Dissertations / Theses on the topic 'Nichtlineare Differentialgleichung'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 38 dissertations / theses for your research on the topic 'Nichtlineare Differentialgleichung.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Korsawe, Johannes Rudolf. "Multilevelverfahren für nichtlineare Finite-Element-Ausgleichsprobleme." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963621874.
Full textTheil, Florian. "Young-Mass-Lösungen für nichtlineare partielle Differentialgleichungen." [S.l. : s.n.], 1997. http://deposit.ddb.de/cgi-bin/dokserv?idn=954319141.
Full textAmbani, Joseph Stephane. "Newton-Methode für optimale Steuerungsprobleme bei nichtlinearen hyperbolischen partiellen Differentialgleichungen zweiter Ordnung." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972664289.
Full textWinkert, Patrick. "Comparison principles and multiple solutions for nonlinear elliptic problems." Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/997031131/04.
Full textCantner, Jasmin. "Über die Langzeitdynamik von Fronten." [S.l.] : Universität Stuttgart , Fakultät Mathematik, 1996. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB6783559.
Full textWinter, Matthias. "Concentrated patterns in biological systems." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11163816.
Full textLorenz, Thomas. "Mutational analysis a joint framework for dynamical systems in and beyond vector spaces /." Heidelberg : Universitätsbibliothek der Universität Heidelberg, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:16-opus-89660.
Full textHeck and Thomas. "Methoden und Anwendungen der Riemannschen Differentialgeometrie in Yang-Mills-Theorien." Phd thesis, Universitaet Stuttgart, 1993. http://elib.uni-stuttgart.de/opus/volltexte/2001/916/index.html.
Full textVeljović, Slobodan. "Shape optimization and optimal boundary control for high intensity focused ultrasound (HIFU)." Aachen Shaker, 2010. http://d-nb.info/1002144639/04.
Full textMeyer, Marcus. "Identification of material parameters in mechanical models." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000525.
Full textThe dissertation is focussed on parameter identification problems arising in the context of structural mechanics. At this, we consider the identification of material parameters - which typically represent the properties of an underlying material - from given measured displacements and forces of a loaded test body. In mathematical terms such problems denote identification problems as a special case of general inverse problems. The dissertation is organized as follows. After the introductive section 1, section 2 is devoted to a survey of optimization and regularization methods for the stable solution of nonlinear inverse problems. In section 3 we consider the identification of scalar and piecewise constant parameters in linear elliptic differential equations and examine two test problems, namely the identification of diffusion and reaction parameters in a generalized linear elliptic differential equation of second order and the identification of the Lame constants in the linearized elasticity model. The underlying PDE models are introduced and solution approaches are discussed in detail. At this, we consider Newton-type algorithms, gradient methods, multi-parameter regularization, and the evolutionary algorithm CMAES. Consequently, numerical studies for a two-dimensional test problem are presented. In section 4 we point out the identification of distributed material parameters in hyperelastic deformation models. The nonlinear elasticity boundary value problem for large deformations is introduced. We discuss several material laws for linear elastic (St.-Venant-Kirchhoff) materials and nonlinear Neo-Hooke, Mooney-Rivlin, and Modified-Fung materials. For the solution of the corresponding parameter identification problem, we focus on an optimal control solution approach and introduce a regularized Newton-Lagrange SQP method. The Newton-Lagrange algorithm is demonstrated within a numerical study. Therefore, a simplified two-dimensional Cook membrane test problem is solved. Additionally, in section 5 the application of adaptive methods for the solution of parameter identification problems is discussed briefly
Meyer, Marcus. "Parameter identification problems for elastic large deformations - Part I: model and solution of the inverse problem." Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901869.
Full textSaal, Martin [Verfasser]. "Nichtlineare Integro-Differentialgleichungen zweiter Ordnung / Martin Saal." Konstanz : Bibliothek der Universität Konstanz, 2014. http://d-nb.info/1055909923/34.
Full textBock, Hans Georg. "Randwertproblemmethoden zur Parameteridentifizierung in Systemen Nichtlinearer Differentialgleichungen." Bonn : Rheinische Friedrich-Wilhelms-Universität, 1987. http://catalog.hathitrust.org/api/volumes/oclc/16795956.html.
Full textBranding, Volker. "The evolution equations for Dirac-harmonic Maps." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6420/.
Full textDie vorliegende Dissertation untersucht den Gradientenfluss von Dirac-harmonischen Abbildungen. Dirac-harmonische Abbildungen sind kritische Punkte eines Energiefunktionals, welches aus supersymmetrischen Feldtheorien motiviert ist. Die kritischen Punkte dieses Energiefunktionals koppeln die Gleichung für harmonische Abbildungen mit Spinorfeldern. Viele analytische Eigenschaften von Dirac-harmonischen Abbildungen sind bereits bekannt, ein allgemeines Existenzresultat wurde aber noch nicht erzielt. Diese Dissertation untersucht das Existenzproblem, indem der Gradientenfluss von einer regularisierten Version Dirac-harmonischer Abbildungen untersucht wird. Die Methode des Gradientenflusses kann nicht direkt angewendet werden, da das Energiefunktional für Dirac-harmonische Abbildungen nach unten unbeschränkt ist. Daher wird zunächst eine Regularisierungsvorschrift für Dirac-harmonische Abbildungen eingeführt und dann der Gradientenfluss betrachtet. Kapitel 1 stellt für die Arbeit wichtige Resultate über harmonische Abbildungen/harmonische Spinoren zusammen. Außerdem werden die zur Zeit bekannten Resultate über Dirac-harmonische Abbildungen zusammengefasst. In Kapitel 2 werden Dirac-harmonische Abbildungen im Detail eingeführt, außerdem wird eine Regularisierungsvorschrift präsentiert. Kapitel 3 führt die Evolutionsgleichungen für regularisierte Dirac-harmonische Abbildungen ein. Zusätzlich wird die Evolution von verschiedenen Energien diskutiert. Schließlich wird die Existenz einer Kurzzeitlösung bewiesen. In Kapitel 4 werden die Evolutionsgleichungen für den Fall analysiert, dass die Ursprungsmannigfaltigkeit eine geschlossene Kurve ist. Die Existenz einer Langzeitlösung der Evolutionsgleichungen wird bewiesen. Es wird außerdem gezeigt, dass die Evolutionsgleichungen konvergieren, falls die Regularisierung groß genug gewählt wurde. Schließlich wird diskutiert, ob die Regularisierung wieder entfernt werden kann. Kapitel 5 schlussendlich untersucht die Evolutionsgleichungen für den Fall, dass die Ursprungsmannigfaltigkeit eine geschlossene Riemannsche Spin Fläche ist. Es wird die Existenz einer global schwachen Lösung bewiesen, welche bis auf endlich viele Singularitäten glatt ist. Die Lösung konvergiert im schwachen Sinne gegen eine regularisierte Dirac-harmonische Abbildung. Auch hier wird schließlich untersucht, ob die Regularisierung wieder entfernt werden kann.
Kurth, Patrick [Verfasser]. "Nichtlineare Integro-Differentialgleichungen aus der mathematischen Physik / Patrick Kurth." Konstanz : Bibliothek der Universität Konstanz, 2013. http://d-nb.info/1041224605/34.
Full textBrawer, Robert Alfred. "Numerik und Existenzsätze schwacher Lösungen nichtlinearer partieller Differentialgleichungen /." [S.l.] : [s.n.], 1991. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=9485.
Full textFriedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234307.
Full textDas Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten
Bartholomäus, Lukas [Verfasser]. "Nichtlineare partielle Differentialgleichungen vom gemischten elliptisch-hyperbolischen Typ / Lukas Bartholomäus." Ulm : Universität Ulm, 2017. http://d-nb.info/1139050524/34.
Full textOtto, Andreas. "Frequency domain methods for the analysis of time delay systems." Doctoral thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-208749.
Full textIn dieser Dissertation wird ein neues Verfahren zur Analyse von Systemen mit Totzeiten im Frequenzraum vorgestellt. Nach Linearisierung einer nichtlinearen retardierten Differentialgleichung (DDE) mit konstanter verteilter Totzeit um eine konstante oder periodische Referenzlösung kann die sogenannte Hill-Floquet Methode für die Analyse der resultierende linearen DDE angewendet werden. Darüber hinaus werden Systeme mit schnell oder langsam variierender Totzeit, Systeme mit einer variablen Totzeit, resultierend aus einem Transport mit variabler Geschwindigkeit, und entsprechende räumlich ausgedehnte Systeme vorgestellt, welche ebenfalls mit der vorgestellten Methode analysiert werden können. Die neu eingeführte Hill-Floquet Methode basiert auf der Hillschen unendlichen Determinante und ermöglicht die Transformation eines Systems mit periodischen Koeffizienten auf ein autonomes System mit konstanten Koeffizienten. Dadurch können zur Analyse periodischer Systeme auch eine Vielzahl existierender Methoden für autonome Systeme genutzt werden und die Berechnung der Monodromie-Matrix für die Lösung des Systems über eine Periode entfällt. In dieser Arbeit wird zur Analyse des autonomen Systems die Tschebyscheff-Kollokationsmethode verwendet. Im Speziellen wird bei diesem Verfahren der periodische Teil der Lösung in einer Fourierreihe entwickelt und das exponentielle Verhalten durch die Werte der Fourierkoeffizienten an den Tschebyscheff Knoten approximiert, wohingegen bei klassischen spektralen Verfahren die komplette Lösung in bestimmten Basisfunktionen entwickelt wird. Im Anwendungsteil der Arbeit werden neue Ergebnisse für drei Beispielsysteme präsentiert, welche mit den vorgestellten Methoden analysiert wurden. Es wird gezeigt, dass Welleninstabilitäten schon bei Einkomponenten-Reaktionsdiffusionsgleichungen mit verteilter oder variabler Totzeit auftreten können. In einem zweiten Beispiel werden Schwingungen an Werkzeugmaschinen betrachtet, wobei speziell simultane Drehbearbeitungsprozesse und Prozesse mit Drehzahlvariationen genauer untersucht werden. Am Ende wird die Synchronisation in Netzwerken mit heterogenen Totzeiten in den Kopplungstermen untersucht, wobei die Zerlegung in Netzwerk-Eigenmoden für synchrone periodische Orbits hergeleitet wird und konkrete numerische Ergebnisse für ein Netzwerk aus Hodgkin-Huxley Neuronen gezeigt werden
Wolf, Jörg. "Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2002. http://dx.doi.org/10.18452/14792.
Full textIn the present work we study the regularity of weak solution to q-elliptic and parabolic systems partial differential equations in appropriate Sobolev spaces in case 1
Wolf, Jörg. "Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung der Fall 1 [p[2 /." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966135091.
Full textHönig, Oliver [Verfasser], and Rudolf [Akademischer Betreuer] Hilfer. "Laufende Wellenlösungen von Systemen nichtlinearer partieller Differentialgleichungen am Beispiel von Mehrphasenströmungen in porösen Medien / Oliver Hönig. Betreuer: Rudolf Hilfer." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2012. http://d-nb.info/1025672437/34.
Full textHegewald, Sabine. "Temporale Aggregation von heteroskedastischen Prozessen : stochastische Differenzengleichungen versus stochastische Differentialgleichungen unter Berücksichtigung von Lévy-Ornstein-Uhlenbeck-Prozessen, Tsallis-Entropie und nichtlinearer Fokker-Planck-Dynamik /." Göttingen : Cuvillier, 2006. http://www.gbv.de/dms/zbw/511985681.pdf.
Full textPester, Cornelia. "A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularities." Doctoral thesis, Berlin Logos-Verl, 2006. http://deposit.ddb.de/cgi-bin/dokserv?id=2806614&prov=M&dok_var=1&dok_ext=htm.
Full textHuth, Robert. "On a Fokker–Planck equation coupled with a constraint." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://dx.doi.org/10.18452/16557.
Full textWe discuss two models which describe the charging and discharging of a lithium-ion battery and especially the hysteretical behaviour therein. We give an overview on the modelling process for a discrete many particle model and a continuous many particle model. The former results in an axiomatic description of macroscopic quantities while the latter gives a nonlinear Fokker-Planck equation. The nonlinear Fokker-Planck equation is analysed with respect to existence and uniqueness of solutions as well as qualitative behaviour of solutions. The nonlinearity in this partial differential equation stems from a coefficient which depends on the solution first non-local and second in a higher order. We use interpolation spaces and semigroups generated from sectorial operators to show the existence and uniqueness of solutions locally in time. The global existence in time relies on estimates for the dissipation of an energy. The suitable energy is related to the L-log-L norm and so a Gagliardo-Nirenberg inequality is needed to connect this back to L^2 estimates. It turns out that the conditions for global in time existence of solutions are physical reasonable. One needs that the loading state of the battery shall stay between totally empty and totally full. In numerical experiments we investigate the qualitative behaviour of solutions to the nonlinear Fokker-Planck equation. We are able to show convergence of the numerical solutions to the exact solution. We observe that solutions tend to concentrate at certain points. Supported by results from formal asymptotic expansions, we document the limiting behaviour in a certain scaling of the appearing parameters, which is the formation of Dirac measures. The evolution of the global quantities, which we observe in numerical simulations, is the same as what results from the discrete many particle model and one observes hysteretic behaviour in macroscopic quantities.
Gelbrecht, Maximilian. "Physics-based Machine Learning Approaches to Complex Systems and Climate Analysis." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/23010.
Full textComplex systems such as the Earth's climate are comprised of many constituents that are interlinked through an intricate coupling structure. For the analysis of such systems it therefore seems natural to bring together methods from network theory, dynamical systems theory and machine learning. By combining different concepts from these fields three novel approaches for the study of complex systems are considered throughout this thesis. In the first part, a novel complex network construction method is introduced that is able to identify the most important wind paths of the South American Monsoon system. Aside from the importance of cross-equatorial flows, this analysis points to the impact Rossby Wave trains have both on the precipitation and low-level circulation. This connection is then further explored by showing that the precipitation is phase coherent to the Rossby Wave. As such, the first part of this thesis demonstrates how complex networks can be used to identify spatiotemporal variability patterns within large amounts of data, that are then further analysed with methods from nonlinear dynamics. Most complex systems exhibit a large number of possible asymptotic states. To investigate and track such states, Monte Carlo Basin Bifurcation analysis (MCBB), a novel numerical method is introduced in the second part. Situated between the classical analysis with macroscopic order parameters and a more thorough, detailed bifurcation analysis, MCBB combines random sampling with clustering methods to identify and characterise the different asymptotic states and their basins of attraction. Forecasts of complex system are the next logical step. When doing so, it is not always straightforward how prior knowledge in data-driven methods. One possibility to do is by using Neural Partial Differential Equations. Here, it is demonstrated how high-dimensional spatiotemporally chaotic systems can be modelled and predicted with such an approach in the last part of the thesis.
Heinz, Sebastian. "Preservation of quasiconvexity and quasimonotonicity in polynomial approximation of variational problems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2008. http://dx.doi.org/10.18452/15808.
Full textIn this thesis, we are concerned with three classes of non-linear problems that appear naturally in various fields of science, engineering and economics. In order to cover many different applications, we study problems in the calculus of variation (Chapter 3), partial differential equations (Chapter 4) as well as non-linear programming problems (Chapter 5). As an example of possible applications, we consider models of non-linear elasticity theory. The aim of this thesis is to approximate a given non-linear problem by polynomial problems. In order to achieve the desired polynomial approximation of problems, a large part of this thesis is dedicated to the polynomial approximation of non-linear functions. The Weierstraß approximation theorem forms the starting point. Based on this well-known theorem, we prove theorems that eventually lead to our main result: A given non-linear function can be approximated by polynomials so that essential properties of the function are preserved. This result is new for three properties that are important in the context of the considered non-linear problems. These properties are: quasiconvexity in the sense of the calculus of variation, quasimonotonicity in the context of partial differential equations and quasiconvexity in the sense of non-linear programming (Theorems 3.16, 4.10 and 5.5). Finally, we show the following: Every non-linear problem that belongs to one of the three considered classes of problems can be approximated by polynomial problems (Theorems 3.26, 4.16 and 5.8). The underlying convergence guarantees both the approximation in the parameter space and the approximation in the solution space. In this context, we use the concepts of Gamma-convergence (epi-convergence) and of G-convergence.
Uecker, Hannes. "Rollen und modulierende Multipulse in musterbildenden Systemen /." 2000. http://www.gbv.de/dms/goettingen/316106542.pdf.
Full textKarl, Stefan. "Control Centrality in Non-Linear Biological Networks." Doctoral thesis, 2016. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-150838.
Full textBiologische Systeme wie Zellen aber auch ganze Organismen werden durch ein komplexes Netzwerk von Transkriptionsfaktoren, Hormonen und anderen Regulatoren kontrolliert, welche das Verhalten des Systems in Abhängigkeit von internen und externen Einflüssen steuern. In mathematischen Modellen dieser Netzwerke werden Gene durch „Knoten“ repräsentiert, deren „Wert“ die Aktivität des Gens wiederspiegelt. Kontrollvorgänge in diesen Regulationsnetzwerken sind schwierig zu quantifizieren. Existierende Maße für die Kontrollzentralität, d.h. die Fähigkeit einzelner Knoten biologische Systeme zu kontrollieren, zeigen vor allem Probleme mit der biologischen Plausibilität der Ergebnisse. Diese Dissertation stellt eine neue Definition der Kontrollzentralität vor. Dabei werden drei Typen der Kontrollzentralität unterschieden: Totale Kontrollzentralität quantifiziert den Einfluss von Mutationen eines Gens und hilft mögliche pharmakologische Ziele wie etwa Onkogene (z. B. das Zinkfingerprotein GLI2 oder Bone Morphogenetic Proteins in Chondrozyten) zu identifizieren. Dynamische Kontrollzentralität beschreibt signalweiterleitende Funktionen in Signalkaskaden (z. B. in Kontrollprozessen in Stammzellen des Mauskolons). Wert-Kontrollzentralität misst den Einfluss des Werts des Knotens (zum Beispiel die Rolle von Indian hedgehog als essentieller Regulator der Chondrozytenproliferation). Durch gezielte Manipulation von Netzwerken können die Zentralitäten nicht nur für Knoten, sondern auch für die Interaktionen zwischen ihnen bestimmt werden, was detaillierte Einblicke in Netzwerkpfade erlaubt. Möglich wird die Berechnung der neuen Maße durch substantielle Verbesserungen der Simulationsalgorithmen mehrerer häufig verwendeter mathematischer Muster für Genregulationsnetzwerke, welche in der für diese Dissertation entwickelten Software Jimena implementiert wurden. Durch die Anwendung der neuen Metriken auf biologische Netzwerke und künstliche Zufallsnetzwerke kann gezeigt werden, dass die mathematischen Konzepte experimentell bestätigte Funktionen von Genen und Signalpfaden im Immunsystem und der Zelldifferenzierung korrekt wiedergeben. Im Gegensatz zu umstrittenen Ergebnissen der Forschungsgruppe Barabási zeigt sich hier, dass die Fähigkeit, biologische Netzwerke zu kontrollieren, in nur wenigen Knoten konzentriert ist, welche sich vor allem durch viele Verbindungen zum Rest des Netzwerks auszeichnen. Knoten, welche ihre eigene Expression beeinflussen, steigern die Fähigkeit eines Netzwerkes sich selbst zu kontrollieren (Kontrollierbarkeit), und biologische Netzwerke zeichnen sich durch hohe Kontrollierbarkeit bei gleichzeitig hoher Resistenz gegenüber Mutationen aus. Diese Kombination kann am besten durch eher schwach verbundene Netzwerke erreicht werden, bei denen auf einen Knoten nur etwa 2 bis 3 Verbindungen kommen. Die neuen Konzepte schlagen so eine Brücke zwischen Netzwerkwissenschaften und Biologie, und sind in einer Vielzahl von Gebieten wie der Modellierung von Systemen sowie der Überprüfung ihrer Plausibilität und ihrer Analyse anwendbar. Medizinische Anwendungen, auf welche in dieser Dissertation eingegangen wird, sind zum Beispiel die Suche nach Onkogenen und pharmakologischen Zielen, aber auch deren funktionelle Analyse
Rieger, Marc Oliver. "Nonconvex variational problems /." 2002. http://www.gbv.de/dms/goettingen/357205898.pdf.
Full textGehre, Nico. "Lösungsoperatoren für Delaysysteme und Nutzung zur Stabilitätsanalyse." 2017. https://monarch.qucosa.de/id/qucosa%3A21053.
Full textIn this thesis linear delay differential equations (DDEs) and its solutions operators are studied. We present a new method to calculate the solution operators for autonomous and non-autonomous DDEs. The new method is related to the path integral formalism, which is known from quantum mechanics and the analysis of stochastic differential equations. It will be shown that the solution of a time delay system at time t can be constructed by integrating over all paths from the initial condition to time t. The paths consist of several steps with different lengths and weights. Analytic expressions for the solution operator for scalar autonomous DDEs can be found in the literature but no results exist for non-autonomous or high dimensional DDEs. With the help of the new method we can calculate the solution operators for such DDEs and for time delay systems with several delay terms. We verify our results analytically and numerically. We use the obtained solution operators for the stability analysis of periodic time delay systems. Two new methods will be presented to approximate the transformed monodromy operator with the help of the solution operator and to get the stability. Both new methods are spectral methods for autonomous and non-autonomous delay systems and have no limitations like the known Chebyshev collocation method or Chebyshev polynomial expansion. Both previously known methods are limited to time delay systems with a rational relation between period and delay. Furthermore we will extend a known method to a spectral method for non-autonomous time delay systems. We verify all three new methods numerically. Hence, in this thesis three new spectral methods for the stability analysis of periodic time delay systems are presented.
Theil, Florian [Verfasser]. "Young-Maß-Lösungen für nichtlineare partielle Differentialgleichungen / von Florian Theil." 1997. http://d-nb.info/954319141/34.
Full textFriedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30879.
Full textDas Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66
Sapozhnikova, Kateryna. "Robust Stability of Differential Equations with Maximum." Doctoral thesis, 2018. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-173945.
Full textIn dieser These werden die Eigenschaften der Stabilität und Robustheit von Systemen funktioneller Differentialgleichungen untersucht, deren Dynamik von einem Maximum in der Lösung eines vergangenen Zeitintervalls abhängt. Der Max-Operator wird analysiert und durch seine Anwesenheit ist bewiesen, dass diese Art von Systemen einen spezifischen Fall von zustandsabhängigen Verzögerungsdifferenzialgleichungen mit stückweiser, kontinuierlicher Verzögerungsfunktion darstellen. Sie sind nicht-linear, unendlich dimensional und entlang ihrer Lösung können sie eindimensional werden. Die Stabilitätsanalyse, unter Berücksichtigung der Eingabe, wird sowohl durch eine Richtungsschätzung, als auch mittels der Durchschnittsmethode durchgeführt. Eine numerische Methode wird vorgeschlagen
Wolf, Jörg [Verfasser]. "Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung : der Fall 1 ." 2002. http://d-nb.info/966135091/34.
Full textAmbani, Joseph Stephane [Verfasser]. "Newton-Methode für optimale Steuerungsprobleme bei nichtlinearen hyperbolischen partiellen Differentialgleichungen zweiter Ordnung / vorgelegt von Joseph Stephane Ambani." 2004. http://d-nb.info/972664289/34.
Full textMüller-Bender, David. "Nonlinear Dynamics and Chaos in Systems with Time-Varying Delay." 2020. https://monarch.qucosa.de/id/qucosa%3A72483.
Full textIn systems with time-delay, the evolution of a system is not uniquely determined by the state at the current time. The history of the state must be known for a time period of finite duration, where the duration is called delay and determines the memory length of the system. In this work, fundamental effects arising from a temporal variation of the time-delay are investigated. In the first part, two classes of periodically time-varying delays are introduced. They are related to a specific dynamics of a one-dimensional iterated map that is defined by the time-varying delay. Referring to the related map dynamics the classes are called conservative or dissipative. Systems with conservative delay can be transformed into systems with constant delay, and thus have the same characteristic properties as constant delay systems. In contrast, there are fundamental differences, for instance, in the tangent space dynamics, between systems with dissipative delay and systems with constant delay. In the second part, these results are applied to systems with a delay that is considered large compared to the internal relaxation time of the system. It is shown that a mechanism induced by dissipative delays leads to new kinds of regular and chaotic dynamics. The dynamics caused by the so-called resonant Doppler effect is fundamentally different from the behavior known from systems with constant delay. For instance, the chaotic attractors in systems with dissipative delay are very low-dimensional compared to typical ones arising in systems with constant delay. An example of this new kind of low-dimensional dynamics is given by the so-called Laminar Chaos. It is characterized by nearly constant laminar phases of periodic duration, where the amplitude varies chaotically. In the third part of this work, it is shown that Laminar Chaos is a robust phenomenon, which survives perturbations such as noise and can be observed experimentally. Therefore experimental data is provided and a nonlinear delayed Langevin equation is analyzed. Using the robust features that characterize Laminar Chaos, methods for time series analysis are developed, which enable us to detect Laminar Chaos without the knowledge of the specific system that has generated the time series. By these methods Laminar Chaos can be detected even for comparably large noise strengths, where the characteristic properties are nearly invisible to the eye.:1. Introduction 2. Dissipative and conservative delays in systems with time-varying delay 3. Laminar Chaos and the resonant Doppler effect 4. Laminar Chaos: a robust phenomenon 5. Summary and concluding remarks A. Appendix
Berendsen, Judith. "Cross Diffusion and Nonlocal Interaction: Some Results on Energy Functionals and PDE Systems." 2019. https://monarch.qucosa.de/id/qucosa%3A70842.
Full text