To see the other types of publications on this topic, follow the link: Ni-Cu-PGE deposits.

Journal articles on the topic 'Ni-Cu-PGE deposits'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ni-Cu-PGE deposits.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Moilanen, M., E. Hanski, J. Konnunaho, T. Törmänen, S. H. Yang, Y. Lahaye, H. O’Brien, and J. Illikainen. "Composition of iron oxides in Archean and Paleoproterozoic mafic-ultramafic hosted Ni-Cu-PGE deposits in northern Fennoscandia: application to mineral exploration." Mineralium Deposita 55, no. 8 (January 11, 2020): 1515–34. http://dx.doi.org/10.1007/s00126-020-00953-1.

Full text
Abstract:
Abstract Using electron probe microanalyzer (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), we analyzed major and trace element compositions of iron oxides from Ni-Cu-PGE sulfide deposits hosted by mafic-ultramafic rocks in northern Fennoscandia, mostly focusing on Finland. The main research targets were the Archean Ruossakero Ni-(Cu) deposit; Tulppio dunite and related Ni-PGE mineralization; Hietaharju, Vaara, and Tainiovaara Ni-(Cu-PGE) deposits; and Paleoproterozoic Lomalampi PGE-(Ni-Cu) deposit. In addition, some reference samples from the Pechenga (Russ
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, Yiguan, C. Michael Lesher, and Jun Deng. "Geochemistry and genesis of magmatic Ni-Cu-(PGE) and PGE-(Cu)-(Ni) deposits in China." Ore Geology Reviews 107 (April 2019): 863–87. http://dx.doi.org/10.1016/j.oregeorev.2019.03.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lesher, C. M., and P. C. Lightfoot. "Preface for thematic issue on Ni–Cu–PGE deposits." Mineralium Deposita 47, no. 1-2 (August 5, 2011): 1–2. http://dx.doi.org/10.1007/s00126-011-0379-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Makkonen, Hannu V., Tapio Halkoaho, Jukka Konnunaho, Kalevi Rasilainen, Asko Kontinen, and Pasi Eilu. "Ni-(Cu-PGE) deposits in Finland – Geology and exploration potential." Ore Geology Reviews 90 (November 2017): 667–96. http://dx.doi.org/10.1016/j.oregeorev.2017.06.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Song, Xieyan. "Magmatic Ni-Cu and PGE Deposits: Geology, Geochemistry, and Genesis." Geoscience Frontiers 3, no. 6 (November 2012): 945. http://dx.doi.org/10.1016/j.gsf.2012.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hall, M. F., B. Lafrance, and H. L. Gibson. "Emplacement of sharp-walled sulfide veins during the formation and reactivation of impact-related structures at the Broken Hammer Mine, Sudbury, Ontario." Canadian Journal of Earth Sciences 57, no. 10 (October 2020): 1149–66. http://dx.doi.org/10.1139/cjes-2019-0229.

Full text
Abstract:
Broken Hammer is a hybrid Cu–Ni–Platinum Group Element (PGE) footwall deposit located in Archean basement rocks below the impact-induced Sudbury Igneous Complex (SIC), Canada. The deposit consists of massive chalcopyrite veins surrounded by thin epidote, actinolite, and quartz selvedges and low-sulfide, high-PGE mineralization consisting of disseminated chalcopyrite (<5%) and platinum group minerals, associated with Ni-bearing chlorite overprinting alteration patches of epidote, actinolite, and quartz. The veins are grouped into five steeply-dipping sets, striking northeast-, southwest-, so
APA, Harvard, Vancouver, ISO, and other styles
7

Sluzhenikin, Sergey F., and Andrey V. Mokhov. "Gold and silver in PGE–Cu–Ni and PGE ores of the Noril’sk deposits, Russia." Mineralium Deposita 50, no. 4 (August 19, 2014): 465–92. http://dx.doi.org/10.1007/s00126-014-0543-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Duran, Charley J., Sarah-Jane Barnes, Eduardo T. Mansur, Sarah A. S. Dare, L. Paul Bédard, and Sergey F. Sluzhenikin. "Magnetite Chemistry by LA-ICP-MS Records Sulfide Fractional Crystallization in Massive Nickel-Copper-Platinum Group Element Ores from the Norilsk-Talnakh Mining District (Siberia, Russia): Implications for Trace Element Partitioning into Magnetite." Economic Geology 115, no. 6 (September 1, 2020): 1245–66. http://dx.doi.org/10.5382/econgeo.4742.

Full text
Abstract:
Abstract Mineralogical and chemical zonations observed in massive sulfide ores from Ni-Cu-platinum group element (PGE) deposits are commonly ascribed to the fractional crystallization of monosulfide solid solution (MSS) and intermediate solid solution (ISS) from sulfide liquid. Recent studies of classic examples of zoned orebodies at Sudbury and Voisey’s Bay (Canada) demonstrated that the chemistry of magnetite crystallized from sulfide liquid was varying in response to sulfide fractional crystallization. Other classic examples of zoned Ni-Cu-PGE sulfide deposits occur in the Norilsk-Talnakh m
APA, Harvard, Vancouver, ISO, and other styles
9

Begg, G. C., J. A. M. Hronsky, N. T. Arndt, W. L. Griffin, S. Y. O'Reilly, and N. Hayward. "Lithospheric, Cratonic, and Geodynamic Setting of Ni-Cu-PGE Sulfide Deposits." Economic Geology 105, no. 6 (September 1, 2010): 1057–70. http://dx.doi.org/10.2113/econgeo.105.6.1057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yakubchuk, Alexander, and Anatoly Nikishin. "Noril?sk?Talnakh Cu?Ni?PGE deposits: a revised tectonic model." Mineralium Deposita 39, no. 2 (March 1, 2004): 125–42. http://dx.doi.org/10.1007/s00126-003-0373-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Naldrett, A. J. "World-class Ni-Cu-PGE deposits: key factors in their genesis." Mineralium Deposita 34, no. 3 (March 9, 1999): 227–40. http://dx.doi.org/10.1007/s001260050200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Brzozowski, M. J., I. M. Samson, J. E. Gagnon, D. J. Good, and R. L. Linnen. "On the Mechanisms for Low-Sulfide, High-Platinum Group Element and High-Sulfide, Low-Platinum Group Element Mineralization in the Eastern Gabbro, Coldwell Complex, Canada: Evidence from Textural Associations, S/Se Values, and Platinum Group Element Concentrations of Base Metal Sulfides." Economic Geology 115, no. 2 (March 1, 2020): 355–84. http://dx.doi.org/10.5382/econgeo.4708.

Full text
Abstract:
Abstract The Eastern Gabbro, Coldwell Complex, hosts several geochemically and mineralogically distinct Cu-platinum group element (PGE) deposits, including the high-grade W Horizon (>100 ppm Pd-Pt-Au over 2 m). Several magmatic and/or hydrothermal models have previously been proposed to explain the range of enrichment in PGEs observed in the Marathon deposit, but no work has integrated textural and compositional variations in sulfides to elucidate which of these models is most suitable. Additionally, comparatively little work has been done to characterize the genesis of Cu-PGE mineraliz
APA, Harvard, Vancouver, ISO, and other styles
13

Acosta-Góngora, P., S. J. Pehrsson, H. Sandeman, E. Martel, and T. Peterson. "The Ferguson Lake deposit: an example of Ni–Cu–Co–PGE mineralization emplaced in a back-arc basin setting?" Canadian Journal of Earth Sciences 55, no. 8 (August 2018): 958–79. http://dx.doi.org/10.1139/cjes-2017-0185.

Full text
Abstract:
The world’s largest Ni–Cu–Platinum group element (PGE) deposits are dominantly hosted by ultramafic rocks within continental extensional settings (e.g., Raglan, Voisey’s Bay), resulting in a focus on exploration in similar geodynamic settings. Consequently, the economic potential of other extensional tectonic environments, such as ocean ridges and back-arc basins, may be underestimated. In the northeastern portion of the ca. 2.7 Ga Yathkyed greenstone belt of the Chesterfield block (western Churchill Province, Canada), the Ni–Cu–Co–PGE Ferguson Lake deposit is hosted by >2.6 Ga hornblenditi
APA, Harvard, Vancouver, ISO, and other styles
14

Li, C., W. D. Maier, and S. A. de Waal. "Magmatic Ni-Cu versus PGE deposits: Contrasting genetic controls and exploration implications." South African Journal of Geology 104, no. 4 (December 1, 2001): 309–18. http://dx.doi.org/10.2113/gssajg.104.4.309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Barnes, Stephen J., Alexander R. Cruden, Nicholas Arndt, and Benoit M. Saumur. "The mineral system approach applied to magmatic Ni–Cu–PGE sulphide deposits." Ore Geology Reviews 76 (July 2016): 296–316. http://dx.doi.org/10.1016/j.oregeorev.2015.06.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Boutroy, Emilie, Sarah A. S. Dare, Georges Beaudoin, Sarah-Jane Barnes, and Peter C. Lightfoot. "Magnetite composition in Ni-Cu-PGE deposits worldwide: application to mineral exploration." Journal of Geochemical Exploration 145 (October 2014): 64–81. http://dx.doi.org/10.1016/j.gexplo.2014.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Le Vaillant, Margaux, Marco L. Fiorentini, and Stephen J. Barnes. "Review of lithogeochemical exploration tools for komatiite-hosted Ni-Cu-(PGE) deposits." Journal of Geochemical Exploration 168 (September 2016): 1–19. http://dx.doi.org/10.1016/j.gexplo.2016.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lesher, C. M. "Up, down, or sideways: emplacement of magmatic Fe–Ni–Cu–PGE sulfide melts in large igneous provinces." Canadian Journal of Earth Sciences 56, no. 7 (July 2019): 756–73. http://dx.doi.org/10.1139/cjes-2018-0177.

Full text
Abstract:
The preferential localization of Fe–Ni–Cu–PGE sulfides within the horizontal components of dike–sill–lava flow complexes in large igneous provinces (LIPs) indicates that they were fluid dynamic traps for sulfide melts. Many authors have interpreted them to have collected sulfide droplets transported upwards, often from deeper “staging chambers”. Although fine (<1–2 cm) dilute (<10%–15%) suspensions of dense (∼4–5 g/cm3) sulfide melt can be transported in ascending magmas, there are several problems with upward-transport models for almost all LIP-related deposits: (1) S isotopic data are
APA, Harvard, Vancouver, ISO, and other styles
19

Eliopoulos, Demetrios G., and Maria Economou-Eliopoulos. "Trace Element Distribution in Magnetite Separates of Varying Origin: Genetic and Exploration Significance." Minerals 9, no. 12 (December 6, 2019): 759. http://dx.doi.org/10.3390/min9120759.

Full text
Abstract:
Magnetite is a widespread mineral, as disseminated or massive ore. Representative magnetite samples separated from various geotectonic settings and rock-types, such as calc-alkaline and ophiolitic rocks, porphyry-Cu deposit, skarn-type, ultramafic lavas, black coastal sands, and metamorphosed Fe–Ni-laterites deposits, were investigated using SEM/EDS and ICP-MS analysis. The aim of this study was to establish potential relationships between composition, physico/chemical conditions, magnetite origin, and exploration for ore deposits. Trace elements, hosted either in the magnetite structure or as
APA, Harvard, Vancouver, ISO, and other styles
20

Moilanen, M., E. Hanski, J. Konnunaho, S. H. Yang, T. Törmänen, C. Li, and L. M. Zhou. "Re-Os isotope geochemistry of komatiite-hosted Ni-Cu-PGE deposits in Finland." Ore Geology Reviews 105 (February 2019): 102–22. http://dx.doi.org/10.1016/j.oregeorev.2018.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Song, Xieyan, Yushan Wang, and Liemeng Chen. "Magmatic Ni-Cu-(PGE) deposits in magma plumbing systems: Features, formation and exploration." Geoscience Frontiers 2, no. 3 (July 2011): 375–84. http://dx.doi.org/10.1016/j.gsf.2011.05.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yao, Zhuo-sen, and James E. Mungall. "Kinetic controls on the sulfide mineralization of komatiite-associated Ni-Cu-(PGE) deposits." Geochimica et Cosmochimica Acta 305 (July 2021): 185–211. http://dx.doi.org/10.1016/j.gca.2021.05.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Koivisto, Emilia, Alireza Malehmir, Pekka Heikkinen, Suvi Heinonen, and Ilmo Kukkonen. "2D reflection seismic investigations at the Kevitsa Ni-Cu-PGE deposit, northern Finland." GEOPHYSICS 77, no. 5 (September 1, 2012): WC149—WC162. http://dx.doi.org/10.1190/geo2011-0496.1.

Full text
Abstract:
In 2007, a 2D reflection seismic survey was conducted at the Kevitsa Ni-Cu-PGE (platinum group elements) deposit in northern Finland. The aims of the survey were to delineate the overall extent of the ore-bearing Kevitsa ultramafic intrusive complex, to study the seismic response of the disseminated ore deposit, to potentially find indications for new ore deposits, and to extract structural information at depth that may be associated with mineralization. In the processing sequence, specific focus was given to finding optimal CDP-line geometries for the crooked-line survey profiles and, due to
APA, Harvard, Vancouver, ISO, and other styles
24

Seat, Z., S. W. Beresford, B. A. Grguric, M. A. M. Gee, and N. V. Grassineau. "Reevaluation of the Role of External Sulfur Addition in the Genesis of Ni-Cu-PGE Deposits: Evidence from the Nebo-Babel Ni-Cu-PGE Deposit, West Musgrave, Western Australia." Economic Geology 104, no. 4 (July 1, 2009): 521–38. http://dx.doi.org/10.2113/gsecongeo.104.4.521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

BEZRUKOV, VLADIMIR. "Major activities and provisional results of gold deposit forecasting in the eastern (Russian) part of Fennoscandian shield." Domestic geology, no. 2 (May 27, 2021): 28–40. http://dx.doi.org/10.47765/0869-7175-2021-10011.

Full text
Abstract:
The paper discusses the main gold metallogeny features within foreign Precambrian shields (excluding sedimentary-metamorphogene deposits of Au-rich conglomerates and magmatogene Au-rich Cu-Ni and PGE deposits) and regional features of the eastern Fennoscandian shield. Data on geological setting of Finnish gold deposits are summarized and analyzed. The paper briefly reviews gold prospecting knowledge within Karelian-Kola region and work results. The author compiled a digital model of gold-specific forecast-metallogenic map for the eastern Fennoscandian shield; based on this model, further prior
APA, Harvard, Vancouver, ISO, and other styles
26

Mikulski, Stanisław Z., Sławomir Oszczepalski, Katarzyna Sadłowska, Andrzej Chmielewski, and Rafał Małek. "Trace Element Distributions in the Zn-Pb (Mississippi Valley-Type) and Cu-Ag (Kupferschiefer) Sediment-Hosted Deposits in Poland." Minerals 10, no. 1 (January 17, 2020): 75. http://dx.doi.org/10.3390/min10010075.

Full text
Abstract:
We applied geochemical (ICP-MS, WD-XRF, GFAAS, and AMA 254) and mineralogical (EPMA) studies of 137 samples to ore mineralization from Middle-Triassic sediment-hosted Zn-Pb (Mississippi Valley-type MVT) and Lower Zechstein sediment-hosted stratiform (SSC) Cu-Ag (Kupferschiefer-type) deposits in Poland. They contain a number of trace elements which are not recovered during the ore processing. Only Cu, Ag, Pb, Ni, Re, Se, Au, and PGE are extracted from Cu-Ag deposits while Zn and Pb are the only elements produced from Zn-Pb deposits. Zn-Pb deposits contain Cd, Ag, Ga, and Ba in slightly elevated
APA, Harvard, Vancouver, ISO, and other styles
27

TANG, Zhongli, Haiqing YAN, Jiangang JIAO, and Zhenxing PAN. "Regional Metallogenic Controls of Small-intrusion-hosted Ni-Cu (PGE) Ore Deposits in China." Earth Science Frontiers 14, no. 5 (September 2007): 92–101. http://dx.doi.org/10.1016/s1872-5791(07)60038-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wright, A. J., J. Parnell, and D. E. Ames. "Carbon spherules in Ni–Cu–PGE sulphide deposits in the Sudbury impact structure, Canada." Precambrian Research 177, no. 1-2 (February 2010): 23–38. http://dx.doi.org/10.1016/j.precamres.2009.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Maier, Wolfgang D., and David I. Groves. "Temporal and spatial controls on the formation of magmatic PGE and Ni–Cu deposits." Mineralium Deposita 46, no. 8 (March 2, 2011): 841–57. http://dx.doi.org/10.1007/s00126-011-0339-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Krivolutskaya, Nadezhda A., Anton V. Latyshev, Alexander S. Dolgal, Bronislav I. Gongalsky, Elena M. Makarieva, Alexander A. Makariev, Natalia M. Svirskaya, Yana V. Bychkova, Anton I. Yakushev, and Alexey M. Asavin. "Unique PGE–Cu–Ni Noril’sk Deposits, Siberian Trap Province: Magmatic and Tectonic Factors in Their Origin." Minerals 9, no. 1 (January 21, 2019): 66. http://dx.doi.org/10.3390/min9010066.

Full text
Abstract:
The unique and very large PGE–Cu–Ni Noril’sk deposits are located within the Siberian trap province, posing a number of questions about the relationship between the ore-forming process and the magmatism that produced the traps. A successful answer to these questions could greatly increase the possibility of discovering new deposits in flood basalt provinces elsewhere. In this contribution, we present new data on volcanic stratigraphy and geochemistry of the magmatic rocks in the key regions of the Siberian trap province (Noril’sk, Taimyr, Maymecha-Kotuy, Kulyumber, Lower Tunguska and Angara) a
APA, Harvard, Vancouver, ISO, and other styles
31

Parnell, John, Connor Brolly, and Adrian J. Boyce. "Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy." Geological Magazine 158, no. 9 (July 13, 2021): 1711–18. http://dx.doi.org/10.1017/s0016756821000583.

Full text
Abstract:
AbstractThe episode of widespread organic carbon deposition marked by peak black shale sedimentation during the Palaeoproterozoic is also reflected in exceptionally abundant graphite deposits of this age. Worldwide anoxic/euxinic sediments were preserved as a deep crustal reservoir of both organic carbon, and sulphur in accompanying pyrite, both commonly >1 wt %. The carbon- and sulphur-rich Palaeoproterozoic crust interacted with mafic magma to cause Ni–Co–Cu–PGE mineralization over the next billion years, and much uranium currently produced is from Mesoproterozoic deposits nucleated upon
APA, Harvard, Vancouver, ISO, and other styles
32

Krivolutskaya, Nadezhda, Sheida Makvandi, Bronislav Gongalsky, Irina Kubrakova, and Natalia Svirskaya. "Chemical Characteristics of Ore-Bearing Intrusions and the Origin of PGE–Cu–Ni Mineralization in the Norilsk Area." Minerals 11, no. 8 (July 28, 2021): 819. http://dx.doi.org/10.3390/min11080819.

Full text
Abstract:
The composition of the parental magmas of Cu–Ni deposits is crucial for the elucidation of their genesis. In order to estimate the role of magma in ore formation, it is necessary to compare the compositions of silicate rock intrusions with different mineralization patterns, as observed in the Norilsk region. The rock geochemistry of two massifs located in the same Devonian carbonate rocks—the Kharaelakh intrusion, with its world-class platinum-group element (PGE)–Cu–Ni deposit, and the Pyasinsky-Vologochansky intrusion, with its large deposit—was studied. Along with these massifs, the Norilsk
APA, Harvard, Vancouver, ISO, and other styles
33

Ripley, E. M. "SULFUR ISOTOPE EXCHANGE AND METAL ENRICHMENT IN THE FORMATION OF MAGMATIC Cu-Ni-(PGE) DEPOSITS." Economic Geology 98, no. 3 (May 1, 2003): 635–41. http://dx.doi.org/10.2113/98.3.635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ripley, Edward M., and Chusi Li. "SULFUR ISOTOPE EXCHANGE AND METAL ENRICHMENT IN THE FORMATION OF MAGMATIC Cu-Ni-(PGE) DEPOSITS." Economic Geology 98, no. 3 (May 2003): 635–41. http://dx.doi.org/10.2113/gsecongeo.98.3.635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

RIPLEY, Edward M., and Chusi LI. "Applications of Stable and Radiogenic Isotopes to Magmatic Cu-Ni-PGE Deposits: Examples and Cautions." Earth Science Frontiers 14, no. 5 (September 2007): 124–31. http://dx.doi.org/10.1016/s1872-5791(07)60041-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Starostin, V. I., and O. G. Sorokhtin. "A new interpretation for the origin of the Norilsk type PGE–Cu–Ni sulfide deposits." Geoscience Frontiers 2, no. 4 (October 2011): 583–91. http://dx.doi.org/10.1016/j.gsf.2011.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kawohl, Alexander, Wesley E. Whymark, Andrejs Bite, and Hartwig E. Frimmel. "High-Grade Magmatic Platinum Group Element-Cu(-Ni) Sulfide Mineralization Associated with the Rathbun Offset Dike of the Sudbury Igneous Complex (Ontario, Canada)." Economic Geology 115, no. 3 (May 1, 2020): 505–25. http://dx.doi.org/10.5382/econgeo.4717.

Full text
Abstract:
Abstract Quartz dioritic impact melt dikes around the 1.85 Ga Sudbury Igneous Complex, locally referred to as offset dikes, are well endowed with respect to Ni-Cu-platinum group elements (PGE). However, only those dikes proximal (<6 km) to the main mass of the Sudbury Complex are mineralized at an economic grade and, in places, host world-class deposits. We report on a new discovery of such heavily mineralized offset dike at Rathbun Lake, about 15 km east of the currently known extent of the Sudbury Igneous Complex. There, a segment of amphibole quartz diorite is exposed at the contact
APA, Harvard, Vancouver, ISO, and other styles
38

Järvinen, Ville, Tapio Halkoaho, Jukka Konnunaho, Jussi S. Heinonen, and O. Tapani Rämö. "Parental magma, magmatic stratigraphy, and reef-type PGE enrichment of the 2.44-Ga mafic-ultramafic Näränkävaara layered intrusion, Northern Finland." Mineralium Deposita 55, no. 8 (December 31, 2019): 1535–60. http://dx.doi.org/10.1007/s00126-019-00934-z.

Full text
Abstract:
AbstractAbout 20 mafic-ultramafic layered intrusions in the northern Fennoscandian shield were emplaced during a widespread magmatic event at 2.5–2.4 Ga. The intrusions host orthomagmatic Ni-Cu-PGE and Cr-V-Ti-Fe deposits. We update the magmatic stratigraphy of the 2.44-Ga Näränkävaara mafic-ultramafic body, northeastern Finland, on the basis of new drill core and outcrop observations. The Näränkävaara body consists of an extensive basal dunite (1700 m thick), and a layered series comprising a peridotitic–pyroxenitic ultramafic zone (600 m thick) and a gabbronoritic–dioritic mafic zone (700 m
APA, Harvard, Vancouver, ISO, and other styles
39

Mungall, James E., M. Christopher Jenkins, Samuel J. Robb, Zhuosen Yao, and James M. Brenan. "UPGRADING OF MAGMATIC SULFIDES, REVISITED." Economic Geology 115, no. 8 (October 23, 2020): 1827–33. http://dx.doi.org/10.5382/econgeo.4775.

Full text
Abstract:
Abstract There has been vigorous debate for several decades about whether the extreme enrichments of platinum group elements (PGEs) in some magmatic sulfide deposits could have resulted from simple equilibration of sulfide liquid with silicate melt. Key examples include the Ni-Cu-Pd mineralization in the Norilsk mining camp, the UG2 and Merensky reef Pt-Pd deposits in the Bushveld Complex, the Pd-rich J-M reef of the Stillwater Complex, and the Skaergaard Pd-Au mineralization. It was argued historically that the observed PGE tenors in these latter deposits are too high to be consistent with si
APA, Harvard, Vancouver, ISO, and other styles
40

Smith, W. D., W. D. Maier, I. Bliss, and L. Martin. "In Situ Multiple Sulfur Isotope and S/Se Composition of Magmatic Sulfide Occurrences in the Labrador Trough, Northern Quebec." Economic Geology 116, no. 7 (November 1, 2021): 1669–86. http://dx.doi.org/10.5382/econgeo.4843.

Full text
Abstract:
Abstract The interaction between mafic-ultramafic magma and crustal sulfide is considered a key process in the formation of magmatic Ni-Cu-platinum group element (PGE) sulfide deposits. Integrated S/Se and multiple sulfur isotope studies are the most robust in constraining the role of crustal sulfur during ore genesis. In the present study, we report the first integrated S/Se and multiple sulfur isotope study of magmatic sulfide occurrences in the Labrador Trough, namely, on the recently discovered Idefix PGE-Cu and Huckleberry Cu-Ni-(PGE) prospects. Whole-rock and in situ S/Se values (~810–31
APA, Harvard, Vancouver, ISO, and other styles
41

Arndt, N. T. "Geochemistry and Origin of the Intrusive Hosts of the Noril'sk-Talnakh Cu-Ni-PGE Sulfide Deposits." Economic Geology 98, no. 3 (May 1, 2003): 495–515. http://dx.doi.org/10.2113/98.3.495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Farrow, Catharine E. G., David H. Watkinson, and Peter C. Jones. "Fluid inclusions in sulfides from North and South Range Cu-Ni-PGE deposits, Sudbury Structure, Ontario." Economic Geology 89, no. 3 (May 1, 1994): 647–55. http://dx.doi.org/10.2113/gsecongeo.89.3.647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lambert, David D., Jeffrey G. Foster, Louise R. Frick, Edward M. Ripley, and Michael L. Zientek. "Geodynamics of magmatic Cu-Ni-PGE sulfide deposits; new insights from the Re-Os isotope system." Economic Geology 93, no. 2 (April 1, 1998): 121–36. http://dx.doi.org/10.2113/gsecongeo.93.2.121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Svetlitskaya, Tatyana V., Peter A. Nevolko, Thi Phuong Ngo, Trong Hoa Tran, Andrey E. Izokh, Roman A. Shelepaev, An Nien Bui, and Hoang Ly Vu. "Small-intrusion-hosted Ni-Cu-PGE sulfide deposits in northeastern Vietnam: Perspectives for regional mineral potential." Ore Geology Reviews 86 (June 2017): 615–23. http://dx.doi.org/10.1016/j.oregeorev.2017.03.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Barnes, Stephen J., James E. Mungall, Margaux Le Vaillant, Belinda Godel, C. Michael Lesher, David Holwell, Peter C. Lightfoot, Nadya Krivolutskaya, and Bo Wei. "Sulfide-silicate textures in magmatic Ni-Cu-PGE sulfide ore deposits: Disseminated and net-textured ores." American Mineralogist 102, no. 3 (March 2017): 473–506. http://dx.doi.org/10.2138/am-2017-5754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Song, Xie-Yan, Mei-Fu Zhou, Zhi-Min Cao, Min Sun, and Yun-Liang Wang. "Ni?Cu?(PGE) magmatic sulfide deposits in the Yangliuping area, Permian Emeishan igneous province, SW China." Mineralium Deposita 38, no. 7 (October 1, 2003): 831–43. http://dx.doi.org/10.1007/s00126-003-0362-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Abzalov, M. Z., and R. A. Both. "The Pechenga Ni-Cu deposits, Russia: Data on PGE and Au distribution and sulphur isotope compositions." Mineralogy and Petrology 61, no. 1-4 (1997): 119–43. http://dx.doi.org/10.1007/bf01172480.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Barkov, Andrei, and Louis Cabri. "Variations of Major and Minor Elements in Pt–Fe Alloy Minerals: A Review and New Observations." Minerals 9, no. 1 (January 4, 2019): 25. http://dx.doi.org/10.3390/min9010025.

Full text
Abstract:
Compositional variations of major and minor elements were examined in Pt–Fe alloys from various geological settings and types of deposits, both lode and placer occurrences. They included representatives of layered intrusions, Alaskan-Uralian-(Aldan)-type and alkaline gabbroic complexes, ophiolitic chromitites, and numerous placers from Canada, USA, Russia, and other localities worldwide. Pt–Fe alloy grains in detrital occurrences are notably larger in size, and these are considered to be the result of a special conditions during crystallization such as temperature, pressure, geochemistry or ti
APA, Harvard, Vancouver, ISO, and other styles
49

Fiorentini, M. L., S. W. Beresford, and M. E. Barley. "Controls on the genesis and emplacement of komatiite-hosted Ni–Cu–PGE-sulphides at Albion Downs (Agnew-Wiluna Belt, Western Australia): a case study on the development of PGE lithogeochemical vectors to Ni–Cu–PGE-sulphide deposits." Applied Earth Science 116, no. 4 (December 2007): 152–66. http://dx.doi.org/10.1179/174327507x207500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Fiorentini, M. L., S. W. Beresford, and M. E. Barley. "RUTHENIUM-CHROMIUM VARIATION: A NEW LITHOGEOCHEMICAL TOOL IN THE EXPLORATION FOR KOMATIITE-HOSTED Ni-Cu-(PGE) DEPOSITS." Economic Geology 103, no. 2 (March 1, 2008): 431–37. http://dx.doi.org/10.2113/gsecongeo.103.2.431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!