Dissertations / Theses on the topic 'Newtonian Fluid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Newtonian Fluid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
ABDU, ALINE AMARAL QUINTELLA. "NON-NEWTONIAN FLUID DISPLACEMENT IN ANNULI." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=29332@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Na indústria do petróleo são comuns processos envolvendo deslocamentos de um fluido pelo outro, como nos processos de completação e cimentação de poços. A eficiência desses deslocamentos é de suma importância, garantindo a vida útil do poço. A operação é considerada adequada quando ocorre uma distribuição homogênea da pasta de cimento na parede do poço. No presente trabalho um estudo experimental e numérico do deslocamento de fluidos em espaço anular foi realizada. Para os testes experimentais um simulador físico de um poço em escala foi construído. As equações de conservação de massa e momento foram resolvidas através do método de volumes finitos, utilizando os programas Fluent e OpenFOAM. Para a modelagem multifásica foi utilizado o método volume-of-fluid (VOF). No estudo, a avaliação da influência de parâmetros reológicos, razões de densidade e viscosidade, geometria do poço e vazão de bombeio foi realizada com o objetivo de otimizar o processo de cimentação. Os fluidos utilizados foram fluidos modelos e reais, newtonianos e não newtonianos. A eficiência de deslocamento foi avaliada através da configuração da interface entre os fluidos e através da determinação do da densidade da mistura na saída do anular ao longo do tempo.
Displacement of one fluid by another is a common process at petroleum industry, as completion and cementing operations of oil wells. The success of these fluids displacement guarantee the lifetime of the wells. The adequate operation occurs when the cement slurry distribution at the wall is homogeneous. In this work, experimental and numerical studies of Newtonian and non-Newtonian fluid displacement through annuli are performed. The experiments are performed using a scaled oil well model. The numerical solution of the governing conservation equations of mass and momentum is obtained using the finite volume technique and Fluent and OpenFOAM softwares. The multiphase modeling is performed using the volume of fluid (VOF) method. The effect of rheological parameters, density and viscosity ratios, geometry configuration, and flow rate on displacement efficiency was evaluated to optimize cementing operation. Tests were performed using model and real fluids, Newtonian and non-Newtonian. The displacement efficiency was evaluated analyzing the interface between fluids and measuring the density of the mixture at the annuli outlet through time.
Gouldson, Iain William. "The flow of Newtonian and non-Newtonian fluids in an annular geometry." Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243035.
Full textKeiller, Robert A. "Non-Newtonian extensional flows." Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315030.
Full textMennad, Abed. "Singular behaviour of Non-Newtonian fluids." Thesis, Peninsula Technikon, 1999. http://hdl.handle.net/20.500.11838/1253.
Full textSince 1996, a team at the Centre for Research in Applied Technology (CRATECH) at Peninsula Technikon, under NRF sponsorship and with industrial co-operation, has been involved in the simulation of Non-Newtonian flow behaviour in industrial processes, in particular, injection moulding of polymers. This study is an attempt to deal with some current issues of Non-Newtonian flow, in small areas, from the viewpoint of computational mechanics. It is concerned with the numerical simulation of Non-Newtonian fluid flows in mould cavities with re-entrant corners. The major complication that exists in this numerical simulation is the singularity of the stresses at the entry of the corner, which is responsible for nonintegrable stresses and the propagation of solution errors. First, the study focuses on the derivation of the equations of motion of the flow which leads to Navier- Stokes equations. Thereafter, the occurrence of singularities in the numerical solution of these equations is investigated. Singularities require special attention no matter what numerical method is used. In finite element analysis, local refinement around the singular point is often employed in order to improve the accuracy. However, the accuracy and the rate of convergence are not, in general, satisfactory. Incorporating the nature of singularity, obtained by an asymptotic analysis in the numerical solution, has proven to be a very effective way to improve the accuracy in the neighborhood of the singularity and, to speed up the rate of convergence. This idea has been successfully adopted in solving mainly fracture mechanics problems by a variety of methods: finite difference, finite elements, boundary and global elements, and spectral methods. In this thesis, the singular finite elements method (SFEM), similar in principle to the crack tip element used in fracture mechanics, is proposed to improve the solution accuracy in the vicinity of the singular point and to speed up the rate of convergence. This method requires minor modifications to standard finite element schemes. Unfortunately, this method could not be implemented in this study due to the difficulty in generating the mesh for the singular element. Only the standard finite element method with mesh refinement has been used. The results obtained are in accordance with what was expected.
Callahan, Thomas Patrick. "Non-Newtonian fluid injection into granular media." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39618.
Full textKhahledi, Morakane Charlotte. "Non-Newtonian fluid flow measurement using sharp crested notches." Thesis, Cape Peninsula University of Technology, 2014. http://hdl.handle.net/20.500.11838/1038.
Full textNotches, particularly rectangular and V shaped are the cheapest and most common devices used to measure the flow rate of water in open channels. However, they have not been used to measure the flow rate of non-Newtonian fluids. These viscous fluids behave differently from water. It is difficult to predict the flow rate of such fluids during transportation in open channels due to their complex viscous properties. The aim of this work was to explore the possibility of extending the application of especially rectangular and V-shaped notches to non-Newtonian fluids. The tests reported in this document were carried out in the Flow Process and Rheology Centre laboratory. Notches fitted to the entrance of a 10 m flume and an in-line tube viscometer were calibrated using water. The in-line tube viscometer with 13 and 28 mm diameter tubes was used to determine the fluid rheology. Flow depth was determined using digital depth gauges and flow rate measurements using magnetic flow meters. Three different non-Newtonian fluids, namely, aqueous solutions of Carboxymethyl Cellulose (CMC) and water-based suspensions of kaolin and bentonite were used as model non-Newtonian test fluids. From these the coefficient of discharge (Cd) values and appropriate non-Newtonian Reynolds numbers for each fluid and concentration were calculated. The experimental values of the coefficient of discharge (Cd) were plotted against three different definitions of the Reynolds number. Under laminar flow conditions, the discharge coefficient exhibited a typical dependence on the Reynolds number with slopes of ~0.43-0.44 for rectangular and V notches respectively. The discharge coefficient was nearly constant in the turbulent flow regime. Single composite power-law functions were used to correlate the Cd-Re relationship for each of the two notch shapes used. Using these correlations, the Cd values could be predicted to within ±5% for the rectangular and V notches. This is the first time that such a prediction has been done for a range of non-Newtonian fluids through sharp crested notches. The research will benefit the mining and food processing industries where high concentrations of non-Newtonian fluids are transported to either disposal sites or during processing.
Vayssière, Brandão Pedro <1993>. "Linear and nonlinear thermal instability of Newtonian and non-Newtonian fluid saturated porous media." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10143/1/VayssiereBrandao_Pedro_PhD_Thesis.pdf.
Full textVongvuthipornchai, Somporn. "Well test analysis for non-Newtonian fluid flow /." Access abstract and link to full text, 1985. http://0-wwwlib.umi.com.library.utulsa.edu/dissertations/fullcit/8603796.
Full textKetheeswaranathan, Nishanthi. "Rehological study of non-Newtonian fluid through microchannels." Thesis, University of Leeds, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540775.
Full textYim, Samson Sau Shun. "The effect of flow stability on residence time distribution of Newtonian and non-Newtonian liquids in couette flow." Thesis, University College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264191.
Full textPrabhanjan, Devanahalli G. "Influence of coil characteristics on heat transfer to Newtonian fluids." Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36910.
Full textComparative study has shown that the outer and total heat transfer coefficients were significantly lower in natural than in forced convection water bath. However, inner heat transfer coefficient was not significantly affected. Flow rate as low as 0.001 m.s-1 in the water bath improved the outer and total heat transfer coefficients by 35 and 22% respectively. One could expect a higher rate with an increase in water re-circulation rate inside the water bath. Percent rise in heat transfer was limited to seven with respect to inner heat transfer. With the Pearson correlation, it was possible to express total heat transfer rate directly in terms of outer and inner rates. Significant interactions were observed between variables and constants.
Experiments with 2 pitch cases were conducted with water to water heat transfer using coils to determine the Nusselt number correlation for natural convection. Characteristic lengths were changed in the models. The Nusselt number was under-predicted by 25 to 37% for water bath temperatures of 75° and 95°C respectively. Flow rate inside the coil had slight effect on Nusselt number due to change in the temperature gradient along the length of the coil.
Studies conducted with three base oils have shown significant difference in viscosity after heating the oil for several turns. Each fluid was heated in a distinct flow regime. The observed Nusselt number inside the coil for low Reynolds number was as high as an order of magnitude than the predicted values calculated by Seider-Tate relation for laminar flow. Vorticies formed associated with the eddy structure could very well be the cause for this kind of rise in the value.
Preliminary study conducted has shown a higher rise in temperature of processing fluid in case of helical coil compared to that of a straight tube. Larger the diameter of the tube better was the heat transfer. An elevated bath temperature had higher heat transfer.
Van, Sittert Fritz Peter. "The effect of pipe roughness on non-Newtonian turbulent flow." Thesis, Cape Technikon, 1999. http://hdl.handle.net/20.500.11838/1035.
Full textPipe roughness is known to greatly increase the turbulent flow friction factor for Newtonian fluids. The well-known Moody diagram shows that an order of magnitude increase in the friction is possible due to the effect of pipe roughness. However, since the classical work of Nikuradse (1926 -1933), very little has been done in this area. In particular, the effects that pipe roughness might have on non-Newtonian turbulent flow head loss, has been all but totally ignored. This thesis is directed at helping to alleviate this problem. An experimental investigation has been implemented in order to quantify the effect that pipe roughness has on non-Newtonian turbulent flow head loss predictions. The Balanced Beam Tube Viscometer (BBTV), developed at the University of Cape Town, has been rebuilt and refined at the Cape Technikon and is being used for research in this field. The BBTV has been fitted with pipes of varying roughness. The roughness of smooth P\'C pipes was artificially altered using methods similar to those of Nikuradse. This has enabled the accumulation of flow data in laminar and turbulent flow in pipes that are both hydraulically smooth and rough Newtonian and non-Newtonian fluids have been used for the tests. The data have been subjected to analysis using various theories and scaling laws. The strengths and problems associated with each approach are discussed and It is concluded that roughness does have a significant effect on Newtonian as well as non-Newtonlan flow.
Götz, Dario [Verfasser]. "Three topics in fluid dynamics: Viscoelastic, generalized Newtonian, and compressible fluids / Dario Götz." München : Verlag Dr. Hut, 2012. http://d-nb.info/1029400113/34.
Full textGallup, Benjamin H. (Benjamin Hodsdon) 1982. "High speed imaging of transient non-Newtonian fluid phenomena." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32815.
Full textIncludes bibliographical references (leaf 51).
In this thesis, I investigate the utility of high speed imaging for gaining scientific insight into the nature of short-duration transient fluid phenomena, specifically applied to the Kaye effect. The Kaye effect, noted by A. Kaye in the March 9, 1963 issue of Nature, is the deflection and rebound of a free-falling non-Newtonian fluid stream incident on a pool of the same fluid. The effect was successfully reproduced using Suave[TM] shampoo, and imaged using the Phantom[TM] High Speed Video system. This task involved developing a knowledge of the photographic process as applied to high speed imaging, and of non-Newtonian fluid mechanics. No precisely reproducible method for producing rebounding streams was found, and behavior contrary to the existing body of observation were noted. In conclusion, areas that merited further investigation and potential variables of interest to future Kaye effect research are discussed.
by Benjamin H. Gallup.
S.B.
Domurath, Jan. "Stress and strain amplification in non-Newtonian fluids filled with spherical and anisometric particles." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-233044.
Full textUne étude numérique sur des suspensions diluées à base d’un fluide non newtonien et de particules sphéroïdales rigides est réalisée. Le comportement de la matrice est décrit par un fluide de type Carreau. De particules sphériques et rigides est considéré en premier. Un écoulement en élongation uniaxiale autour d’une sphère est simulée. Ensuite, l’homogénéisation numérique est utilisée pour déterminer la viscosité apparente de la suspension pour différents taux de déformation et d’indices pseudoplastiques. Dans le domaine newtonien, le résultat d’Einstein donnant la viscosité d’une suspension diluée de particules sphériques et rigides est obtenu. Dans le régime en loi de puissance on constate que la viscosité intrinsèque dépend uniquement de l’indice pseudoplastique. Une autre étude numérique est effectuée pour investiguer l’influence de la forme des particules. Plusieurs écoulements autour d’une particule sphéroïdale sont simulés pour différentes orientations. Une homogénéisation numérique est ensuite utilisée pour obtenir la viscosité intrinsèque de la suspension en fonction du taux de déformation appliqué, de l’indice d’écoulement et du rapport de forme de la particule. A partir de ces résultats, il est possible d’exprimer les coefficients rhéologiques du modèle de Lipscomb. Dans le régime newtonien, les résultats coïncident avec les prédictions de Lipscomb. Dans le domaine en loi de puissance, les coefficients rhéologiques deviennent fortement dépendent de l’indice pseudoplastique. En outre, les résultats des simulations montrent que ces coefficients rhéologiques dépendent également de l’orientation des particules dans le régime non linéaire
Numerische Untersuchung zu verdünnten Suspensionen basierend auf einer nicht Newtonschen Matrixflüssigkeit und harten spheroidalen Partikeln wurde durchgeführt. Ein Carreau Fluid beschreibt die nicht Newtonsche Matrix. Zuerst wird der Spezialfall harter Kugeln betrachtet. Hierzu wird eine uniaxiale Dehnströmung um eine Kugel simuliert und numerische Homogenisierung wird verwendet um die effektive Viskosität der Suspension für verschieden aufgebrachte Deformationsgeschwindigkeiten und Verdünnungsexponenten zu bestimmen. Im Newtonschen Bereich wird die bekannte Lösung Einsteins für die Viskosität einer verdünnten Suspension harter Kugeln erhalten. Im power-law Bereich ist die intrinsische Viskosität einzig eine Funktion des Verdünnungsexponenten. Unter Nutzung der Simulationsergebnisse wird eine Modifikation des Carreau Modells vorgeschlagen. Um den Einfluss der Partikelform auf die nichtlinearen Eigenschaften zu untersuchen wird eine weitere numerische Simulationen durchgeführt. Dabei werden verschiedene Strömungen um spheroidale Partikel mit unterschiedlicher Orientierung simuliert und numerische Homogenisierung wird verwendet um die intrinsische Viskosität als Funktion der aufgebrachten Deformationsgeschwindigkeit, des Verdünnungsexponenten und des Partikelaspektverhältnisses zu bestimmen. Es ist möglich die rheologischen Parameter des Lipscomb Modells aus den Simulationsergebnissen zu bestimmen. Im Newtonschen Bereich stimmen die numerisch bestimmten Werte mit der Vorhersage Lipscomb‘s überein. Im power-law Bereich hängen die rheologischen Parameter stark vom Verdünnungsexponenten ab. Weiter kann man aus den Ergebnissen auf eine zusätzliche Abhängigkeit der rheologischen Parameter von der Partikelorientierung schließen
Malkmus, Tobias [Verfasser], and Dietmar [Akademischer Betreuer] Kröner. "Fluid-structur-interaction simulations of non-Newtonian fluids interacting with thin elastic koiter shells." Freiburg : Universität, 2020. http://d-nb.info/1219851787/34.
Full textAnderson, Brian. "Development of a non-Newtonian latching device." Thesis, Manhattan, Kan. : Kansas State University, 2010. http://hdl.handle.net/2097/3855.
Full textOuattara, Ziemihori. "Trainée et portance dans les fluides newtoniens et les fluides à seuil." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI032/document.
Full textThis experimental and numerical thesis deals with the creeping flow of a Newtonian fluid and a yield stress fluid around a plate or a cylinder in the presence of a wall. The generated forces and the flow structures have been particularly studied. The study focuses for the yield stress fluid on large yield stress effects compared to the viscous effects. For the experimental approach, a device has been designed to measure simultaneously the drag and lift forces as a function of velocity and obstacle / wall distance. The fluids studied are a Newtonian glucose syrup and a Carbopol gel considered as a yield stress fluid model. These materials have been finely characterized from the rheological point of view. Numerical simulations using the Herschel-Bulkley anelastic viscoplastic model regularized by the Papanastasiou model were carried out. The results obtained with the Newtonian fluid allowed to validate the experimental set-up and the numerical approach. The effects of the yield stress, the wall / obstacle distance, the power law index and the inclined plate on the drag and lift coefficients were carefully examined. The lubrication regime has been studied for the cylinder both experimentally and theoretically. The morphology of the flow (rigid zones) and the local field quantities have been shown. Analytical solutions of drag and lift have been proposed. Comparisons between the experimental and numerical results as well as the solutions resulting from the plasticity of soil mechanics are analyzed. Deviations are discussed in terms of the elasticity and plasticity influence of the yield stress fluid
Yildirim, B. Gazi. "A global preconditioning method for the Euler equations." Master's thesis, Mississippi State : Mississippi State University, 2003. http://library.msstate.edu/etd/show.asp?etd=etd-07152003-164237.
Full textRamos, Anilzabel Costa dos. "Modelos unidimensionais para fluidos Newtonianos e Newtonianos generalizados." Master's thesis, Universidade de Évora, 2021. http://hdl.handle.net/10174/29820.
Full textKabamba, Batthe Matanda. "Evaluation of centrifugal pump performance derating procedures for non-Newtonian slurries." Thesis, Cape Peninsula University of Technology, 2006. http://hdl.handle.net/20.500.11838/2170.
Full textThe performance of a centrifugal pump is altered for slurry or viscous materials (Stepanoff, 1969) and this needs to be accounted for. Usually, the suitable selection and evaluation of centrifugal pumps is based only on water pump performance curves supplied by the pump manufacturer (Wilson, Addie, Sellgren & Clift, 1997). In 1984 Walker and Goulas conducted a number of pump performance tests with kaolin clay slurries and coal slurries on a Warman 4/3 AH horizontal slurry pump and a Hazleton 3-inch B CTL horizontal pump (Walker and Goulas, 1984). Walker and Goulas have analysed the test data and correlated the performance derating both at the best efficiency flow rate (BEP) and at 10% of the best efficiency flow rate (0.1 BEP) to the modified pump Reynolds number (NRep). They have noticed that the head and the efficiency reduction ratio decreased for the pump Reynolds number less then 10⁶. Furthermore, Walker and Goulas obtained a reasonably good agreement (± 5%) between pump test data for non-Newtonian materials and pump performance prediction using the Hydraulics Institute chart. Sery and Slatter (2002) have investigated pump deration for non-Newtonian yield pseudoplastic materials. The NRep was calculated using the Bingham plastic viscosity (µp). Results have shown good agreement with regard to head and efficiency reduction ratios in comparison with previous work. However, Sery and Slatter's pump performance correlation using the HI chart did not reach the same conclusion. Error margin of ± 20% and ± 10% were found for head and efficiency respectively. This study is an attempt to reconcile the differences between Walker and Goulas (1984) and Sery and Slatter (2002) and extend the evaluation of these derating methods to pseudoplastic materials. The test work was conducted in the Flow Process Research Centre laboratory of the Cape Peninsula University of Technology using two centrifugal pumps; a Warman 6/4 and a GrW 4/3. The materials used were water, CMC solution bentonite and kaolin suspension at different concentrations (7% and 9% by weight for bentonite; 5%, 6% and 7% by weight for CMC; 17%, 19% and 21% by volume for kaolin).
Guneratne, Julie Clare. "High Reynolds number flow in a collapsible channel." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340767.
Full textLockett, Timothy James. "Numerical simulation of inelastic non-Newtonian fluid flows in annuli." Thesis, Imperial College London, 1992. http://hdl.handle.net/10044/1/8422.
Full textFullerton, Gary Henry. "Investigation of non-Newtonian fluid turbulence via direct numerical simulation." Thesis, University of Edinburgh, 2001. http://hdl.handle.net/1842/13861.
Full textHavard, Stephen Paul. "Numerical simulation of non-Newtonian fluid flow in mixing geometries." Thesis, University of South Wales, 1989. https://pure.southwales.ac.uk/en/studentthesis/numerical-simulation-of-nonnewtonian-fluid-flow-in-mixing-geometries(eaee66ae-2e3d-44ba-9a5f-41d438749534).html.
Full textMandal, Anirban. "Computational Modeling of Non-Newtonian Fluid Flow in Simplex Atomizer." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1202997834.
Full textJeon, Jaewoo. "Displacing visco plastic fluid with Newtonian fluid in a vertical circular pipe with buoyancy effects." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/60318.
Full textApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Azevedo, Cardoso Ivan. "Lois d'échange lors du refroidissement d'un fluide non newtonien thermo-dépendant." Vandoeuvre-les-Nancy, INPL, 1993. http://www.theses.fr/1993INPL045N.
Full textLivescu, Silviu. "Mathematical and numerical modeling of coating flows." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 3.48 Mb., 279 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3221057.
Full textAlseamr, Nisreen. "A Theoretical Simulation of the Settling of Proppants in a Hydraulic Fracturing Process." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4272.
Full textMeuric, Olivier Francois Joseph. "Numerical modelling of fluid flow in drilling processes." Thesis, University of Exeter, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267227.
Full textGoshawk, Jeffrey Alan. "Enhancement of the drainage of non-Newtonian liquid films by oscillation." Thesis, University of Liverpool, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333685.
Full textALEXANDRE, BERNARDO BASTOS. "FLOW OF NON-NEWTONIAN FLUID IN ANNULAR SPACE WITH VARYING ECCENTRICITY." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=15404@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Na perfuração de poços é necessária a utilização de um fluido de perfuração que apresenta diversas funções. Esse fluido retorna para superfície pelo anular formado entre a coluna de perfuração e o poço, sendo fundamental a correta previsão desse escoamento. Uma análise dessa situação é extremamente complexa, uma vez que o fluido tem comportamento não Newtoniano, a coluna de perfuração apresenta rotação e é excêntrica, sendo que a excentricidade pode não ser constante ao longo do poço. Os trabalhos disponíveis na literatura estudam os efeitos da rotação e do comportamento do fluido, mas consideram a excentricidade constante. No presente trabalho as equações de conservação de quantidade de movimento e massa que governam o escoamento serão simplificadas utilizando a teoria da lubrificação, resultando em um problema com solução mais simples e baixo custo computacional. Modelos similares desprezam o efeito de curvatura, sendo válidos somente para razões de raio próximas da unidade. A formulação desenvolvida considera todos os termos, dando origem a uma teoria de lubrificação em coordenadas cilíndricas. A simplificação resulta em uma equação diferencial para o campo de pressão. O comportamento do fluido será avaliado através do método da Viscosidade Newtoniana Equivalente. A partir da solução é possível avaliar o perfil de velocidade que varia ao longo da coordenada axial. Os resultados foram validados a partir de soluções disponíveis na literatura (excentricidade constante). Além disso, os efeitos da variação da excentricidade no fator de atrito foram estudados e a existência de escoamento azimutal mesmo sem rotação da coluna foi observada.
In drilling operation of wells it is necessary to use a drilling fluid that has many functions. Flow in the annular space between the drill pipe and the well occurs during the return to the surface. The correction prediction of this flow is important and the complete study is very complex: the fluid has non-Newtonian behavior, the drill pipe is rotating and a varying eccentricity of the drill pipe is possible. Previous analyses in the literature study effects of the rotation and the rheological behavior of the fluid, but consider a constant eccentricity along the axial coordinate. In this work, the equations of momentum and mass conservation that govern the flow is simplified by the lubrication approximation and a twodimensional problem that has simple solution and lower computational cost is obtained. Similar models available neglect the curvature and are only accurate for radius ratio close to one. The formulation developed in this work considers all terms, leading to a lubrication approximation in cylindrical coordinates. The consequence of this approximation is a differential equation for the pressure field. The rheological behavior of the fluid will be evaluated using the method of Equivalent Newtonian Viscosity. With pressure field is possible to determinate the velocity that varies along axial coordinate. The accuracy of the model was analyzed using solutions available in literature (constant eccentricity case). The results show the effects of the variation of the eccentricity on the friction factor and the existence of azimuthal flow even without rotation of the drill pipe.
CARVALHO, MARCIO DA SILVEIRA. "HEAT TRANSFER IN NON-NEWTONIAN FLUID FLOW THROUGH AN ABRUPT HIRING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1991. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19071@1.
Full textO trabalho analisa a transferência de calor no escoamento de fluidos não-newtonianos através de uma contração abrupta circular de razão 4:1, com temperatura prescrita nas paredes sólidas. O escoamento de fluidos elásticos nesta geometria apresenta uma região de recirculação bem maior que no caso de fluidos Newtonianos. Esta alteração no padrão do escoamento altera significativamente o processo de transferência de calor. O escoamento representa uma boa modelagem do processo de extrusão de líquidos poliméricos. Resolvem-se as equações de conservação de momentum e energia desacopladamente, já que foi adotadas a hipótese de não variação das propriedades do fluido com a temperatura. A relação tensão – taxa de deformação foi feita através de dois modelos constitutivos, Newtoniano generalizado e Maxwell convectado. A hipótese de escoamento lento não foi adotada, como é usualmente feito na literatura da área. Deste modo, analisa-se separadamente a influencia dos efeitos elásticos e inerciais. As equações diferenciais foram integradas numericamente pelo método dos volumes finitos e o aclopamento velocidade\ pressão foi feito através do algoritmo SIMPLE. Pelos resultados obtidos, observa-se a importância da modelagem não newtoniana e da inclusão dos termos inerciais no estudo do escoamento e da transferência de calor no processo de extrusão de polímeros.
It is well known that the flow of a non-Newtonian fluid through a sudden contraction exhibits a vortex in the corner region bigger than the one observed in the corresponding flow of a Newtonian Fluid. This change of pattern of the flow affects significantly the heat transfer at the wall. It was investigated the case og a a 4:1 circular contraction, with uniform temperature distrubuition at the solid walls. This problem represents a first approach for the analysis of the polymeric liquids extrusion process. The flow and temperature field have been obtained from the numerical integration of the conservation equations. To account for the flow dependence of the stress tensor, a generalized Newtonian model and a convected Maxwell model have been employed. The creeping flow hypothesis has not been adopted, so it was possible to analyse the elastic effects and the inertial effects separately. The nuemerical solution have been obtained via a finite-volume method. The results show the importance of the non-Newtonian modeling and of the inclusion of inertial terms in the study of the flow and beat transfer in the polymeric liquids extrusion process.
Zografos, Konstantinos. "Intelligent design of microfluidic components for Newtonian and complex fluid systems." Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=28038.
Full textKeegan, Fiona. "Experimental investigation into non-Newtonian fluid flow through gradual contraction geometries." Thesis, University of Liverpool, 2009. http://livrepository.liverpool.ac.uk/1293/.
Full textVieira, Adriana Silveira [UNESP]. "Um panorama sobre roll waves em escoamentos laminares e turbulentos com superfície livre." Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/88890.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Os escoamentos na superfície livre que se processam sobre forte declividade podem desenvolver instabilidades ao cabo de tempo finito. Tais instabilidades aparecem sob formas de ondas tipo “hydraulic jumps” bem espaçados e são denominadas Roll Waves. Estas ondas, longas e periódicas, podem ser contínuas ou descontínuas; contínuas em problema Shallow Water viscoso e descontínuas para o caso não viscoso. Tal fenômeno pode ser observado tanto em escoamentos naturais como em canais artificiais e vertedouros de barragens. Tratando-se de escoamento de Fluidos não newtonianos, tal fenômeno pode ser visto facilmente em lavas torrenciais, avalanchas ou “debris flows”. Nesta dissertação foram analisados matematicamente e numericamente o comportamento e as condições de existência para a formação de Roll Waves em escoamentos laminares e turbulentos. Em escoamentos turbulentos toma-se como referência os trabalhos realizados por Maciel (2001) numa reologia Binghamiana. Para escoamentos laminares, cita-se o trabalho de Mei (1994) em uma reologia tipo Power Law. No plano numérico, para escoamentos turbulentos, foram utilizadas rotinas do MATLAB® versão 6.5 e, para escoamentos laminares, rotinas em FORTRAN 90; onde pôde-se analisar e comparar resultados para diversas reologias. O foco desta dissertação foi tratar o problema Roll Waves como uma instabilidade na vizinhança do regime uniforme para Fluidos não newtonianos, em regimes turbulentos e laminares. A reologia tratada e representativa de diversos escoamentos na natureza foi a de Herschel Bulkley. A partir desta dissertação deixa-se, como perspectiva futura, um estudo mais aprofundado sob formação de ondas em fluidos hiperconcentrados tipo Herschel Bulkley com abordagem experimental a fim de validar resultados apontados nesta pesquisa.
Flows that happen over strong slope with free surface can develop instabilities after some finite time. Such wave shaped instabilities appear in the flow and are of the type “hydraulic jumps” well spaced and they are called Roll Waves. Those waves are long and periodic, continuous or discontinuous, continuous in viscous Shallow Water problems, and discontinuous for the inviscid case. Roll Waves are uncommon in natural flows, but they are common in man made channels and dams spillway. For flows of non Newtonian fluids such phenomenon can be seen easily in lava torrent, avalanche and debris flow. In this work it were mathematically and numerically analyzed the behavior and the existence conditions for the generation of Roll Waves within laminar and turbulent flows. For turbulent flows it is taken as reference the works done by Maciel (2001) dealing with a Bingham rheology. For laminar flows the reference is the work done by Mei (1994) using a Power Law rheology. Numerically, for turbulent flows it were used MATLAB® 6.5 procedures and for laminar flows FORTRAN 90 procedures were developed. Using these reference procedures it was obtained compared and analyzed results for several rheologies. This work left as future perspective a deeper study about the generation of waves in hipper concentrated fluids such as Herschel Bulkley fluid, with an experimental approach aiming to validate results produced. The focus of this work was to treat the so called Roll Waves problem as an instability in the vicinity of the uniform flow regime for non Newtonian fluids under laminar and turbulent flow regimes. The Herschel Bulkley rheology that was treated in this work is representative of several flows that happen in nature.
Tshilumbu, Nsenda Ngenda. "The effect of type and concentration of surfactant on stability and rheological properties of explosive emulsions." Thesis, [S.l. : s.n.], 2009. http://dk.cput.ac.za/cgi/viewcontent.cgi?article=1063&context=td_cput.
Full textPachmann, Sydney. "Swimming in slime." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/1503.
Full textMalek, Alaeddin. "Numerical spectral solution of elliptic partial differential equations using domain decomposition techniques." Thesis, Cardiff University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241798.
Full textThorvaldsen, Gary Sven. "The effect of the particle size distribution on non-Newtonian turbulent slurry flow in pipes." Thesis, Cape Technikon, 1996. http://hdl.handle.net/20.500.11838/896.
Full textThe handling of solid-liquid suspensions is an important concern within the chemical and processing industries and many theoretical models have been proposed to try and explain and predict turbulent flow behaviour. However, the prediction of turbulent flow from only the viscous properties of non-Newtonian suspensions has over the years been questioned by researchers. This thesis considers theoretical models well established in the literature and the Slatter model, which uses both the rheology of the suspension and the particle size distribution of the solids. These models are used to analyze the experimental data and the effect that particle size and the particle size distribution has on turbulent flow behaviour. The literature concerning the rheological fundamentals relevant to fluid flow in pipes has been examined. The Newtonian turbulent flow model as well as the non-Newtonian models of Dodge & Metzner, Torrance, Kemblowski & Kolodziejski, Wilson & Thomas and Slatter have been reviewed. Test work was conducted at the University of Cape Town's Hydrotransport Research Laboratory using a pumped recirculating pipe test rig. The test apparatus has been fully described and calibration and test procedures to enable collecting of accurate pipeline data have been presented. Three slurries were used in test work namely kaolin clay, mixture I (kaolin clay and rock flour) and mixture 2 (kaolin clay, rock flour and sand) with ad,s particle size ranging from 24/Lm to 170/Lm. The yield pseudoplastic model has been used to model and predict the laminar flow of the suspensions that were tested and the meth9J adopted by Neill (1988) has been used to determine the rheological constants. The pipeline test results have been presented as pseudoshear diagrams together with the theoretical model lines providing a visual appraisal of the performance of each model. The Slatter model predicts the test data best with the other theoretical models that were considered tending to under predict the head loss. The reason the Slatter model performs better than the other theoretical models is because this model can account for the wall roughness and particle roughness effect. Evidence to support this statement has been presented. This thesis highlights the fact that the particle size distribution is a vitally important property of the suspension and that it does influence turbulent flow behaviour. It shows that turbulence modelling using the particle roughness effect (eg Slatter, 1994) is valid and can be adopted for non-Newtonian slurries. It is concluded that the particle size distribution must be used to determine the particle roughness effect and this effect must be incorporated in the turbulent flow analysis of non-Newtonian slurries.
Boukanga, Noel Rupert Thierry. "Three dimensional modelling of generalized Newtonian fluids in domains including obstructions." Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6936.
Full textThovert, Jean-François. "Phenomenes de transfert dans les milieux poreux fractals : l'empilement apollonien." Paris 6, 1987. http://www.theses.fr/1987PA066217.
Full textVieira, Adriana Silveira. "Um panorama sobre roll waves em escoamentos laminares e turbulentos com superfície livre /." Ilha Solteira : [s.n.], 2007. http://hdl.handle.net/11449/88890.
Full textBanca: André Luiz Seixlack
Banca: Luís Miguel Chagas da Costa Gil
Resumo: Os escoamentos na superfície livre que se processam sobre forte declividade podem desenvolver instabilidades ao cabo de tempo finito. Tais instabilidades aparecem sob formas de ondas tipo "hydraulic jumps" bem espaçados e são denominadas Roll Waves. Estas ondas, longas e periódicas, podem ser contínuas ou descontínuas; contínuas em problema Shallow Water viscoso e descontínuas para o caso não viscoso. Tal fenômeno pode ser observado tanto em escoamentos naturais como em canais artificiais e vertedouros de barragens. Tratando-se de escoamento de Fluidos não newtonianos, tal fenômeno pode ser visto facilmente em lavas torrenciais, avalanchas ou "debris flows". Nesta dissertação foram analisados matematicamente e numericamente o comportamento e as condições de existência para a formação de Roll Waves em escoamentos laminares e turbulentos. Em escoamentos turbulentos toma-se como referência os trabalhos realizados por Maciel (2001) numa reologia Binghamiana. Para escoamentos laminares, cita-se o trabalho de Mei (1994) em uma reologia tipo Power Law. No plano numérico, para escoamentos turbulentos, foram utilizadas rotinas do MATLAB® versão 6.5 e, para escoamentos laminares, rotinas em FORTRAN 90; onde pôde-se analisar e comparar resultados para diversas reologias. O foco desta dissertação foi tratar o problema Roll Waves como uma instabilidade na vizinhança do regime uniforme para Fluidos não newtonianos, em regimes turbulentos e laminares. A reologia tratada e representativa de diversos escoamentos na natureza foi a de Herschel Bulkley. A partir desta dissertação deixa-se, como perspectiva futura, um estudo mais aprofundado sob formação de ondas em fluidos hiperconcentrados tipo Herschel Bulkley com abordagem experimental a fim de validar resultados apontados nesta pesquisa.
Abstract: Flows that happen over strong slope with free surface can develop instabilities after some finite time. Such wave shaped instabilities appear in the flow and are of the type "hydraulic jumps" well spaced and they are called Roll Waves. Those waves are long and periodic, continuous or discontinuous, continuous in viscous Shallow Water problems, and discontinuous for the inviscid case. Roll Waves are uncommon in natural flows, but they are common in man made channels and dams spillway. For flows of non Newtonian fluids such phenomenon can be seen easily in lava torrent, avalanche and debris flow. In this work it were mathematically and numerically analyzed the behavior and the existence conditions for the generation of Roll Waves within laminar and turbulent flows. For turbulent flows it is taken as reference the works done by Maciel (2001) dealing with a Bingham rheology. For laminar flows the reference is the work done by Mei (1994) using a Power Law rheology. Numerically, for turbulent flows it were used MATLAB® 6.5 procedures and for laminar flows FORTRAN 90 procedures were developed. Using these reference procedures it was obtained compared and analyzed results for several rheologies. This work left as future perspective a deeper study about the generation of waves in hipper concentrated fluids such as Herschel Bulkley fluid, with an experimental approach aiming to validate results produced. The focus of this work was to treat the so called Roll Waves problem as an instability in the vicinity of the uniform flow regime for non Newtonian fluids under laminar and turbulent flow regimes. The Herschel Bulkley rheology that was treated in this work is representative of several flows that happen in nature.
Mestre
Nyekwe, Ichegbo Maxwell. "Investigation of factors effecting yield stress determinations using the slump test." Thesis, Cape Peninsula University of Technology, 2008. http://hdl.handle.net/20.500.11838/2160.
Full textCertain non-Newtonian fluids exhibit a yield stress which can be measured with a variety of instruments varying from very sophisticated rotary and tube viscometers to hand-held slump cones and cylinders of various sizes. Accurate yield stress measurement is significant for process design and disposal operations for thickenend tailings. The slump value was first related to the yield stress by Murata (1984). Later, that work was corrected by Christensen (1991) for an error in the mathematical analysis. Slump, based on a circular cylindrical geometry was first investigated by Chandler (1986). These concepts led to the study by Pashias et al., (1996) that formed the basis for the current research. The Flow Process Research Centre (FPRC) at the Cape Peninsula University of Technology developed a slump meter designed to lift the cone or cylinder vertically at controlled lifting speeds. In addition the simple hand-held cylinder which is an adaptation of slump cones which were originally developed by the concrete industry to determine the flowability of fresh concrete was also used. The vane technique was used as a control. Cones and cylinders made of stainless steel and PVC were fitted to the slump meter. The yield stresses of four non-Newtonian fluids at different concentrations were tested in four different configurations at different lift speeds to ascertain whether the measuring position, lift speed, slip, geometry, wall surface material, and stability has an effect on the value of yield stress measured. The effect of different predictive models was also ascertained.The cylinder, lump and cone models relating slump to yield stress was used in the dimensional analysis of the results. The objective of this work was to determine if the slump tests (cone, cylinder and the hand-held cylinder) would generate yield stress values comparable to those found using the vane technique. It was establised that there was no significant effect of lift speed, stability, geometry and wall surface material on the value of yield stress. The effect of measuring position on the value of yield stress calculated gave a difference of 25%. Using dimensional analysis, the lump model (Hallbom, 2005) more accurately predicts the material yield stress when using the hand-held cylinder as well as all the cone results (due to its specific geometry), and cylinder configurations, thus affirming the work of Clayton et al., 2003. It is concluded that, although the materials and concentrations tested induced errors within 40%, the hand-held cylinder shows promise as a reliable, quick and simple way of measuring the yield stress.
Domurath, Jan. "Stress and strain amplification in non-Newtonian fluids filled with spherical and anisometric particles." Thesis, Lorient, 2017. http://www.theses.fr/2017LORIS478/document.
Full textA numerical study of dilute suspensions based on a non-Newtonian matrix fluid and rigid spheroidal particles is performed. A Carreau fluid describes the non-Newtonian matrix. The special case of rigid spherical particles is considered. Here, a uniaxial elongational flow around a sphere is simulated and numerical homogenization is used to obtain the bulk viscosity of the dilute suspension for different applied rates of deformation and different thinning exponents. In the Newtonian regime the well-known Einstein result for the viscosity of a dilute suspension of rigid spherical particles is obtained. In the power-law regime it is found that the intrinsic viscosity depends only on the thinning exponent. Utilizing the simulation results a modification of the Carreau model for dilute suspensions with a non-Newtonian matrix fluid is proposed. To investigate the influence of the particle shape another numerical study is performed. In particular, different flows around spheroidal particles with different orientations are simulated and numerical homogenization is used to obtain the intrinsic viscosity of the suspension as function of applied rate of deformation, thinning exponent and aspect ratio. From the results it is possible to extract the rheological coefficients of the Lipscomb model. In the Newtonian regime the simulation results coincide with Lipscomb’s predictions. In the power-law regime the rheological coefficients depend strongly on the thinning exponent. Furthermore, simulation results indicate that the rheological coefficients additionally depend on the particle orientation in the non-linear regime
Kian, Jacqueline de Miranda. "Topology optimization method applied to design channels considering non-newtonian fluid flow." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-05012018-084558/.
Full textO estudo de escoamento de fluidos não-Newtonianos apresenta-se relevante no campo de bioengenharia, em especial no projeto de dispositivos para condução de sangue, como bypass arterial. Melhorias na redução de dissipação de energia e no dano às células sanguíneas causados por fluxos artificiais podem ser obtidas através do uso de técnicas de simulação e otimização numéricas. Deste modo, este trabalho propõe o estudo do projeto de canais para escoamentos incompressíveis em regime permanente de fluidos não-Newtonianos através do Método de Otimização Topológica baseado no método de densidade. O escoamento é modelado com as equações de Navier-Stokes acopladas com a equação constitutiva de Carreau-Yasuda para a viscosidade dinâmica, para que sejam considerados os efeitos das propriedades não-Newtonianas do sangue. O Método de Otimização Topológica distribui regiões de sólido e fluido, dada uma restrição de volume, dentro de um domínio especificado de modo a obter uma geometria e configuração que minimize a dissipação de energia, tensão de cisalhamento e vorticidade, utilizando a pseudo-densidade do material como variável de projeto. Para aplicar este método a sistemas fluidos, um meio poroso fictício, baseado na equação de Darcy, é introduzido. O modelo de escoamento é implementado em sua forma discreta utilizando o Método de Elementos Finitos através da plataforma OpenSource FEniCS, aplicada para automatizar a solução dos modelos matemáticos baseados em equações diferenciais, e o problema de otimização é resolvido utilizando a biblioteca DOLFIN-adjoint e otimizador IPOpt. Topologias otimizadas de canais para fluxo de sangue, com foco em bypass arterial, são apresentadas para ilustrar o método proposto.
DEVARAKONDA, SURENDRA BALAJI. "BIOPARTICLE SEPARATION IN NON-NEWTONIAN FLUID USING PULSED FLOW IN MICRO-CHANNELS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1155322288.
Full textChetry, Manisha. "Advanced reduced-order modeling and parametric sampling for non-Newtonian fluid flows." Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0011.
Full textThe subject of this thesis concernsmodel-order reduction (MOR) of parameterizednon-Newtonian flow problems that havesignificant industrial applications. TraditionalMOR methods constrain the computationalperformance of such highly nonlinear problems,so we suggest a state-of-the-art hyper-reductiontechnique based on a sparse approximation totackle the evaluation of nonlinear terms at muchreduced complexity. We also provide offlinestabilization strategy for stabilizing theconstitutive model in the reduced order modelframework that is less expensive to computewhile maintaining the full order model's (FOM)accuracy. Combining the two significantlylowers the CPU cost as compared to the FOMevaluation which inevitably boosts MORperformance. This work is validated on twobenchmark flow problems. Additionally, anadaptive sampling strategy is also presented inthis manuscript which is achieved byleveraging multi-fidelity model approximation.Towards the end of the thesis, we addressanother issue that is typically observed forcases when adaptive finite element meshesare deployed. In such cases, MOR methods failto produce a low-dimensional representationsince the snapshots are not vectors of samelength. We therefore, suggest an alternatemethod that can generate reduced basisfunctions for database of space-adaptedsnapshots
Kheng, Tan Ka. "Gas diffusion into viscous and non-Newtonian liquids and the onset of convection." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321528.
Full text