Academic literature on the topic 'Newtonian fluids'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Newtonian fluids.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Newtonian fluids"
Martínez, Javier Andrés, Freddy Humberto Escobar, and José Humberto Cantillo. "Applying Tiab's direct synthesis technique to dilatant non-Newtonian/Newtonian fluids." Ingeniería e Investigación 31, no. 3 (September 1, 2011): 130–34. http://dx.doi.org/10.15446/ing.investig.v31n3.26404.
Full textSong, Jinhyeuk, Jaekyeong Jang, Taehoon Kim, and Younghak Cho. "Particle Separation in a Microchannel with a T-Shaped Cross-Section Using Co-Flow of Newtonian and Viscoelastic Fluids." Micromachines 14, no. 10 (September 28, 2023): 1863. http://dx.doi.org/10.3390/mi14101863.
Full textGagnon, D. A., and P. E. Arratia. "The cost of swimming in generalized Newtonian fluids: experiments with C. elegans." Journal of Fluid Mechanics 800 (July 14, 2016): 753–65. http://dx.doi.org/10.1017/jfm.2016.420.
Full textSafa Riyadh Ridha. "A Review Report of Present Trend in Peristaltic Activity of MHD NON-Newtonian and Newtonian Fluids." Jornual of AL-Farabi for Engineering Sciences 1, no. 2 (December 1, 2022): 9. http://dx.doi.org/10.59746/jfes.v1i2.40.
Full textNabwey, Hossam A., Farhad Rahbar, Taher Armaghani, Ahmed M. Rashad, and Ali J. Chamkha. "A Comprehensive Review of Non-Newtonian Nanofluid Heat Transfer." Symmetry 15, no. 2 (January 29, 2023): 362. http://dx.doi.org/10.3390/sym15020362.
Full textShaukat, Ayesha, Muhammad Mushtaq, Saadia Farid, Kanwal Jabeen, and Rana Muhammad Akram Muntazir. "A Study of Magnetic/Nonmagnetic Nanoparticles Fluid Flow under the Influence of Nonlinear Thermal Radiation." Mathematical Problems in Engineering 2021 (November 20, 2021): 1–15. http://dx.doi.org/10.1155/2021/2210414.
Full textALBAALBAKI, BASHAR, and ROGER E. KHAYAT. "Pattern selection in the thermal convection of non-Newtonian fluids." Journal of Fluid Mechanics 668 (January 5, 2011): 500–550. http://dx.doi.org/10.1017/s0022112010004775.
Full textKawase, Y. "Particle-fluid heat/mass transfer: Newtonian and non-Newtonian fluids." Wärme- und Stoffübertragung 27, no. 2 (February 1992): 73–76. http://dx.doi.org/10.1007/bf01590121.
Full textBamborde, Atul, Akshta Kharkar, Mukul Hatwade, Deepak Raut, and Mrs Laxmi Gupta. "Study and Analysis of Non-Newtonian Fluid Speed Bump." International Journal for Research in Applied Science and Engineering Technology 11, no. 5 (May 31, 2023): 3201–6. http://dx.doi.org/10.22214/ijraset.2023.51670.
Full textNag, Debabrata, and Amitava Datta. "Variation of the Recirculation Length of Newtonian and Non-Newtonian Power-Law Fluids in Laminar Flow Through a Suddenly Expanded Axisymmetric Geometry." Journal of Fluids Engineering 129, no. 2 (September 5, 2006): 245–50. http://dx.doi.org/10.1115/1.2409361.
Full textDissertations / Theses on the topic "Newtonian fluids"
Lombe, Mubanga. "Spin coating of Newtonian and non-Newtonian fluids." Doctoral thesis, University of Cape Town, 2006. http://hdl.handle.net/11427/4904.
Full textAguilar-Martinez, Silvestre. "Critical collapse of Newtonian fluids." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54754.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Chilcott, Mark David. "Mechanics of non-Newtonian fluids." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329946.
Full textMennad, Abed. "Singular behaviour of Non-Newtonian fluids." Thesis, Peninsula Technikon, 1999. http://hdl.handle.net/20.500.11838/1253.
Full textSince 1996, a team at the Centre for Research in Applied Technology (CRATECH) at Peninsula Technikon, under NRF sponsorship and with industrial co-operation, has been involved in the simulation of Non-Newtonian flow behaviour in industrial processes, in particular, injection moulding of polymers. This study is an attempt to deal with some current issues of Non-Newtonian flow, in small areas, from the viewpoint of computational mechanics. It is concerned with the numerical simulation of Non-Newtonian fluid flows in mould cavities with re-entrant corners. The major complication that exists in this numerical simulation is the singularity of the stresses at the entry of the corner, which is responsible for nonintegrable stresses and the propagation of solution errors. First, the study focuses on the derivation of the equations of motion of the flow which leads to Navier- Stokes equations. Thereafter, the occurrence of singularities in the numerical solution of these equations is investigated. Singularities require special attention no matter what numerical method is used. In finite element analysis, local refinement around the singular point is often employed in order to improve the accuracy. However, the accuracy and the rate of convergence are not, in general, satisfactory. Incorporating the nature of singularity, obtained by an asymptotic analysis in the numerical solution, has proven to be a very effective way to improve the accuracy in the neighborhood of the singularity and, to speed up the rate of convergence. This idea has been successfully adopted in solving mainly fracture mechanics problems by a variety of methods: finite difference, finite elements, boundary and global elements, and spectral methods. In this thesis, the singular finite elements method (SFEM), similar in principle to the crack tip element used in fracture mechanics, is proposed to improve the solution accuracy in the vicinity of the singular point and to speed up the rate of convergence. This method requires minor modifications to standard finite element schemes. Unfortunately, this method could not be implemented in this study due to the difficulty in generating the mesh for the singular element. Only the standard finite element method with mesh refinement has been used. The results obtained are in accordance with what was expected.
Ozgen, Serkan. "Two-layer flow stability in newtonian and non-newtonian fluids." Doctoral thesis, Universite Libre de Bruxelles, 1999. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211876.
Full textDucharme, Réjean 1970. "Capillary flow of non-Newtonian fluids." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23392.
Full textWe thus showed that this model was effective only at low pressure and that without adding new aspects to the study of the flow, such as compressibility, we could not obtain any oscillating flow at high pressure. Despite this fact, exact steady-state solutions, as well as a time-dependant solution in the case of very small Reynolds number ($R to$ 0), have been given.
Chaffin, Stephen. "Non-Newtonian fluids in complex geometries." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/16750/.
Full textWhitelaw, David Stuart. "Droplet atomisation of Newtonian and non-Newtonian fluids including automotive fuels." Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266620.
Full textRamos, Anilzabel Costa dos. "Modelos unidimensionais para fluidos Newtonianos e Newtonianos generalizados." Master's thesis, Universidade de Évora, 2021. http://hdl.handle.net/10174/29820.
Full textGouldson, Iain William. "The flow of Newtonian and non-Newtonian fluids in an annular geometry." Thesis, University of Liverpool, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243035.
Full textBooks on the topic "Newtonian fluids"
Stearns, Jim. Pipeline transport applications: Newtonian and non-Newtonian fluids. Norwich, N.Y: Knovel, 2013.
Find full textIrgens, Fridtjov. Rheology and Non-Newtonian Fluids. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01053-3.
Full textBrujan, Emil. Cavitation in Non-Newtonian Fluids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15343-3.
Full textDunwoody, J. Elements of stability of viscoelastic fluids. Harlow, Essex, England: Longman Scientific & Technical, 1989.
Find full textZeytounian, R. Kh. Modélisation asymptomatique en mécanique des fluides newtoniens. Paris: Springer-Verlag, 1994.
Find full textMeeting, American Society of Mechanical Engineers Winter. Recent advances in non-newtonian flows: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, California, November 8-13, 1992. New York, N.Y: American Society of Mechanical Engineers, 1992.
Find full textBerezin, I. K. Chislennye medoty dl͡ia rascheta techeniĭ vysokov͡iazkikh zhidkosteĭ so svobodnoĭ poverkhnostʹ͡iu. Sverdlovsk: UrO AN SSSR, 1987.
Find full textDafermos, Constantine, J. L. Ericksen, and David Kinderlehrer, eds. Amorphous Polymers and Non-Newtonian Fluids. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-1064-1.
Full textTemmerman, L. W. Numerical modelling of non-Newtonian fluids. Manchester: UMIST, 1996.
Find full textBook chapters on the topic "Newtonian fluids"
Holmes, Mark H. "Newtonian Fluids." In Texts in Applied Mathematics, 445–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24261-9_9.
Full textTsamparlis, Michael. "Newtonian Fluids." In Special Relativity, 757–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27347-7_22.
Full textGhazanfarian, Jafar. "Newtonian and Non-Newtonian Fluids." In Applied Continuum Mechanics for Thermo-Fluids, 48–67. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781032719405-3.
Full textSaramito, Pierre. "Quasi-Newtonian Fluids." In Complex fluids, 63–90. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44362-1_2.
Full textLevenspiel, Octave. "Non-Newtonian Fluids." In Engineering Flow and Heat Exchange, 99–131. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4899-7454-9_5.
Full textCuvelier, C., A. Segal, and A. A. van Steenhoven. "Non-Newtonian fluids." In Finite Element Methods and Navier-Stokes Equations, 452–62. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-010-9333-0_18.
Full textLevenspiel, Octave. "Non-Newtonian Fluids." In The Plenum Chemical Engineering Series, 95–122. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0104-0_5.
Full textIrgens, Fridtjov. "Generalized Newtonian Fluids." In Rheology and Non-Newtonian Fluids, 113–24. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01053-3_6.
Full textBrujan, Emil-Alexandru. "Non-Newtonian Fluids." In Cavitation in Non-Newtonian Fluids, 1–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15343-3_1.
Full textChlebicka, Iwona, Piotr Gwiazda, Agnieszka Åšwierczewska-Gwiazda, and Aneta Wróblewska-KamiÅ„ska. "Non-Newtonian Fluids." In Springer Monographs in Mathematics, 261–332. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88856-5_7.
Full textConference papers on the topic "Newtonian fluids"
Avram, Marius, Marioara Avram, Ciprian Iliescu, and Adina Bragaru. "Flow of Non-Newtonian Fluids." In 2006 International Semiconductor Conference. IEEE, 2006. http://dx.doi.org/10.1109/smicnd.2006.284046.
Full textKant, Krishna, and Raja Banerjee. "Numerical Study on the Breakup of non-Newtonian/Newtonian Compound Droplet." In 7th Thermal and Fluids Engineering Conference (TFEC). Connecticut: Begellhouse, 2022. http://dx.doi.org/10.1615/tfec2022.fnd.040891.
Full textJin, Kai, Pratap Vanka, and Ramesh K. Agarwal. "Numerical Simulations of Newtonian and Non-Newtonian Fluids on GPU." In 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-1128.
Full textBizhani, Majid, and Ergun Kuru. "Modeling Turbulent Flow of Non-Newtonian Fluids Using Generalized Newtonian Models." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41427.
Full textFellouah, H., C. Castelain, A. Ould El Moctar, and H. Peerhossaini. "Dean Instability in Non-Newtonian Fluids." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60095.
Full textFomin, Sergei, and Toshiyuki Hashida. "Rimming Flow of Non-Newtonian Fluids." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61443.
Full textKoide, Tomoi, Leonardo Dagdug, A. García-Perciante, A. Sandoval-Villalbazo, and L. S. García-Colín. "Non-Newtonian Properties of Relativistic Fluids." In IV MEXICAN MEETING ON MATHEMATICAL AND EXPERIMENTAL PHYSICS: RELATIVISTIC FLUIDS AND BIOLOGICAL PHYSICS. AIP, 2010. http://dx.doi.org/10.1063/1.3533203.
Full textYoussry, M., B. Caillard, C. Ayela, C. Pellet, and I. Dufour. "Microrheology of Newtonian Fluids using Microcantilever." In IASTED Technology Conferences 2010. Calgary,AB,Canada: ACTAPRESS, 2010. http://dx.doi.org/10.2316/p.2010.707-018.
Full textZhu, Qinsheng, and Peter E. Clark. "Multiparticle Settling in Non-Newtonian Fluids." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1171.
Full textZakeri, Ramin, and Eon Soo Lee. "Similar Region in Electroosmotic Flow Rate for Newtonian and Non-Newtonian Fluids Using Dissipative Particle Dynamics (DPD)." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37836.
Full textReports on the topic "Newtonian fluids"
Rivlin, R. S. Vortices in Non-Newtonian Fluids. Fort Belvoir, VA: Defense Technical Information Center, February 1985. http://dx.doi.org/10.21236/ada153169.
Full textRajagopal, Docotr. Investigations into Swirling Flows of Newtonian and Non-Newtonian Fluids. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada253298.
Full textForest, M. Gregory, and Stephen E. Bechtel. Toward Technological Application of Non-Newtonian Fluids & Complex Materials/Modeling, Simulation, & Design of Experiments. Fort Belvoir, VA: Defense Technical Information Center, August 1997. http://dx.doi.org/10.21236/ada336243.
Full textWu, Yu Shu. Theoretical Studies of Non-Newtonian and Newtonian Fluid Flowthrough Porous Media. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/917318.
Full textWu, Yu-Shu. Theoretical studies of non-Newtonian and Newtonian fluid flow through porous media. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/7189244.
Full textNohel, J. A., R. L. Pego, and A. E. Tzavaras. Stability of Discontinuous Shearing Motions of a Non-Newtonian Fluid. Fort Belvoir, VA: Defense Technical Information Center, July 1989. http://dx.doi.org/10.21236/ada210643.
Full textCloutman, L. A Note on Differencing the Viscous Dissipation Terms for a Newtonian Fluid. Office of Scientific and Technical Information (OSTI), May 2001. http://dx.doi.org/10.2172/15005563.
Full textBalmforth, NeiI J., and John Hinch. Conceptual Models of the Climate 2003 Program of Study: Non-Newtonian Geophysical Fluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada422300.
Full textMansour, A., and N. Chigier. The physics of non-Newtonian liquid slurry atomization. Part 2: Twin-fluid atomization of non-Newtonian liquids -- First quarterly technical report, 1 January--31 March 1994. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10158834.
Full textAli, Aamir, Surayya Saba, Saleem Asghar, and Salman Saleem. Thermal and Concentration Effects of Unsteady Flow of Non-Newtonian Fluid over an Oscillating Plate. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, May 2018. http://dx.doi.org/10.7546/crabs.2018.04.04.
Full text