Academic literature on the topic 'Neuroni spinosi striatali'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Neuroni spinosi striatali.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Neuroni spinosi striatali"

1

SCIAMANNA, GIUSEPPE. "La disfunzione del recettore striatale D2 induce un’alterata trasmissione GABAergica in un modello murino di distonia DYT1." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2009. http://hdl.handle.net/2108/849.

Full text
Abstract:
La distonia DYT1 è una grave forma di distonia generalizzata causata da una mutazione del gene DYT1 che codifica per la proteina TorsinA. La funzione di tale proteina rimane ancora poco chiara anche se è stato proposto che possa svolgere importanti funzioni nel traffico proteico intracellulare e nei processi secretori. Lo striato, all'interno dei gangli della base svolge un importante ruolo nella regolazione dell'attività motoria, ed alterazioni a carico di tale struttura appaiono essere coinvolti nella patogenesi della distonia. Ho registrato pertanto le correnti sinaptiche spontanee sia di tipo GABAergico che glutamatergico in neuroni spinosi striatali (MSNs) da animali che sovraesprimevano la proteina umana mutata (hMT) confrontandoli poi con animali di controllo (CTRL) e con quelli che esprimevano la proteina umana non-mutata (hWT). Gli animali mutati presentavano un significativo aumento nella frequenza degli eventi sinaptici GABAergici (sIPSCs) non accompagnato però da variazioni nell'ampiezza di tali correnti. Al contrario l'attività spontanea di tipo glutamatergico (sEPSC) risultava essere del tutto normale. L'inibizione GABAergica striatale è di origine esclusivamente instrinseca e deriva da due distinte fonti. Una delle più importanti tuttavia fa capo agli interneuroni GABAergici Fast Spiking (FS). Ho pertanto verificato l'ipotesi che tali cellule potessero presentare alterazioni nella loro normale funzionalità. Sia gli sIPSCs che gli sEPSC registrati risultavano tuttavia essere invariati fra gli animali hMT, hWT e quelli di controllo. In condizioni fisiologiche l'attivazione del recettore dopaminergico D2 agisce presinapticamente inibendo il rilascio di GABA. Nei MSNs di animali di controllo e hWT, tale funzionalità risultava essere del tutto preservata. L'applicazione di quinpirolo (agonista D2-like) portava infatti ad una significativa riduzione della frequenza degli sIPSCs misurati. Tale effetto tuttavia era assente negli animali hMT. Inoltre sia MSNs sia FS di topi hMT non presentavano l'effetto inibitorio tipico del quinpirolo sulle correnti sinaptiche evocate tramite stimolazione elettrica (eIPSCs). In conclusione il mio lavoro dimostra la presenza di un'alterata attività del circuito GABAergico striatale in un modello animale di distonia DYT1, che può essere in parte giustificata da una disfunzione del recettore dopaminergico D2.
DYT1 dystonia is a severe form of inherited generalized dystonia, caused by a deletion in the DYT1 gene encoding the protein torsinA. The physiological function of torsinA is unclear, though it has been proposed to perform chaperone-like functions, assist in protein trafficking, membrane fusion and participate in secretory processing. Alterations in GABAergic signaling have been involved in the pathogenesis of dystonia. I recorded GABA- and glutamate-mediated synaptic currents from striatal neurons obtained from a mouse model of DYT1 dystonia. In medium spiny neurons (MSNs) from mice expressing human mutant torsinA (hMT), we observed a significantly higher frequency, but not amplitude, of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature currents (mIPSCs), whereas glutamatergic spontaneous excitatory synaptic potentials (sEPSCs) activity was normal. No alterations were found in mice overexpressing normal human torsinA (hWT). To identify the possible sources of the increased GABAergic tone, I recorded GABAergic Fast-Spiking (FS) interneurons that exert a feed-forward inhibition on MSNs. Both sEPSC and sIPSC recorded from hMT FS interneurons were comparable to hWT and controls.In physiological conditions, dopamine (DA) D2 receptor act presynaptically to reduce striatal GABA release. Notably, application of the D2-like receptor agonist quinpirole failed to reduce the frequency of sIPSCs in MSNs from hMT as compared to hWT and controls. Likewise, the inhibitory effect of quinpirole was lost on evoked IPSCs both in MSNs and FS interneurons from hMT mice. My findings demonstrate a disinhibition of GABAergic synaptic activity, that can be partially attributed to a D2 DA receptor dysregulation. A rise in GABA transmission would result in a profound alteration of striatal output, that might be relevant to the pathogenesis of dystonia.
APA, Harvard, Vancouver, ISO, and other styles
2

GHIGLIERI, VERONICA. "La proteina presinaptica Bassoon regola la plasticità sinaptica in cellule striatali: caratterizzazione elettrofisiologica, molecolare, morfologica e comportamentale di un modello sperimentale di epilessia." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2009. http://hdl.handle.net/2108/804.

Full text
Abstract:
La delezione funzionale della proteina presinaptica Bassoon (Bsn), che fa parte delle proteine scaffolding deputate al corretto assemblaggio e fusione delle vescicole sinaptiche nel processo di release, è associata con l’insorgenza di crisi epilettiche spontanee e con alterazioni nell’attività neuronale e nella morfologia di corteccia a ippocampo. Dato che ricevono numerose afferenze corticali attraverso lo striato, i gangli della base (GB) sono stati implicati nella patogenesi dell’epilessia, anche se il loro ruolo, e in particolare quello del microcircuito striatale, nel limitare la propagazione dell’attività epilettogena è ancora argomento di discussione. Per studiare il ruolo dei GB nell’epilessia abbiamo ipotizzato che la propagazione delle scariche epilettiche dalla corteccia verso lo striato potesse indurre, come meccanismo adattativo, un’alterazione dell’eccitabilità a lungo e breve termine di due sottopopolazioni neuronali del microcircuito striatale: i neuroni di proiezione spinosi e gli interneuroni GABAergici fast-spiking (FS). A questo scopo ci siamo proposti di caratterizzare il fenotipo epilettico e le capacità di apprendimento dei mutanti Bsn e di studiarne la plasticità striatale e ippocampale tramite registrazioni elettrofisiologiche, saggi molecolari e analisi morfologiche. Le crisi epilettiche dei mutanti sono state quindi monitorate e classificate e l’apprendimento procedurale e ippocampo-dipendente valutato attraverso una batteria di test comportamentali. Le registrazioni intracellulari sono state effettuate in vitro da fettine corticostriatali mentre registrazioni extracellulari sono state ottenute da fettine ippocampali. L’espressione di proteine associate al compartimento postsinaptico è stata poi valutata tramite analisi del Western blot mentre uno studio morfologico dei neuroni spinosi e degli interneuroni FS è stato effettuato con la colorazione di Golgi e tecniche di immunoistochimica. I topi mutanti per la proteina Bsn mostravano uno sviluppo di crisi epilettiche ad insorgenza precoce che negli adulti erano associate a un riarrangiamento della plasticità sinaptica all’interno del microcircuito striatale. Sebbene infatti la depressione a lungo termine (LTD) fosse espressa ugualmente nei due genotipi, il potenziamento a lungo termine (LTP) indotto nei neuroni spinosi dei mutanti era ridotto rispetto ai controlli, mentre la LTP ippocampale era completamente assente. L’alterazione striatale era associata a un aumento significativo delle ramificazioni dendritiche e delle spine immature nei neuroni spinosi e a profonde alterazioni di alcune proteine postsinaptiche di importanza fondamentale per la LTP. Le analisi molecolari hanno rilevato infatti che la composizione in subunità del recettore NMDA era profondamenre cambiata, i livelli di BDNF ridotti mentre l’espressione di recettore TrkB nella membrana postsinaptica era significativamente aumentata. Tuttavia, l’aspetto più interessante del pattern di modificazioni osservate in striato era che gli interneuroni FS dei mutanti Bsn presentavano una forma di potenziamento a breve termine della trasmissione sinaptica, non presente nei controlli. Questa forma di plasticità emergente era NMDA- e BDNF-dipendente e si accompagnava a un aumento significativo del numero degli interneuroni nello striato dei topi epilettici rispetto agli animali di controllo. Infine i test comportamentali hanno mostrato che gli animali mutanti presentavano capacità di apprendimento procedurale intatte, mentre presentavano performances ridotte in test di memoria ippocampo-dipendente. I nostri risultati dimostrano che mentre nei topi mutanti per la proteina Bsn si osserva una compromissione della plasticità ippocampale con perdita delle funzioni mnemoniche ippocampo-dipendenti, i sottotipi neuronali dello striato rispondono con meccanismi differenti all’attività epilettogena cronica corticale creando un quadro di riorganizzazione funzionale che preserva funzioni motorie e cognitive. Data l’insorgenza precoce della sintomatologia epilettica, il riarrangiamento della connettività neuronale nello striato e della plasticità sinaptica corticostriatale che si osserva negli adulti potrebbero essere intrerpretati come meccanismi di adattamento volti a proteggere la funzionalità dei GB.
Absence of functional presynaptic scaffolding protein Bassoon (Bsn) in mutant mice is associated with the development of pronounced spontaneous seizures and with consistent alterations in neuronal activity and morphology of hippocampus and cerebral cortex. The basal ganglia network receives a strong glutamatergic series of inputs from cortical regions through the striatum and it has been involved in the pathophysiology of epilepsy. However its functions, and in particular the role of the striatal microcircuit, in limiting epileptogenesis is still debated. To further investigate on the role of BG in limiting epileptic activity, we hypothesized that the spreading of epileptic seizures from the cortex to the striatum may alter both short and long-term excitability in two neuronal subtypes, the striatal fast-spiking GABAergic interneurons (FS) and the medium spiny (MS) neurons as an adaptive mechanism. To this end we first planned to study the epileptic phenotype and the learning skills of mutants. We then propose to characterize the plastic changes by electrophysiological recordings, molecular analyses and morphological studies. Epileptic seizures in mutant mice were video-recorded, classified and procedural learning and hippocampal-based learning skills were evaluated with a battery of behavioral tests. In vitro intracellular recordings were performed from corticostriatal slices obtained from Bsn mutants and WT mice while extracellular recordings were performed in hippocampal slices. Postsynaptic proteins were analyzed by Western blotting while morphological studies of FS and MS were performed in epileptic mice brain with Golgi-staining and unbiased immunohystochemical technique. Bsn mutant mice showed early-onset epileptic seizure development, which in adults were associated to a rearrangement of synaptic plasticity within the striatal microcircuit. In fact, although long-term depression (LTD) was equally expressed in both genotypes, the amplitude of long-term potentiation (LTP) induced in MS neurons of Bsn mutant mice was reduced compared to control, while hippocampal LTP was completely lost. The alteration in striatal plasticity was associated to differences in dendrite branching and spine maturation of MS neurons and to profound modifications of postsynaptic components expression in the whole striatum. In particular, in the striatum of epileptic mice, the NMDA subunit composition was found altered, the BDNF expression decreased and TrkB receptor upregulated. Interestingly, following high frequency stimulation protocol, GABAergic FS recorded from Bsn mutant mice expressed a NMDA and BDNF-dependent short-term potentiation that was absent in WT animals. Moreover FS interneurons were increased in number in the epileptic genotype. Behavioral tests for assessment of learning skills demonstrated that procedural learning capabilities are intact while hippocampal-based functions are compromised in epileptic mice providing evidences for a competition between the two memory systems. Our results indicate that while hippocampal synaptic plasticity is lost, striatal neuronal subtypes are differentially sensitive to continuous seizures and to the associated alterations of BDNF/TrkB signaling. These data suggest that changes of corticostriatal activity develop in early-onset epileptic conditions associated to the lack of functional Bsn. The reorganization of plasticity between neuronal subtypes may protect striatum and downstream BG nuclei from continuous cortical seizures in order to preserve striatal functions.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Neuroni spinosi striatali"

1

Beninger, Richard J. Mechanisms of dopamine-mediated incentive learning. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198824091.003.0012.

Full text
Abstract:
Mechanisms of dopamine-mediated incentive learning explains how sensory events, resulting from an animal’s movement and the environment, activate cortical glutamatergic projections to dendritic spines of striatal medium spiny neurons to initiate a wave of phosphorylation. If no rewarding stimulus is encountered, a subsequent wave of phosphatase activity undoes the phosphorylation. If a rewarding stimulus is encountered, dopamine initiates a cascade of events in D1 receptor-expressing medium spiny neurons that may prevent the phosphatase effects and work synergistically with signaling events produced by glutamate. As a result, corticostriatal synapses have a greater impact on response systems; this may be part of the mechanism of incentive learning. Dopamine acting on dendritic spines of D2 receptor-expressing medium spiny neurons may prevent synaptic strengthening by inhibiting adenosine signaling; these synapses may be weakened through mechanisms involving endocannabinoids. When dopamine concentrations drop, e.g. during negative prediction errors, the opposite may occur, producing inverse incentive learning.
APA, Harvard, Vancouver, ISO, and other styles
2

Beninger, Richard J. Introduction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198824091.003.0001.

Full text
Abstract:
The Introduction provides a brief overview of the book. The central theme is dopamine-mediated reward-related incentive learning—the acquisition by neutral stimuli of an increased ability to elicit approach and other responses. The brain has multiple memory systems defined as “declarative” and “non-declarative”; incentive learning produces one form of non-declarative memory. Once incentive learning is established it is gradually lost when the rewarding stimulus is no longer available or when dopamine function is reduced. Decreases in dopaminergic neurotransmission may produce inverse incentive learning—the loss by stimuli of their ability to elicit approach and other responses. Dopamine-related diseases including schizophrenia, Parkinson’s, attention deficit hyperactivity disorder, and drug abuse involve altered incentive learning. Incentive and inverse incentive learning may occur by the actions of dopamine, adenosine, and endocannabinoids at dendritic spines of striatal medium spiny neurons that have had recent glutamate input. Activity in dopaminergic neurons in humans appears to affect mental experience.
APA, Harvard, Vancouver, ISO, and other styles
3

Beninger, Richard J. Life's rewards. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198824091.001.0001.

Full text
Abstract:
Life’s Rewards: Linking Dopamine, Incentive Learning, Schizophrenia, and the Mind explains how increased brain dopamine produces reward-related incentive learning, the acquisition by neutral stimuli of increased ability to elicit approach and other responses. Dopamine decreases may produce inverse incentive learning, the loss by stimuli of the ability to elicit approach and other responses. Incentive learning is gradually lost when dopamine receptors are blocked. The brain has multiple memory systems defined as “declarative” and “non-declarative;” incentive learning produces one form of non-declarative memory. People with schizophrenia have hyperdopaminergia, possibly producing excessive incentive learning. Delusions may rely on declarative memory to interpret the world as it appears with excessive incentive learning. Parkinson’s disease, associated with dopamine loss, may involve a loss of incentive learning and increased inverse incentive learning. Drugs of abuse activate dopaminergic neurotransmission, leading to incentive learning about drug-associated stimuli. After withdrawal symptoms have been alleviated by detoxification treatment, drug-associated conditioned incentive stimuli will retain their ability to elicit responses until they are repeatedly experienced in the absence of primary drug rewards. Incentive learning may involve the action of dopamine at dendritic spines of striatal medium spiny neurons that have recently had glutamatergic input from assemblies of cortical neurons activated by environmental and proprioceptive stimuli. Glutamate initiates a wave of phosphorylation normally followed by a wave of phosphatase activity. If dopaminergic neurons fire, stimulation of D1 receptors prolongs the wave of phosphorylation, allowing glutamate synaptic strengthening. Activity in dopaminergic neurons in humans appears to affect mental experience.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography