most common cause of death in amyotrophic lateral sclerosis (ALS). Defects in neuromuscular junctions (NMJs) and progressive NMJ loss occur at early stages, thus stabilizing and preserving NMJs represents a potential therapeutic strategy to slow ALS disease progression. Here we demonstrate that NMJ damage is repaired by MG53, an intrinsic muscle protein involved in plasma membrane repair. Compromised diaphragm muscle membrane repair and NMJ integrity are early pathological events in ALS. Diaphragm muscles from ALS mouse models show increased susceptibility to injury and intracellular MG53 aggregation, which is also a hallmark of human muscle samples from ALS patients. We show that systemic administration of recombinant human MG53 protein in ALS mice protects against injury to diaphragm muscle, preserves NMJ integrity, and slows ALS disease progression. As MG53 is present in circulation in rodents and humans under physiological conditions, our findings provide proof-of-concept data supporting MG53 as a potentially safe and effective therapy to mitigate ALS progression.
APA, Harvard, Vancouver, ISO, and other styles
8

Ohkawara, Bisei, Mikako Ito, and Kinji Ohno. "Secreted Signaling Molecules at the Neuromuscular Junction in Physiology and Pathology." International Journal of Molecular Sciences 22, no. 5 (2021): 2455. http://dx.doi.org/10.3390/ijms22052455.

Full text
Abstract:
Signal transduction at the neuromuscular junction (NMJ) is affected in many human diseases, including congenital myasthenic syndromes (CMS), myasthenia gravis, Lambert–Eaton myasthenic syndrome, Isaacs’ syndrome, Schwartz–Jampel syndrome, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. The NMJ is a prototypic cholinergic synapse between the motor neuron and the skeletal muscle. Synaptogenesis of the NMJ has been extensively studied, which has also been extrapolated to further understand synapse formation in the central nervous system. Studies of genetically engineered mice have disclosed crucial roles of secreted molecules in the development and maintenance of the NMJ. In this review, we focus on the secreted signaling molecules which regulate the clustering of acetylcholine receptors (AChRs) at the NMJ. We first discuss the signaling pathway comprised of neural agrin and its receptors, low-density lipoprotein receptor-related protein 4 (Lrp4) and muscle-specific receptor tyrosine kinase (MuSK). This pathway drives the clustering of acetylcholine receptors (AChRs) to ensure efficient signal transduction at the NMJ. We also discuss three secreted molecules (Rspo2, Fgf18, and connective tissue growth factor (Ctgf)) that we recently identified in the Wnt/β-catenin and fibroblast growth factors (FGF) signaling pathways. The three secreted molecules facilitate the clustering of AChRs by enhancing the agrin-Lrp4-MuSK signaling pathway.
APA, Harvard, Vancouver, ISO, and other styles
9

Sugiura, Yoshie, and Weichun Lin. "Neuron–glia interactions: the roles of Schwann cells in neuromuscular synapse formation and function." Bioscience Reports 31, no. 5 (2011): 295–302. http://dx.doi.org/10.1042/bsr20100107.

Full text
Abstract:
The NMJ (neuromuscular junction) serves as the ultimate output of the motor neurons. The NMJ is composed of a presynaptic nerve terminal, a postsynaptic muscle and perisynaptic glial cells. Emerging evidence has also demonstrated an existence of perisynaptic fibroblast-like cells at the NMJ. In this review, we discuss the importance of Schwann cells, the glial component of the NMJ, in the formation and function of the NMJ. During development, Schwann cells are closely associated with presynaptic nerve terminals and are required for the maintenance of the developing NMJ. After the establishment of the NMJ, Schwann cells actively modulate synaptic activity. Schwann cells also play critical roles in regeneration of the NMJ after nerve injury. Thus, Schwann cells are indispensable for formation and function of the NMJ. Further examination of the interplay among Schwann cells, the nerve and the muscle will provide insights into a better understanding of mechanisms underlying neuromuscular synapse formation and function.
APA, Harvard, Vancouver, ISO, and other styles
10

Shyng, S. L., and M. M. Salpeter. "Degradation rate of acetylcholine receptors inserted into denervated vertebrate neuromuscular junctions." Journal of Cell Biology 108, no. 2 (1989): 647–51. http://dx.doi.org/10.1083/jcb.108.2.647.

Full text
Abstract:
Many studies exist on the effect of denervation on the degradation of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (nmj). These studies have described the behavior of either the total population of junctional receptors at different times after denervation, or of the receptors present at the time of denervation (referred to as original receptors). No experimental studies yet exist on the degradation rate of the receptors newly inserted into denervated junctions. In the previous studies, the original receptors of mouse sternomastoid muscles were found to retain the slow degradation (t 1/2) of approximately 8-10 d of innervated junctional receptors for up to 10 d after denervation before accelerating to a t 1/2 of approximately 3 d. The total junctional receptors, on the other hand, showed a progressive increase in degradation rate from a t 1/2 of 8-10 d to a t 1/2 of 1 d. To reconcile these earlier observations, the present study examines the degradation of new receptors inserted into the nmj after denervation. To avoid possible contamination of the data with postdenervation extrajunctional receptors, we used transmission electron microscope autoradiography to study only receptors located at the postjunctional fold of the nmj. We established that the new receptors inserted into denervated junctions have a t 1/2 of approximately 1 d, considerably faster than that of the original receptors and equivalent to that of postdenervation extrajunctional receptors. Both original and new receptors are interspersed at the top of the junctional folds. Thus, until all the original receptors are degraded, the postjunctional membrane contains two populations of AChRs that maintain a total steady-state site density but degrade at different rates. The progressive increase in turnover rate of total AChRs therefore reflects the combined rates of the original and new receptors, as earlier postulated by Levitt and Salpeter (1981).
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography