Academic literature on the topic 'Nichtlineare Differentialgleichung'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nichtlineare Differentialgleichung.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nichtlineare Differentialgleichung"
Gollas, F., and R. Tetzlaff. "Identifikationsverfahren zur Analyse von EEG-Signalen bei Epilepsie mit Reaktions-Diffusions Netzwerken." Advances in Radio Science 5 (June 13, 2007): 253–58. http://dx.doi.org/10.5194/ars-5-253-2007.
Full textWeber, Harry, and Wolfgang Mathis. "Eine selbstkonsistente Carleman Linearisierung zur Analyse von Oszillatoren." Advances in Radio Science 15 (September 21, 2017): 223–30. http://dx.doi.org/10.5194/ars-15-223-2017.
Full textThiessen, T., J. K. Bremer, and W. Mathis. "Nichtlineare Rauschmodellierung von LC Tank VCOs." Advances in Radio Science 6 (May 26, 2008): 181–87. http://dx.doi.org/10.5194/ars-6-181-2008.
Full textKomkov, V., and V. Dannon. "Random Walk Simulation of Chemical Reactions Represented by Nonlinear Reaction‐Diffusion Equations." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 71, no. 3 (January 1991): 135–50. http://dx.doi.org/10.1002/zamm.19910710302.
Full textSchulz, Friedmar. "�ber nichtlineare, konkave elliptische Differentialgleichungen." Mathematische Zeitschrift 191, no. 3 (September 1986): 429–48. http://dx.doi.org/10.1007/bf01162718.
Full textRauh, Andreas, Julia Kersten, Ekaterina Auer, and Harald Aschemann. "Intervallmethoden zur Berechnung exponentieller Zustandseinschlüsse für die Erreichbarkeitsanalyse unsicherer Systeme." at - Automatisierungstechnik 68, no. 10 (October 25, 2020): 826–39. http://dx.doi.org/10.1515/auto-2019-0065.
Full textVoller, Rudolf L. "Iterative inclusions of solutions of nonlinear differential equations by Newton-like iteration methods." Applications of Mathematics 31, no. 1 (1986): 1–18. http://dx.doi.org/10.21136/am.1986.104180.
Full textHerold, Horst. "Explizite Lösungen einer Klasse nichtlinearer partieller Differentialgleichungen." Zeitschrift für Analysis und ihre Anwendungen 9, no. 2 (1990): 189–91. http://dx.doi.org/10.4171/zaa/393.
Full textGünther, Matthias. "Zur lokalen Lösbarkeit nichtlinearer Differentialgleichungen vom gemischten Typ." Zeitschrift für Analysis und ihre Anwendungen 9, no. 1 (1990): 33–42. http://dx.doi.org/10.4171/zaa/379.
Full textKosler, R. "QuasioptimaleL2-Fehlerabschätzungen für die Methode der finiten Elemente bei stark nichtlinearen elliptischen Differentialgleichungen." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 66, no. 1 (1986): 54–56. http://dx.doi.org/10.1002/zamm.19860660113.
Full textDissertations / Theses on the topic "Nichtlineare Differentialgleichung"
Korsawe, Johannes Rudolf. "Multilevelverfahren für nichtlineare Finite-Element-Ausgleichsprobleme." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963621874.
Full textTheil, Florian. "Young-Mass-Lösungen für nichtlineare partielle Differentialgleichungen." [S.l. : s.n.], 1997. http://deposit.ddb.de/cgi-bin/dokserv?idn=954319141.
Full textAmbani, Joseph Stephane. "Newton-Methode für optimale Steuerungsprobleme bei nichtlinearen hyperbolischen partiellen Differentialgleichungen zweiter Ordnung." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972664289.
Full textWinkert, Patrick. "Comparison principles and multiple solutions for nonlinear elliptic problems." Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/997031131/04.
Full textCantner, Jasmin. "Über die Langzeitdynamik von Fronten." [S.l.] : Universität Stuttgart , Fakultät Mathematik, 1996. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB6783559.
Full textWinter, Matthias. "Concentrated patterns in biological systems." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11163816.
Full textLorenz, Thomas. "Mutational analysis a joint framework for dynamical systems in and beyond vector spaces /." Heidelberg : Universitätsbibliothek der Universität Heidelberg, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:16-opus-89660.
Full textHeck and Thomas. "Methoden und Anwendungen der Riemannschen Differentialgeometrie in Yang-Mills-Theorien." Phd thesis, Universitaet Stuttgart, 1993. http://elib.uni-stuttgart.de/opus/volltexte/2001/916/index.html.
Full textVeljović, Slobodan. "Shape optimization and optimal boundary control for high intensity focused ultrasound (HIFU)." Aachen Shaker, 2010. http://d-nb.info/1002144639/04.
Full textMeyer, Marcus. "Identification of material parameters in mechanical models." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000525.
Full textThe dissertation is focussed on parameter identification problems arising in the context of structural mechanics. At this, we consider the identification of material parameters - which typically represent the properties of an underlying material - from given measured displacements and forces of a loaded test body. In mathematical terms such problems denote identification problems as a special case of general inverse problems. The dissertation is organized as follows. After the introductive section 1, section 2 is devoted to a survey of optimization and regularization methods for the stable solution of nonlinear inverse problems. In section 3 we consider the identification of scalar and piecewise constant parameters in linear elliptic differential equations and examine two test problems, namely the identification of diffusion and reaction parameters in a generalized linear elliptic differential equation of second order and the identification of the Lame constants in the linearized elasticity model. The underlying PDE models are introduced and solution approaches are discussed in detail. At this, we consider Newton-type algorithms, gradient methods, multi-parameter regularization, and the evolutionary algorithm CMAES. Consequently, numerical studies for a two-dimensional test problem are presented. In section 4 we point out the identification of distributed material parameters in hyperelastic deformation models. The nonlinear elasticity boundary value problem for large deformations is introduced. We discuss several material laws for linear elastic (St.-Venant-Kirchhoff) materials and nonlinear Neo-Hooke, Mooney-Rivlin, and Modified-Fung materials. For the solution of the corresponding parameter identification problem, we focus on an optimal control solution approach and introduce a regularized Newton-Lagrange SQP method. The Newton-Lagrange algorithm is demonstrated within a numerical study. Therefore, a simplified two-dimensional Cook membrane test problem is solved. Additionally, in section 5 the application of adaptive methods for the solution of parameter identification problems is discussed briefly
Books on the topic "Nichtlineare Differentialgleichung"
Sachdev, P. L. Nonlinear ordinary differential equations and their applications. New York: M. Dekker, 1991.
Find full textMitidieri, Ėnco. Apriornye ocenki i otsutstvie rešenij nelinejnych uravnenij i neravenstv v častnych proizvodnych. Moskva: Nauka [u.a.], 2001.
Find full text1935-, Smith Peter, ed. Nonlinear ordinary differential equations. 2nd ed. Oxford [Oxfordshire]: Clarendon Press, 1987.
Find full textJosef, Málek, ed. Weak and measure-valued solutions to evolutionary PDEs. London: Chapman & Hall, 1996.
Find full textGrusa, Karl-Ulrich. Mathematical analysis of nonlinear dynamic processes: An introduction to processes governed by partial differential equations. [Harlow, Essex, England]: Longman Scientific & Technical, 1988.
Find full textBöhmer, K. Numerical methods for nonlinear elliptic differential equations: A synopsis. Oxford: Oxford University Press, 2010.
Find full text1941-, Schuster P. (Peter), ed. Modeling by nonlinear differential equations: Dissipative and conservative processes. Singapore: World Scientific, 2009.
Find full textH, Brezis, ed. Morse Theory, Minimax Theory and Their Applications to Nonlinear Differential Equations: Held at Morningside Center of Mathematics, Chinese Academy of Sciences, Beijing, April 1st to September 30th, 1999. Somerville, Mass: International Press, 2003.
Find full textH, Brézis, ed. Morse theory, minimax theory and their applications to nonlinear differential equations: [lectures] held at Morningside Center of Mathematics, Chinese Academy of Sciences, Beijing, April 1st to September 30th, 1999. Somerville, Mass: International Press, 2003.
Find full textWeickert, Joachim. Anisotropic diffusion in image processing. Stuttgart: B.G. Teubner, 1998.
Find full textBook chapters on the topic "Nichtlineare Differentialgleichung"
Dirschmid, Hans Jörg. "Nichtlineare Differentialgleichungen." In Mathematische Grundlagen der Elektrotechnik, 983–1046. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-83228-3_32.
Full textDirschmid, Hans Jörg. "Nichtlineare Differentialgleichungen." In Mathematische Grundlagen der Elektrotechnik, 983–1046. Wiesbaden: Vieweg+Teubner Verlag, 1986. http://dx.doi.org/10.1007/978-3-322-90654-0_32.
Full textHickmann, Eva Maria. "Nichtlineare Differentialgleichungen." In Differentialgleichungen als zentraler Bestandteil der theoretischen Physik, 107–21. Wiesbaden: Springer Fachmedien Wiesbaden, 2020. http://dx.doi.org/10.1007/978-3-658-29898-2_5.
Full textWenzel, Horst, and Peter Meinhold. "Nichtlineare Differentialgleichungen." In Mathematik für Ingenieure und Naturwissenschaftler, 68–94. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-322-81033-5_5.
Full textSchweizer, Ben. "Nichtlineare Elastizität." In Partielle Differentialgleichungen, 531–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40638-6_26.
Full textSchweizer, Ben. "Nichtlineare Elastizität." In Partielle Differentialgleichungen, 565–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-67188-7_26.
Full textSchweizer, Ben. "Nichtlineare Elastizität." In Partielle Differentialgleichungen, 521–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56668-8_26.
Full textStrauss, Walter A. "Nichtlineare partielle Differentialgleichungen." In Partielle Differentialgleichungen, 386–413. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-663-12486-3_14.
Full textZeidler, Eberhard. "Nichtlineare partielle Differentialgleichungen." In Springer-Handbuch der Mathematik IV, 311–56. Wiesbaden: Springer Fachmedien Wiesbaden, 2012. http://dx.doi.org/10.1007/978-3-658-00289-3_5.
Full textKnabner, Peter, and Lutz Angermann. "Iterationsverfahren für nichtlineare Gleichungssysteme." In Numerik partieller Differentialgleichungen, 269–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57181-7_8.
Full text