Academic literature on the topic 'Newton-Raphson iterations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Newton-Raphson iterations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Newton-Raphson iterations"
RAMADHANI UTAMI, NANDA NINGTYAS, I. NYOMAN WIDANA, and NI MADE ASIH. "PERBANDINGAN SOLUSI SISTEM PERSAMAAN NONLINEAR MENGGUNAKAN METODE NEWTON-RAPHSON DAN METODE JACOBIAN." E-Jurnal Matematika 2, no. 2 (May 31, 2013): 11. http://dx.doi.org/10.24843/mtk.2013.v02.i02.p032.
Full textKornerup, Peter, and Jean-Michel Muller. "Choosing starting values for certain Newton–Raphson iterations." Theoretical Computer Science 351, no. 1 (February 2006): 101–10. http://dx.doi.org/10.1016/j.tcs.2005.09.056.
Full textShayya, W. H., R. H. Mohtar, and M. S. Baasiri. "A Computer Model for the Hydraulic Analysis of Open Channel Cross Sections." Journal of Agricultural and Marine Sciences [JAMS] 1 (January 1, 1996): 57. http://dx.doi.org/10.24200/jams.vol1iss0pp57-64.
Full textSouza, Luiz Antonio Farani de, Emerson Vitor Castelani, and Wesley Vagner Inês Shirabayashi. "Adaptation of the Newton-Raphson and Potra-Pták methods for the solution of nonlinear systems." Semina: Ciências Exatas e Tecnológicas 42, no. 1 (June 2, 2021): 63. http://dx.doi.org/10.5433/1679-0375.2021v42n1p63.
Full textMandailina, Vera, Syaharuddin Syaharuddin, Dewi Pramita, Malik Ibrahim, and Habib Ratu Perwira Negara. "Wilkinson Polynomials: Accuracy Analysis Based on Numerical Methods of the Taylor Series Derivative." Desimal: Jurnal Matematika 3, no. 2 (May 28, 2020): 155–60. http://dx.doi.org/10.24042/djm.v3i2.6134.
Full textSabziev, Elkhan Nariman. "Calculation of Flight Data Fusion Coefficients Using Newton–Raphson Iterations." Modeling, Control and Information Technologies, no. 4 (October 23, 2020): 100–103. http://dx.doi.org/10.31713/mcit.2020.20.
Full textTong, Ming Yu, Di Jian Xu, Jin Liang Shi, and Yan Shi. "Application of the Newton-Raphson Method in a Voice Localization System." Applied Mechanics and Materials 513-517 (February 2014): 4435–38. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.4435.
Full textRaposo-Pulido, V., and J. Peláez. "An efficient code to solve the Kepler equation." Astronomy & Astrophysics 619 (November 2018): A129. http://dx.doi.org/10.1051/0004-6361/201833563.
Full textYen, Jerome, Bangren Chen, KangZhang Wu, and Joseph Yen. "Fast generation of implied volatility surface: Optimize the traditional numerical analysis and machine learning." International Journal of Financial Engineering 08, no. 02 (June 2021): 2150037. http://dx.doi.org/10.1142/s2424786321500377.
Full textZotos, Euaggelos E., Satyendra Kumar Satya, Rajiv Aggarwal, and Sanam Suraj. "Basins of Convergence in the Circular Sitnikov Four-Body Problem with Nonspherical Primaries." International Journal of Bifurcation and Chaos 28, no. 05 (May 2018): 1830016. http://dx.doi.org/10.1142/s0218127418300161.
Full textDissertations / Theses on the topic "Newton-Raphson iterations"
Demir, Abdullah. "Form Finding And Structural Analysis Of Cables With Multiple Supports." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613609/index.pdf.
Full textBegiato, Rodolfo Gotardi 1980. "Métodos híbridos e livres de derivadas para resolução de sistemas não lineares." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305946.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-21T10:21:10Z (GMT). No. of bitstreams: 1 Begiato_RodolfoGotardi_D.pdf: 3815627 bytes, checksum: 59584610cfd737a94e68dc5bf3735e25 (MD5) Previous issue date: 2012
Resumo: O objetivo desta tese é tratar da resolução de sistemas não lineares de grande porte, em que as funções são continuamente diferenciáveis, por meio de uma abordagem híbrida que utiliza um método iterativo com duas fases. A primeira fase consiste de versões sem derivadas do método do ponto fixo empregando parâmetros espectrais para determinar o tamanho do passo da direção residual. A segunda fase é constituída pelo método de Newton inexato em uma abordagem matrix-free, em que é acoplado o método GMRES para resolver o sistema linear que determina a nova direção de busca. O método híbrido combina ordenadamente as duas fases de forma que a segunda é acionada somente em caso de falha na primeira e, em ambas, uma condição de decréscimo não-monótono deve ser verificada para aceitação de novos pontos. Desenvolvemos ainda um segundo método, em que uma terceira fase de busca direta é acionada em situações em que o excesso de buscas lineares faz com que o tamanho de passo na direção do método de Newton inexato torne-se demasiadamente pequeno. São estabelecidos os resultados de convergência dos métodos propostos. O desempenho computacional é avaliado em uma série de testes numéricos com problemas tradicionalmente encontrados na literatura. Tanto a análise teórica quanto a numérica evidenciam a viabilidade das abordagens apresentadas neste trabalho
Abstract: This thesis handles large-scale nonlinear systems for which all the involved functions are continuously differentiable. They are solved by means of a hybrid approach based on an iterative method with two phases. The first phase is defined by derivative-free versions of a fixed-point method that employs spectral parameters to define the steplength along the residual direction. The second phase consists of a matrix-free inexact Newton method that employs the GMRES to solve the linear system that computes the search direction. The proposed hybrid method neatly combines the two phases in such a way that the second is called only in case the first one fails. To accept new points in both phases, a nonmonotone decrease condition upon a merit function has to be verified. A second method is developed as well, with a third phase based on direct search, that should act whenever too many line searches have excessively decreased the steplenght along the inexact- Newton direction. Convergence results for the proposed methods are established. The computational performance is assessed in a set of numerical experiments with problems from the literature. Both the theoretical and the experimental analysis corroborate the feasibility of the proposed strategies
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
Tong, Xiaolong. "A Constitutive Model for Crushable Polymer Foams Used in Sandwich Panels: Theory and FEA Application." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1596806015399848.
Full textBooks on the topic "Newton-Raphson iterations"
Argyros, Ioannis K. Convergence and Applications of Newton-type Iterations. Springer, 2010.
Find full textBook chapters on the topic "Newton-Raphson iterations"
Qin, Long, Fanwu Zhang, Lei Liu, Chunjiao Zhang, Jianbo Zheng, Xue Lei, Liuchun Yang, Fengmin Tian, and Fangxun Zhao. "Determination of Throttle Setpoint Control of Turbo-Charged GDI Engine Based on Newton Raphson Iteration." In Lecture Notes in Electrical Engineering, 1059–67. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7945-5_78.
Full textZhang, Yunong, Zhende Ke, Zhan Li, and Dongsheng Guo. "Comparison on Continuous-Time Zhang Dynamics and Newton-Raphson Iteration for Online Solution of Nonlinear Equations." In Advances in Neural Networks – ISNN 2011, 393–402. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21105-8_46.
Full textRachdi, Mustapha, Ali Laksaci, Ali Hamié, Jacques Demongeot, and Idir Ouassou. "Curves Classification by Using a Local Likelihood Function and Its Practical Usefulness for Real Data." In Fuzzy Systems and Data Mining VI. IOS Press, 2020. http://dx.doi.org/10.3233/faia200691.
Full text"Newton–Raphson Iteration and Fractals." In Mathematical Explorations with MATLAB, 164–70. Cambridge University Press, 1999. http://dx.doi.org/10.1017/cbo9780511624117.014.
Full textBethke, Craig M. "Solving for the Equilibrium State." In Geochemical Reaction Modeling. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195094756.003.0009.
Full textConference papers on the topic "Newton-Raphson iterations"
Zhang, Wanjun, Feng Zhang, Jingxuan Zhang, Jingyi Zhang, and Jingyan Zhang. "Study on System Recognition Method for Newton-Raphson Iterations." In 2018 International Computers, Signals and Systems Conference (ICOMSSC). IEEE, 2018. http://dx.doi.org/10.1109/icomssc45026.2018.8941745.
Full textPapazafeiropoulos, George, Vagelis Plevris, and Manolis Papadrakakis. "NONLINEAR DYNAMIC RESPONSE OF HARDENING, SOFTENING AND ELASTOPLASTIC SDOF SYSTEMS USING GENERALIZED SINGLE STEP ALGORITHMS WITH NEWTON - RAPHSON ITERATIONS." In 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2015. http://dx.doi.org/10.7712/120115.3582.3606.
Full textNallathambi, Ashok Kumar, Eckehard Specht, and Albrecht Bertram. "Finite Element Technique for Phase-Change Heat Conduction Problem." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88106.
Full textMoreno, Carlos Luis. "Flow Analysis on Piping Networks Using the Finite Element Method." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63553.
Full textLi, Zhaokun, and Xianmin Zhang. "Multiobjective Topology Optimization of Compliant Microgripper With Geometrically Nonlinearity." In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21294.
Full textKumar, Prabhat, Roger A. Sauer, and Anupam Saxena. "On Synthesis of Contact Aided Compliant Mechanisms Using the Material Mask Overlay Method." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47064.
Full textKurzke, Joachim. "About Simplifications in Gas Turbine Performance Calculations." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27620.
Full textXin, Jin, Xiaohan Liu, and Xiaoyan Wei. "A New Numerical Method for Fuel Temperature Calculation." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66248.
Full textKraffer, F., and J. J. Loiseau. "Spectral factorization via Lyapunov equation based Newton-Raphson iteration." In Proceedings of 2002 American Control Conference. IEEE, 2002. http://dx.doi.org/10.1109/acc.2002.1025480.
Full textChen, Chang-New. "The Global Secant Relaxation-Based Accelerated Iteration Procedure for Solution of Nonlinear Finite Element Equation Systems of Offshore Structural Mechanics Problems." In ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2011. http://dx.doi.org/10.1115/omae2011-50170.
Full text