Academic literature on the topic 'Ni hyperaccumulation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ni hyperaccumulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ni hyperaccumulation"

1

Jakovljevic, Ksenija, Aida Bani, Dolja Pavlova, Maria Konstantinou, Panayiotis Dimitrakopoulos, Dimitris Kyrkas, Roger Reeves, et al. "Hyperaccumulator plant discoveries in the Balkans: Accumulation, distribution, and practical applications." Botanica Serbica 46, no. 2 (2022): 161–78. http://dx.doi.org/10.2298/botserb2202161j.

Full text
Abstract:
Hyperaccumulator plants are able to tolerate extremely high concentrations of metals/metalloids in the soil in which they grow and to accumulate high concentrations in their shoots. To date, a total of 31 hyperaccumulator plant species have been identified in the Balkans, the centre of diversity and speciation in the European flora which is particularly rich in ultramafic areas. A further 8 species have yet to be confirmed through additional studies. Most of the 31 hyperaccumulator taxa (13 taxa or 41.9%) are species of the genus Odontarrhena, all hyperaccumulating Ni, but concentrations of this element above the hyperaccumulation threshold were also found in the genera Bornmuellera and Noccaea (all Brassicaceae), Orobanche (Orobanchaceae), Centaurea (Asteraceae) and Viola (Violaceae). The existence of hyperaccumulators of Tl and Zn is of particular interest because very few species worldwide hyperaccumulate these elements. Multiple metal hyperaccumulation was found in Noccaea kovatsii, as the hyperaccumulation of Zn was found in this species in addition to Ni, the primary accumulated element. Metal hyperaccumulation is discussed in terms of phylogenetic relationships and species distributions, with special attention to their systematics, the detection and recognition of new hyperaccumulating species and the possibilities for their future practical applications in phytotechnologies.
APA, Harvard, Vancouver, ISO, and other styles
2

Noell, I., and D. Morris. "Localisation of hyperaccumulated nickel in Stackhousia tryonii using Electron-probe microanalysis." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 92–93. http://dx.doi.org/10.1017/s0424820100162922.

Full text
Abstract:
Proton microprobe and electron probe X-ray microanalysis (EPXMA) simultaneously measure and map elemental content, and hence are excellent tools for investigating the distribution and function of elevated Ni levels in hyperaccumulating plants (Ni concentration >1000 μg g−1 dry weight). Five major hypotheses have been proposed for the function of Ni hyperaccumulation. Our research focuses on the hypothesis that Ni defends against herbivore or pathogen attack and examines the movement of Ni from soil through plant to herbivore in Stackhousia tryonii, the only known hyperaccumulator in eastern Australia. Using a JEOL JXA-840-A electron probe microanalyzer with Moran Scientific Analysis software, we located features of high mean atomic number in whole leaves and cross-sections through backscattered-electron imaging (BEI), then we used EPXMA to identify the elements present and to prepare semi-quantitative x-ray maps of seven key elements.
APA, Harvard, Vancouver, ISO, and other styles
3

Paul, Adrian L. D., Vidiro Gei, Sandrine Isnard, Bruno Fogliani, Guillaume Echevarria, Peter D. Erskine, Tanguy Jaffré, Jérôme Munzinger, and Antony van der Ent. "Nickel hyperaccumulation in New Caledonian Hybanthus (Violaceae) and occurrence of nickel-rich phloem in Hybanthus austrocaledonicus." Annals of Botany 126, no. 5 (June 24, 2020): 905–14. http://dx.doi.org/10.1093/aob/mcaa112.

Full text
Abstract:
Abstract Background and Aims Hybanthus austrocaledonicus (Violaceae) is a nickel (Ni) hyperaccumulator endemic to New Caledonia. One of the specimens stored at the local herbarium had a strip of bark with a remarkably green phloem tissue attached to the sheet containing over 4 wt% Ni. This study aimed to collect field samples from the original H. austrocaledonicus locality to confirm the nature of the green ‘nickel-rich phloem’ in this taxon and to systematically assess the occurrence of Ni hyperaccumulation in H. austrocaledonicus and Hybanthus caledonicus populations. Methods X-ray fluorescence spectroscopy scanning of all collections of the genus Hybanthus (236 specimens) was undertaken at the Herbarium of New Caledonia to reveal incidences of Ni accumulation in populations of H. austrocaledonicus and H. caledonicus. In parallel, micro-analytical investigations were performed via synchrotron X-ray fluorescence microscopy (XFM) and scanning electron microscopy with X-ray microanalysis (SEM-EDS). Key Results The extensive scanning demonstrated that Ni hyperaccumulation is not a characteristic common to all populations in the endemic Hybanthus species. Synchrotron XFM revealed that Ni was exclusively concentrated in the epidermal cells of the leaf blade and petiole, conforming with the majority of (tropical) Ni hyperaccumulator plants studied to date. SEM-EDS of freeze-dried and frozen-hydrated samples revealed the presence of dense solid deposits in the phloem bundles that contained >8 wt% nickel. Conclusions The occurrence of extremely Ni-rich green phloem tissues appears to be a characteristic feature of tropical Ni hyperaccumulator plants.
APA, Harvard, Vancouver, ISO, and other styles
4

Meindl, George A., Mark I. Poggioli, Daniel J. Bain, Michael A. Colón, and Tia-Lynn Ashman. "A Test of the Inadvertent Uptake Hypothesis Using Plant Species Adapted to Serpentine Soil." Soil Systems 5, no. 2 (June 18, 2021): 34. http://dx.doi.org/10.3390/soilsystems5020034.

Full text
Abstract:
Serpentine soils are a stressful growing environment for plants, largely due to nutrient deficiencies and high concentrations of toxic heavy metals (e.g., Ni). Plants have evolved various adaptations for tolerating these extreme environments, including metal hyperaccumulation into above-ground tissues. However, the adaptive significance of metal hyperaccumulation is a topic of debate, with several non-mutually-exclusive hypotheses under study. For example, the inadvertent uptake hypothesis (IUH) states that heavy metal accumulation is a consequence of an efficient nutrient-scavenging mechanism for plants growing in nutrient-deficient soils. Thus, it is possible that metal hyperaccumulation is simply a byproduct of non-specific ion transport mechanisms allowing plants to grow in nutrient-deficient soils, such as serpentine soils, while simultaneously tolerating other potentially toxic heavy metals. Furthermore, some nutrient needs are tissue-specific, and heavy metal toxicity can be more pronounced in reproductive tissues; thus, studies are needed that document nutrient and metal uptake into vegetative and reproductive plant tissues across species of plants that vary in the degree to which they accumulate soil metals. To test these ideas, we grew nine plant species that are variously adapted to serpentine soils (i.e., Ni-hyperaccumulating endemic, non-hyperaccumulating endemic, indicator, or indifferent) in a common garden greenhouse experiment. All species were grown in control soils, as well as those that were amended with the heavy metal Ni, and then analyzed for macronutrient (Ca, Mg, K, and P), micronutrient (Cu, Fe, Zn, Mn, and Mo), and heavy metal (Cr and Co) concentrations in their vegetative and reproductive organs (leaves, anthers, and pistils). In accordance with the IUH, we found that hyperaccumulators often accumulated higher concentrations of nutrients and metals compared to non-hyperaccumulating species, although these differences were often organ-specific. Specifically, while hyperaccumulators accumulated significantly more K and Co across all organs, Cu was higher in leaves only, while Mn and Zn were higher in anthers only. Furthermore, hyperaccumulators accumulated significantly more Co and Mo across all organs when Ni was added to the soil environment. Our work provides additional evidence in support of the IUH, and contributes to our understanding of serpentine adaptation in plants.
APA, Harvard, Vancouver, ISO, and other styles
5

Prasad, Majeti Narasimha Vara. "Nickelophilous plants and their significance in phytotechnologies." Brazilian Journal of Plant Physiology 17, no. 1 (March 2005): 113–28. http://dx.doi.org/10.1590/s1677-04202005000100010.

Full text
Abstract:
Nickeliferous soils are invaded predominantly by members of the Brassicaceae, Cyperaceae, Cunoniaceae, Caryophyllaceae, Fabaceae, Flacourtiaceae, Euphorbiaceous, Lamiaceae, Poaceae and Violaceae, and many of these plants are metal tolerant. About 300 Ni hyperaccumulating plants been identified. These members exhibit unusual appetite for toxic metals and elemental defense. Hyperaccumulators provide protection against fungal and insect attack. Investigations suggested that Ni-hyperaccumulation has a protective function against fungal and bacterial pathogens in Streptanthus polygaloides and Thlaspi montanum. Significance of nickelophilous plants and their significance in phytotechnologies are discussed in this paper.
APA, Harvard, Vancouver, ISO, and other styles
6

Van der Pas, Llewelyn, and Robert A. Ingle. "Towards an Understanding of the Molecular Basis of Nickel Hyperaccumulation in Plants." Plants 8, no. 1 (January 4, 2019): 11. http://dx.doi.org/10.3390/plants8010011.

Full text
Abstract:
Metal hyperaccumulation is a rare and fascinating phenomenon, whereby plants actively accumulate high concentrations of metal ions in their above-ground tissues. Enhanced uptake and root-to-shoot translocation of specific metal ions coupled with an increased capacity for detoxification and sequestration of these ions are thought to constitute the physiological basis of the hyperaccumulation phenotype. Nickel hyperaccumulators were the first to be discovered and are the most numerous, accounting for some seventy-five percent of all known hyperaccumulators. However, our understanding of the molecular basis of the physiological processes underpinning Ni hyperaccumulation has lagged behind that of Zn and Cd hyperaccumulation, in large part due to a lack of genomic resources for Ni hyperaccumulators. The advent of RNA-Seq technology, which allows both transcriptome assembly and profiling of global gene expression without the need for a reference genome, has offered a new route for the analysis of Ni hyperaccumulators, and several such studies have recently been reported. Here we review the current state of our understanding of the molecular basis of Ni hyperaccumulation in plants, with an emphasis on insights gained from recent RNA-Seq experiments, highlight commonalities and differences between Ni hyperaccumulators, and suggest potential future avenues of research in this field.
APA, Harvard, Vancouver, ISO, and other styles
7

Burge, Dylan O., and W. R. Barker. "Evolution of nickel hyperaccumulation by Stackhousia tryonii (Celastraceae), a serpentinite-endemic plant from Queensland, Australia." Australian Systematic Botany 23, no. 6 (2010): 415. http://dx.doi.org/10.1071/sb10029.

Full text
Abstract:
To elucidate the evolutionary origin of nickel (Ni) hyperaccumulation by the Australian serpentinite-endemic plant Stackhousia tryonii Bailey, phylogenetic analyses of chloroplast and nuclear DNA for Stackhousia and its close relatives were combined with assays of plant-tissue Ni concentrations. Thirty-five plants from 20 taxa were analysed by sequencing nuclear rDNA (ITS) and the plastid trnL–F region. Phylogenetic analysis of sequence data was conducted under maximum parsimony and Bayesian search criteria. In all, 100 plants from 39 taxa, including all 33 Stackhousia species, were analysed for Ni concentration by radial inductively coupled plasma atomic-emission spectrometry (ICP–AES). In phylogenetic analyses, S. tryonii was monophyletic, nested within a monophyletic Stackhousia. Only S. tryonii contained concentrations of Ni above the hyperaccumulation threshold (0.1%; 1000 ppm), containing between 0.25% (2500 ppm) and 4.1% (41 000 ppm) Ni by dry weight. Nickel-hyperaccumulation ability appears to have been acquired once during diversification of Stackhousia, by S. tryonii.
APA, Harvard, Vancouver, ISO, and other styles
8

Pollard, A. Joseph, Grace L. McCartha, Celestino Quintela-Sabarís, Thomas A. Flynn, Maria K. Sobczyk, and J. Andrew C. Smith. "Intraspecific Variation in Nickel Tolerance and Hyperaccumulation among Serpentine and Limestone Populations of Odontarrhena serpyllifolia (Brassicaceae: Alysseae) from the Iberian Peninsula." Plants 10, no. 4 (April 19, 2021): 800. http://dx.doi.org/10.3390/plants10040800.

Full text
Abstract:
Odontarrhena serpyllifolia (Desf.) Jord. & Fourr. (=Alyssum serpyllifolium Desf.) occurs in the Iberian Peninsula and adjacent areas on a variety of soils including both limestone and serpentine (ultramafic) substrates. Populations endemic to serpentine are known to hyperaccumulate nickel, and on account of this remarkable phenotype have, at times, been proposed for recognition as taxonomically distinct subspecies or even species. It remains unclear, however, to what extent variation in nickel hyperaccumulation within this taxon merely reflects differences in the substrate, or whether the different populations show local adaptation to their particular habitats. To help clarify the physiological basis of variation in nickel hyperaccumulation among these populations, 3 serpentine accessions and 3 limestone accessions were cultivated hydroponically under common-garden conditions incorporating a range of Ni concentrations, along with 2 closely related non-accumulator species, Clypeola jonthlaspi L. and Alyssum montanum L. As a group, serpentine accessions of O. serpyllifolia were able to tolerate Ni concentrations approximately 10-fold higher than limestone accessions, but a continuous spectrum of Ni tolerance was observed among populations, with the least tolerant serpentine accession not being significantly different from the most tolerant limestone accession. Serpentine accessions maintained relatively constant tissue concentrations of Ca, Mg, K, and Fe across the whole range of Ni exposures, whereas in the limestone accessions, these elements fluctuated widely in response to Ni toxicity. Hyperaccumulation of Ni, defined here as foliar Ni concentrations exceeding 1g kg−1 of dry biomass in plants not showing significant growth reduction, occurred in all accessions of O. serpyllifolia, but the higher Ni tolerance of serpentine accessions allowed them to hyperaccumulate more strongly. Of the reference species, C. jonthlaspi responded similarly to the limestone accessions of O. serpyllifolia, whereas A. montanum displayed by far the lowest degree of Ni tolerance and exhibited low foliar Ni concentrations, which only exceeded 1 g kg−1 in plants showing severe Ni toxicity. The continuous spectrum of physiological responses among these accessions does not lend support to segregation of the serpentine populations of O. serpyllifolia as distinct species. However, the pronounced differences in degrees of Ni tolerance, hyperaccumulation, and elemental homeostasis observed among these accessions under common-garden conditions argues for the existence of population-level adaptation to their local substrates.
APA, Harvard, Vancouver, ISO, and other styles
9

Teptina, Anzhelika Yu, and Alexander G. Paukov. "Nickel accumulation by species of Alyssum and Noccaea (Brassicaceae) from ultramafic soils in the Urals, Russia." Australian Journal of Botany 63, no. 2 (2015): 78. http://dx.doi.org/10.1071/bt14265.

Full text
Abstract:
Cool temperate regions have a limited number of species able to accumulate nickel (Ni) and other heavy metals in above-ground tissues. Our study was conducted in order to find accumulators of Ni on serpentine soils in the Middle and Southern Urals. Above-ground tissues of plants as well as soil samples were collected in 10 ultramafic massifs. Our results confirmed hyperaccumulation activity of Alyssum obovatum (C.A.Mey.) Turcz. Three species that appeared to be hemi-accumulators of Ni are Alyssum litvinovii Knjaz., Alyssum tortuosum Willd. and Noccaea thlaspidioides (Pall.) F.K.Mey. All these species are facultative accumulators/hyperaccumulators and exhibit different concentrations of Ni under a range of soil conditions. The highest Ni concentration was found in A. obovatum in Krakinskiy massif (6008 μg·g–1 dry mass), A. tortuosum (1789 μg·g–1) and A. litvinovii (160 μg·g–1) in Khabarninskiy massif, and N. thlaspidioides (741 μg·g–1) in Sugomakskiy massif (Southern Urals). Regression analysis shows statistically significant dependence of Ni concentrations in soil and tissue of both A. obovatum and A. tortuosum. The latter shows a dramatically high difference in the level of accumulation that varies from excluder to 20 μg g–1 Ni to hyperaccumulator levels, suggesting the existence of genetically distinct populations with the ability to vary their accumulation of Ni.
APA, Harvard, Vancouver, ISO, and other styles
10

La Nafie, Nursiah, Syarifuddin Liong, and Rizda Arifin. "Fitoakumulasi Logam Ni dan Zn Dalam Tumbuhan Nipah (Nypa fruticans) Di Sungai Tallo Makassar." Indo. J. Chem. Res. 7, no. 1 (July 31, 2019): 92–100. http://dx.doi.org/10.30598//ijcr.2019.5-nur.

Full text
Abstract:
Research on phytoaccumulation of Ni and Zn in Nypa fruticans plants at Tallo River has been done to know the capability of Nypa fruticans for accumulating Ni and Zn. Water, sediment, and plant tissue samples were taken at five stations on the Tallo River using a cutting tool and pipe paralon. Sediment was digested with concentrated HNO3 while plants tissue using HNO3 6M, then analyzed by ICP EOS Shimadzu 9000. The results showed the average concentration of Ni inside part of the plant from station 1, 2, 3, 4 and 5 in order following 21.759,03 ppm, 19.056,03 ppm; 36.806,25 ppm; 10.736,66 ppm dan 13.849,25 ppm. Average concentration of Zn inside the plant from station 1, 2, 3, 4 and 5 in order following 1.319,60 ppm; 1.362,93 ppm; 2.053,46 ppm; 1.591,60 ppm; dan 1.474,09 ppm. Accumulation of Zn and Ni in Nypa fruticans is grouped as hyperaccumulation plant because the ability of accumulation Ni bigger than 10.000 mg/kg and hyperaccumulation towards Zn because able to accumulate Zn bigger than 10 mg/kg. BCF and TF value show that Nypa fruticans naturally able to be used as an phytoremediation plant towards Ni and Zn, especially phytoextraction and rhizofiltration.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Ni hyperaccumulation"

1

Ingle, Robert Antony. "Towards an understanding of the molecular basis of Ni hyperaccumulation." Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Moradi, Ahmad. "Imaging techniques to study nickel-root interactions of the Ni hyperaccumulator plant Berkheya coddii /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gramlich, Anja. "Development of a semi-quantitative method to determine the distribution of Ni in hyperaccumulator plants." Zürich : ETH, Swiss Federal Institute of Technology Zurich, ITES - Institute of Terrestrial Ecosystems, 2008. http://e-collection.ethbib.ethz.ch/show?type=dipl&nr=365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bani, Aïda. "Phytoextraction du Ni dans les sols ultramafiques d'Albanie." Thesis, Vandoeuvre-les-Nancy, INPL, 2009. http://www.theses.fr/2009INPL042N/document.

Full text
Abstract:
Phytoextraction du nickel dans les sols ultramafiques d’Albanie La phytoextraction minière est un procédé de récupération des métaux des sols minéralisés naturels ou pollués à l’aide de plantes hyperaccumulatrices. Elle est une alternative à l’agriculture vivrière des zones ultramafiques. L’objectif de la thèse est le développement d’une technologie de phytoextraction extensive du Ni avec Alyssum murale sur les Vertisols ultramafiques. Pour cela, il s’agissait : i) d’identifier les plantes hyperaccumulatrices les plus efficaces dans le prélèvement du Ni et comprendre les relations entre le prélèvement du métal et sa biodisponibilité, ii) de déterminer les types de sols adaptés à la phytoextraction du Ni et iii) de définir et optimiser un itinéraire agronomique adapté pour l’espèce retenue et pour les conditions édaphiques. Dans ce but, des prospections géobotaniques ont été conduites en Albanie et en Grèce. Puis une étude in situ des facteurs qui influencent la biodisponibilité du Ni et le comportement des plantes sur une toposéquence ultramafique a été mise en place. Enfin un essai agronomique de quatre années sur un site ultramafique d’Albanie (Pojske) a permis de tester la fertilisation, le contrôle des adventices par herbicide et la date de récolte pour optimiser le rendement d’extraction du Ni. Les résultats montrent que parmi l’ensemble des espèces présentes naturellement sur les serpentines des Balkans, A. markgrafii et A. murale ont le plus fort taux d’accumulation du Ni. Les Vertisols ultramafiques présentent une disponibilité élevée du Ni favorable à la phytoextraction minière. La biomasse d’A murale est augmentée de 0,2 t ha-1 à 6,0 t ha-1 à partir des traitements agronomiques et le rendement de phytoextraction de Ni par A. murale est de 23 à 69 kg ha-1. Alyssum murale peut être envisagée comme une culture pérenne et la fertilisation permet d’augmenter la compétitivité de la plante sans affecter les concentrations de Ni dans les parties récoltées
Phytomining is a process for recovering metals with hyperaccumulating plants from natural or polluted soils. It is an alternative to conventional farming in ultramafic areas. The aim of the thesis is the development of an extensive phytoextraction technology with Alyssum murale on ultramafic Vertisols. Therefore, work was conducted to i) identify the most effective Ni hyperaccumulators, and understand the relationship between metal uptake and bioavailability, ii) identify soil types suitable for phytoextraction, and iii) define and optimize agronomic practices adapted to the plant species and the edaphic conditions. Hence, geobotanical surveys were conducted in Albania and Greece. Then an in situ study was run on an ultramafic toposequence to assess the factors that influence Ni bioavailability and behavior of plants. Finally a four-year field trial was carried out on an ultramafic site in Albania (Pojske) where fertilization, weed control by herbicide, and harvest date were tested to optimize the efficiency of Ni extraction. The results showed that A. markgrafii and A. murale exhibit the highest rate of Ni accumulation among all species of Balkan serpentines. The ultramafic Vertisols have a high Ni availability phytoextraction and are favourable for phytomining. A. murale biomass increased from 0.2 t ha-1 to 6.0 t ha-1 due to optimization of agronomic treatments, and performance of phytoextraction from 23 to 69 kg ha-1. Alyssum murale can be seen as a perennial crop, and fertilization increases the competitiveness of the plant without affecting the Ni concentrations in the harvested parts
APA, Harvard, Vancouver, ISO, and other styles
5

Wolf, Michael. "Characterization of the intraspecific variation within the nickel (Ni) hyperaccumulator species Senecio coronatus (Asteraceae): a preliminary analysis of genetic population structure and shoot proteome expression." Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/9109.

Full text
Abstract:
Includes bibliographical references.
Heavy metal (HM) accumulator plants possess the ability to actively hyperaccumulate and detoxify exceptionally high concentrations of metals in their aboveground tissues, without exhibiting any apparent signs of toxicity. Despite nickel (Ni) hyperaccumulator plants representing the largest percentage of known metal accumulator taxa (over 75%), the underlying genetic and molecular basis of Ni accumulation remains unclear. A prominent difficulty in understanding Ni hyperaccumulation has been the severe lack of intraspecific variation in the trait. Hence, the study of a single species exhibiting a significant degree of variation is highly desirable. as it avoids the use of inter-species comparative studies mostly utilized to date. The Ni hyperaccumulator Senecio coronatus (Asteraceae) has been reported to contain a significant degree of phenotypic plasticity with respect to the amount accumulated and subsequent cellular distribution of Ni. This apparent intraspecific variation means that S. coronatus may represent a useful system in which to study Ni hyperaccumulation. No population genetics study has been carried out to date on this species, and the evolutionary relationships between hyper and non- accumulator populations were unknown. Here, results are presented from a genetic analysis of 15 naturally occurring S. coronatus populations. Analysis of molecular variance (AMOVA) and phylogenetic analysis (based on non-coding nuclear and plastid markers) suggest that Ni accumulation may have evolved twice within S. coronatus, as hyperaccumulator plants from site Kaapsehoop, cluster with non-accumulating serpentine populations and demonstrate distinct genetic differentiation from other accumulator populations. Four populations were selected for a preliminary comparative shoot proteome analysis by means of two-dimensional SDS-polyacrylamide gel electrophoresis (2D SDS-PAGE) to identify proteins potentially involved in Ni hyperaccumulation. This analysis identified nine chloroplastic proteins involved in plant energy production and metabolism as overexpressed in hyperaccumulator plants from Agnus Mine and Kaapsehoop, compared to hypertolerant non-accumulator and non-serpentine plants from Galaxy Mine and Pullen Farm, respectively. However, no difference in photosynthetic efficiency, as determined by chlorophyll fluorescence measurements, was detected between these populations.
APA, Harvard, Vancouver, ISO, and other styles
6

(9780881), Naveen Bhatia. "Ecophysiology of nickel hyperaccumulation in Stackhousia tryonii Bailey." Thesis, 2003. https://figshare.com/articles/thesis/Ecophysiology_of_nickel_hyperaccumulation_in_Stackhousia_tryonii_Bailey/13421189.

Full text
Abstract:
Selective accumulation of certain metals (elements) to exceptionally high concentrations in plants is intriguing. Approximately 425 species of so-called metal hyperaccumulators are currently known, of which about 75% hyperaccumulate nickel. Stackhousia tryonii Bailey (Stackhousiaceae) - a rare, herbaceous, serpentine-endelnic species - is one of the three nickel hyperaccumulators reported from Australia. This thesis reports research aimed at two broad aspects: propagation and ecophysiology of Ni hyperaccumulation in S. tryonii. Protocols were developed for seed germination, vegetative propagation and micropropagation and with the view to producing sufficient plants for use in the current study. Four-year-old S. tryonii seeds had poor germination (< 25%). However, this species was relatively easy to propagate via stem cuttings and micropropagation methods, as it possessed very high regenerative capacity (one explant produced up to 18 shoots within 4 weeks). Micropropagated shoots also responded well to ex vitro rooting, and were successfully hardened under controlled conditions. These propagation protocols could be useful to underpin conservation programs and mine site revegetation. The examination of natural populations of S. tryonii for arbuscular mycorrhizal colonisation suggested that S. tryonii is a favourable host. A moderately high colonisation (29-39%) of roots by arbuscular mycorrhizal fungi suggested a possible role of these fungi in improved nutrition of S. tryonii in typically nutrient-poor serpentine soils. A positive relationship between root colonisation and leaf Ni concentration suggested that mycorrhizal fungi might be involved in increased influx of Ni into the roots, which is readily transported and localised in the tissues. Spore density was very low (3-4 spores 100 g-¹dry soil, for two depths) in the associated serpentine soils and the dominant mycorrhizal species were: Glomus albidum, aggregatum, G. intraradices and G. tenebrosum. Based on five key soil characteristics (viz. pH, Ca, Mg, Ni and P), the study sites were segregated into four groups using hierarchical cluster analysis. Considerable variation existed in tissue Ni (and other elements) concentrations, both within and between populations and followed the order: leaf> root> stem. Localisation and spatial distribution of nickel, within both vegetative (leaf and stem) and reproductive (fruit) tissues were investigated using two microanalytical techniques [viz., micro-proton-induced x-ray emission spectrometry (micro-PIXE; nuclear microprobe) and scanning electron microscope with energy-dispersive x-ray spectroscopy (SEM-EDXS)]. In leaf and stem tissues, Ni was localised within epidermal and sub-epidermal tissues, palisade/mesophyll tissues, vascular bundles and/or pith. In contrast, in fruits, this metal was partitioned to the fruit wall (pericarp), while endospermic and cotyledonary tissues contained very little Ni. Accumulation of higher levels of Ni within the pericarp does not appear to inhibit seed germination in S. tryonii. To elucidate physiological mechanisms o fNi detoxification in S. tryonii, organic acids (leaf tissue) and free amino acids (xylem sap) were quantified using HPLC. Nickel concentration in the leaf tissues increased from 3695 g g-¹to 13,717 g g-¹with soil nickel supplementation, of which > 60% was extracted with dilute acid (0.025 M HCI). Oxalic, citric and malic acids were detected and quantified in the leaf tissue. Malic acid was the dominant organic acid, and based on a Ni to malic acid ratio (between 0.2:1 and 1:1), malic acid appears to play a major role in detoxification/transport and storage of Ni in S. tryonii. The total amino acid concentrations in the xylem sap decreased with nickel treatment. Glutamine was the major amino acid in both the low- and high- nickel treated plants. A role of amino acids in nickel complexation and transport in S. tryonii could not be established. The possibility of hyperaccumulated Ni acting as an osmoticum under waterstress (drought) in serpentine soils was also investigated. Drought severely affected the growth and overall biomass of the plants. However, survival of plants at the lowest levels of soil moisture (i. e. 20% of field capacity) suggested that it possesses an efficient water regulation mechanism. The results indicated possible involvement of Ni in osmotic adjustment under drought stress.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ni hyperaccumulation"

1

Chandra, Satish, Yogendra Singh Gusain, and Arun Bhatt. "Metal Hyperaccumulator Plants and Environmental Pollution." In Advances in Environmental Engineering and Green Technologies, 305–17. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3126-5.ch019.

Full text
Abstract:
During evolutionary history of life on Earth, different life forms have undergone harsh environmental conditions. Plants have evolved multiple life forms and some of the specialist pioneer plants have the ability to colonize in hostile environmental conditions. Some plant taxa have the ability to accumulate high concentrations of potentially toxic trace elements (Ni, Zn, Cd, Se, As, Mn, Co, Cu, Pb, Sb, Tl) in their biomass. In some of these, taxa concentration of trace elements exceeds the concentration of macronutrients (e.g., Ca, K). Furthermore, metal hyperaccumulation is strongly associated with enhanced ability of these plants to detoxify the accumulated metal in the tissues. Such hyperaccumulation property has been reported in a total of approximately 500 Angiosperm species. This ability of the plants can be used for pollutant stabilization, extraction, degradation, or volatilization. The present chapter discusses heavy metals uptake mechanisms by plants and the potential of phytoremediation technique on treating heavy metal contaminated sides.
APA, Harvard, Vancouver, ISO, and other styles
2

Chandra, Satish, Yogendra Singh Gusain, and Arun Bhatt. "Metal Hyperaccumulator Plants and Environmental Pollution." In Research Anthology on Emerging Techniques in Environmental Remediation, 681–93. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-3714-8.ch036.

Full text
Abstract:
During evolutionary history of life on Earth, different life forms have undergone harsh environmental conditions. Plants have evolved multiple life forms and some of the specialist pioneer plants have the ability to colonize in hostile environmental conditions. Some plant taxa have the ability to accumulate high concentrations of potentially toxic trace elements (Ni, Zn, Cd, Se, As, Mn, Co, Cu, Pb, Sb, Tl) in their biomass. In some of these, taxa concentration of trace elements exceeds the concentration of macronutrients (e.g., Ca, K). Furthermore, metal hyperaccumulation is strongly associated with enhanced ability of these plants to detoxify the accumulated metal in the tissues. Such hyperaccumulation property has been reported in a total of approximately 500 Angiosperm species. This ability of the plants can be used for pollutant stabilization, extraction, degradation, or volatilization. The present chapter discusses heavy metals uptake mechanisms by plants and the potential of phytoremediation technique on treating heavy metal contaminated sides.
APA, Harvard, Vancouver, ISO, and other styles
3

A. Ramos-Arcos, Sebastián, Edith G. González-Mondragón, Eduardo S. López-Hernández, Ana R. Rodríguez-Luna, Carlos M. Morales-Bautista, Selene Lagunas-Rivera, and Sugey López-Martínez. "Phytoremediation Potential of Chrysopogon zizanioides for Toxic Elements in Contaminated Matrices." In Biodegradation [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98235.

Full text
Abstract:
Many researchers have demonstrated the advantages of plants in the phytoremediation of soils and waters contaminated with heavy metals, herbicides, pesticides, leachates, etc. The unique morphological characteristics of Chrysopogon zizanioides, commonly known as vetiver, make it a hyperaccumulator of metals; its roots can store high concentrations of heavy metals such as As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn, and it has thus been successfully used in the field of environmental protection. This chapter presents the importance of vetiver, its characterization, and its potential use as phytoremediation potential for toxic elements in contaminated matrices.
APA, Harvard, Vancouver, ISO, and other styles
4

Schnepf, A., M. L. Himmelbauer, M. Puschenreiter, T. Schrefl, E. Lombi, W. J. Fitz, W. Loiskandl, and W. W. Wenzel. "Model development for simulating the bioavailability of Ni to the hyperaccumulator Thlaspi goesingense." In Biogeochemistry of Trace Elements in the Rhizosphere, 391–418. Elsevier, 2005. http://dx.doi.org/10.1016/b978-044451997-9/50015-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Salome Mthombeni, Tinyiko. "The Evaluation of the Macrophyte Species in the Accumulation of Selected Elements from the Varkenslaagte Drainage Line in the West Wits, Johannesburg South Africa." In Environmental Sciences. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105708.

Full text
Abstract:
Although mining has over the centuries improved the livelihoods and economies of many countries, the results have not spared the environment’s luxurious legacy. Acid mine drainage contaminated sites with heavy metals that affect negatively and positively the macrophytes plants that grow on those sites. Accumulated elements by macrophytes planted on artificial wetlands portray the relative bioconcentration and translocation factors. Various elements were measured in the sediment, water, and macrophytes from the sampled sites and the results indicate that concentrations accumulated by plants play a significant role in biological and chemical processes in soil-water-plant relations. When comparing the drinking water quality standards by international organizations that were used as a guideline for the comparisons of elements concentration levels of elements found in water, Iron (Fe), Nickel (Ni), Manganese (Mn), and Copper (Cu) were found to be above the international water quality standards for drinking water and their average concentrations were 2230, 282, 5950, and 14,080 μg/l respectively. The sequence of elements accumulation by the macrophytes differed per plant and each of the three macrophytes plants was a hyperaccumulator of a certain element.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ni hyperaccumulation"

1

Pavlović, M., Z. Simić, and Gorica Đelić. "DETERMINATION OF HEAVY METALS AND SECONDARY METABOLITES OF „PEUCEDANUM OREOSELINUM“ (APIACEAE)." In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.206p.

Full text
Abstract:
The total quantity of metals (Mg, Ca, Ni, Fe, Mn, Zn, Cu) in soil samples and in sixteen different extracts from plant parts of Peucedanum oreoselinum (L.) Moench as well as the content of total phenols and flavonoids in plant extracts was determined. The contents of metals were determined by the atomic absorption spectrometer. Based on the average values of the metal concentration in the soil, they could be arranged in the following sequence: Fe > Ca > Mg > Mn > Zn > Cu > Ni. Soil concentrations of all tested metals were lower than the maximum allowed concentration. The results demonstrated that the analyzed plant extracts contained higher quantities of Ni and Ca. Although the studied species accumulate analyzed metals in different quantities, they are not hyperaccumulators of these metals. Total phenols were determined using Folin-Ciocalteu reagent and their amounts ranged from 1.94 to P. oreoselinum, hyperaccumulation, phenols, flavonoids32.38 mg GA/g. The amounts of flavonoids in plant extracts were in range from 0.69 to 25.83 mg RU/g. We examined the correlation of metals and the phenolic compounds content in the extracts. According to our results the use P. oreoselinum for tea preparation is safe to a great extent for people, because in spite of the determined metal absorption by plant organs, the tea does not contain dangerous quantity of heavy metals. Also, it is suitable for the preparation of teas and herbal extracts due to minimal content of toxic metal (Ni), phenols and flavonoids.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography