Academic literature on the topic 'Neurones à gonadoliberine [GnRH]'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neurones à gonadoliberine [GnRH].'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Neurones à gonadoliberine [GnRH]"

1

Szlis, Michal, Jolanta Polkowska, and Anna Wójcik-Gładysz. "Can obestatin modulate the GnRH neurons activity?" Problems of Endocrinology 62, no. 5 (2016): 49–50. http://dx.doi.org/10.14341/probl201662549-50.

Full text
Abstract:
Obestatin, an anorexigenic peptide acting at the central nervous system and on the periperial level, can co-create neuroendocrine network, which modulate the gonadotrophic axis activity. The aim of this study was to investigate the role of intracerebroventricular obestatin infusion on the activity of the gonadoliberine (GnRH) neurons activity.The experiment was performed on peripubertal Polish Merino sheep (n=24). Animals were divided into 2 groups: control (Ringer-Lock solution infusions; n=12) and experimental (obestatin infusion, 25μl/120μl/h; n=12). Infusions were performed over three consecutive days; blood samples were collected on day 0 and day 3. After the experiment, the animals were slaughtered, and the chosen brain tissue was preserved for IHC and Real Time RT-qPCR analysis.It was also shown that exogenous obestatin changes the selected gene expression of GnRH pulse generator, decreases the secretory activity of GnRH neurons, resulting from the inhibition of GnRH release from median eminence terminal nerves, and also decreases the GnRH receptor gene expression in pituitary. On the basis of the obtained results it can be concluded that obestatin may be involved in the modulation of reproduction processes in animals at the level of the central nervous system. However, the mechanism of its action requires further research, especially identifying the obestatin receptor itself.
APA, Harvard, Vancouver, ISO, and other styles
2

Shpakov, A. O., and K. V. Derkach. "Gonadoliberin – Synthesis, Secretion, Molecular Mechanisms and Targets of Action." Acta Biomedica Scientifica 4, no. 2 (2019): 7–15. http://dx.doi.org/10.29413/abs.2019-4.2.1.

Full text
Abstract:
Decapeptide gonadoliberin (GnRH) is the most important regulator of the hypothalamic-pituitary-gonadal (HPG) axis that controls the synthesis and secretion of the luteinizing and follicle-stimulating hormones by gonadotrophs in the adenohypophysis. GnRH is produced by the specialized hypothalamic neurons using the site-specific proteolysis of the precursor protein and is secreted into the portal pituitary system, where it binds to the specific receptors. These receptors belong to the family of G protein-coupled receptors, and they are located on the surface of gonadotrophs and mediate the regulatory effects of GnRH on the gonadotropins production. The result of GnRH binding to them is the activation of phospholipase C and the calcium-dependent pathways, the stimulation of different forms of mitogen-activated protein kinases, as well as the activation of the enzyme adenylyl cyclase and the triggering of cAMP-dependent signaling pathways in the gonadotrophs. The gonadotropins, kisspeptin, sex steroid hormones, insulin, melatonin and a number of transcription factors have an important role in the regulation of GnRH1 gene expression, which encodes the GnRH precursor, as well as the synthesis and secretion of GnRH. The functional activity of GnRH-producing neurons depends on their migration to the hypothalamic region at the early stages of ontogenesis, which is controlled by anosmin, ephrins, and lactosamine-rich surface glycoconjugate. Dysregulation of the migration of GnRH-producing neurons and the impaired production and secretion of GnRH, lead to hypogonadotropic hypogonadism and other dysfunctions of the reproductive system. This review is devoted to the current state of the problem of regulating the synthesis and secretion of GnRH, the mechanisms of migration of hypothalamic GnRH-producing neurons at the early stages of brain development, the functional activity of the GnRH-producing neurons in the adult hypothalamus and the molecular mechanisms of GnRH action on the pituitary gonadotrophs. New experimental data are analyzed, which significantly change the current understanding of the functioning of GnRH-producing neurons and the secretion of GnRH, which is very important for the development of effective approaches for correcting the functions of the HPG axis.
APA, Harvard, Vancouver, ISO, and other styles
3

Robinson, Jane. "Prenatal programming of the female reproductive neuroendocrine system by androgens." Reproduction 132, no. 4 (2006): 539–47. http://dx.doi.org/10.1530/rep.1.00064.

Full text
Abstract:
It has been clear for several decades that the areas of the brain that control reproductive function are sexually dimorphic and that the ‘programming actions’ of the male gonadal steroids are responsible for sex-specific release of the gonadotrophins from the pituitary gland. The administration of exogenous steroids to fetal/neonatal animals has pinpointed windows of time in an animals’ development when the reproductive neuroendocrine axis is responsive to the organisational influences of androgens. These ‘critical’ periods for sexual differentiation of the brain are trait- and species-specific. The neural network regulating the activity of the gonadotrophin releasing hormone (GnRH) neurones is vital to the control of reproductive function. It appears that early exposure to androgens does not influence the migratory pathway of the GnRH neurone from the olfactory placode or the size of the population of neurones that colonise the postnatal hypothalamus. However, androgens do influence the number and the nature of connections that these neurones make with other neural phenotypes. Gonadal steroid hormones play key roles in the regulation of GnRH release acting largely via steroid-sensitive intermediary neurones that impinge on the GnRH cells. Certain populations of hormonally responsive neurones have been identified that are sexually dimorphic and project from hypothalamic areas known to be involved in the regulation of GnRH release. These neurones are excellent candidates for the programming actions of male hormones in the reproductive neuroendocrine axis of the developing female.
APA, Harvard, Vancouver, ISO, and other styles
4

Constantin, S. "Physiology of the Gonadotrophin-Releasing Hormone (GnRH) Neurone: Studies from Embryonic GnRH Neurones." Journal of Neuroendocrinology 23, no. 6 (2011): 542–53. http://dx.doi.org/10.1111/j.1365-2826.2011.02130.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Caligioni, C. S., C. Oliver, M. C. Jamur, and C. R. Franci. "Presence of Oxytocin Receptors in the Gonadotrophin-Releasing Hormone (GnRH) Neurones in Female Rats: A Possible Direct Action of Oxytocin on GnRH Neurones." Journal of Neuroendocrinology 19, no. 6 (2007): 439–48. http://dx.doi.org/10.1111/j.1365-2826.2007.01550.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Barbotin, Anne-Laure, Vincent Prévot, and Paolo Giacobini. "Développement des neurones à GnRH dans le cerveau d’embryons humains." médecine/sciences 33, no. 4 (2017): 376–79. http://dx.doi.org/10.1051/medsci/20173304003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vanacker, Charlotte, Sébastien G. Bouret, Paolo Giacobini, and Vincent Prévot. "Signalisation impliquant la neuropiline dans les neurones sécrétant la GnRH." médecine/sciences 37, no. 4 (2021): 366–71. http://dx.doi.org/10.1051/medsci/2021035.

Full text
Abstract:
La survie d’une espèce dépend de deux processus intimement liés : la reproduction, d’une part, et l’équilibre entre les besoins énergétiques et l’approvisionnement en sources d’énergie par l’alimentation, d’autre part. Ces deux processus sont contrôlés dans le cerveau par l’hypothalamus, qui produit des neurohormones agissant sur l’hypophyse pour piloter diverses fonctions physiologiques. L’une de ces neurohormones, la GnRH, contrôle non seulement la maturation et le fonctionnement des organes reproducteurs, incluant les ovaires et les testicules, lors de la puberté et à l’âge adulte, mais aussi l’attirance sexuelle. De récentes découvertes suggèrent que la signalisation impliquant la neuropiline-1 dans les neurones sécrétant la GnRH jouerait un rôle charnière dans la coordination du neurodéveloppement et des adaptations physiologiques et comportementales nécessaires au déclenchement de la puberté et à l’acquisition de la fonction de reproduction. Dans cet article de synthèse, nous replaçons ces découvertes dans le contexte de récents travaux montrant que les voies de signalisation des sémaphorines de classe 3 sont impliquées dans la physiopathologie non seulement de l’infertilité, mais aussi de l’obésité. Nous discutons également l’implication potentielle des neurones produisant la GnRH dans la perception des odeurs sociales et dans la précocité de la maturation sexuelle. L’hypothèse selon laquelle l’activité de ces neurones au cours du développement postnatal constituerait le chaînon manquant entre la prise de poids, le déclenchement de la puberté et le comportement sexuel, ouvre la voie à une meilleure compréhension de l’implication de l’homéostasie énergétique dans la maturation sexuelle, et pourrait aussi avoir des implications thérapeutiques pour la puberté précoce.
APA, Harvard, Vancouver, ISO, and other styles
8

Park, S.-K., D. A. Strouse, and M. Selmanoff. "Prolactin- and testosterone-induced inhibition of LH secretion after orchidectomy: role of catecholaminergic neurones terminating in the diagonal band of Broca, medial preoptic nucleus and median eminence." Journal of Endocrinology 148, no. 2 (1996): 291–301. http://dx.doi.org/10.1677/joe.0.1480291.

Full text
Abstract:
Abstract Central catecholaminergic neurones projecting to specific hypothalamic structures are involved in stimulating and inhibiting the activity of the GnRH-containing neurosecretory neurones. Both testosterone and elevated circulating prolactin (PRL) levels inhibit postcastration LH release. Three groups of adult male rats were orchidectomized and adrenalectomized, received corticosterone replacement and were: (i) administered purified ovine PRL (oPRL; 2400 μg/s.c. injection) or (ii) its diluent, polyvinylpyrrolidone (PVP), every 12 h, or (iii) received physiological testosterone replacement for 2 days. At 0, 2 and 6 days postcastration, norepinephrine (NE), epinephrine (E) and dopamine (DA) turnover were estimated by the α-methyl-p-tyrosine method in three micro-dissected hypothalamic structures: the diagonal band of Broca at the level of the organum vasculosum of the lamina terminalis (DBB(ovlt)), the medial preoptic nucleus (MPN) and the median eminence (ME). In control (PVP-treated) rats, serum LH concentrations increased eightfold at 2 and 6 days postcastration and this rise was prevented by testosterone. oPRL treatment transiently suppressed LH secretion at 2 but not 6 days postcastration. Castration significantly decreased basal rat PRL (rPRL) levels at 2 and 6 days and testosterone administration partially prevented this effect. NE turnover in the ME and E turnover in the MPN increased markedly at 2 and 6 days postcastration, and testosterone replacement for 2 days prevented these increases. Thus, noradrenergic neurones innervating the ME and adrenergic neurones innvervating the MPN may drive postcastration LH secretion by providing stimulatory afferent input to the GnRH neurones. It was striking to observe that oPRL blocked the increases in both ME NE and MPN E turnover at 2 but not 6 days postcastration. Hence, oPRL may transiently suppress LH release by an inhibitory action on these NE and E neurones. DA turnover in the DBB(ovlt) was significantly decreased by 6 days postcastration. Testosterone-treated (2 days postcastration) and oPRL-treated (2 and 6 days postcastration) rats exhibited turnover values indistinguishable from day 0 controls. Hence, the A14 dopaminergic neurones, which synapse on GnRH neurones in the rostral preoptic area and may exert an inhibitory effect on them, are positively regulated by PRL and perhaps by testosterone as well. Autoregulatory feedback suppression of endogenous rPRL secretion by oPRL was observed both 2 and 6 days postcastration. In contrast to the A14 dopaminergic neurones, turnover in the A12 tuberoinfundibular dopaminergic (TIDA) neurones innervating the ME increased significantly by 6 days postcastration in control rats while oPRL administration further increased ME DA turnover at both 2 and 6 days. Hence, autofeedback regulation of rPRL secretion persists through at least 6 days of oPRL exposure temporally associated with markedly increased turnover in the TIDA neurones. In summary, our results support the hypothesis that the inhibitory effect of PRL on postcastration LH release is mediated by suppression of the activity of NE neurones innervating the ME and E neurones terminating in the MPN which, with time, become refractory to continued PRL exposure. Journal of Endocrinology (1996) 148, 291–301
APA, Harvard, Vancouver, ISO, and other styles
9

Han, S. K., K. Lee, J. P. Bhattarai, and A. E. Herbison. "Gonadotrophin-Releasing Hormone (GnRH) Exerts Stimulatory Effects on GnRH Neurones in Intact Adult Male and Female Mice." Journal of Neuroendocrinology 22, no. 3 (2010): 188–95. http://dx.doi.org/10.1111/j.1365-2826.2009.01950.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Smith, M. "Neural signals that regulate GnRH neurones directly during the oestrous cycle." Reproduction 122, no. 1 (2001): 1–10. http://dx.doi.org/10.1530/reprod/122.1.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography