To see the other types of publications on this topic, follow the link: Nichtlineare Differentialgleichung.

Dissertations / Theses on the topic 'Nichtlineare Differentialgleichung'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 38 dissertations / theses for your research on the topic 'Nichtlineare Differentialgleichung.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Korsawe, Johannes Rudolf. "Multilevelverfahren für nichtlineare Finite-Element-Ausgleichsprobleme." [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963621874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Theil, Florian. "Young-Mass-Lösungen für nichtlineare partielle Differentialgleichungen." [S.l. : s.n.], 1997. http://deposit.ddb.de/cgi-bin/dokserv?idn=954319141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ambani, Joseph Stephane. "Newton-Methode für optimale Steuerungsprobleme bei nichtlinearen hyperbolischen partiellen Differentialgleichungen zweiter Ordnung." [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972664289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Winkert, Patrick. "Comparison principles and multiple solutions for nonlinear elliptic problems." Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/997031131/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cantner, Jasmin. "Über die Langzeitdynamik von Fronten." [S.l.] : Universität Stuttgart , Fakultät Mathematik, 1996. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB6783559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Winter, Matthias. "Concentrated patterns in biological systems." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11163816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lorenz, Thomas. "Mutational analysis a joint framework for dynamical systems in and beyond vector spaces /." Heidelberg : Universitätsbibliothek der Universität Heidelberg, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:16-opus-89660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heck and Thomas. "Methoden und Anwendungen der Riemannschen Differentialgeometrie in Yang-Mills-Theorien." Phd thesis, Universitaet Stuttgart, 1993. http://elib.uni-stuttgart.de/opus/volltexte/2001/916/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Veljović, Slobodan. "Shape optimization and optimal boundary control for high intensity focused ultrasound (HIFU)." Aachen Shaker, 2010. http://d-nb.info/1002144639/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meyer, Marcus. "Identification of material parameters in mechanical models." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201000525.

Full text
Abstract:
Die Dissertation beschäftigt sich mit Parameteridentifikationsproblemen, wie sie häufig in Fragestellungen der Festkörpermechanik zu finden sind. Hierbei betrachten wir die Identifikation von Materialparametern -- die typischerweise die Eigenschaften der zugrundeliegenden Materialien repräsentieren -- aus gemessenen Verformungen oder Belastungen eines Testkörpers. In mathematischem Sinne entspricht dies der Lösung von Identifikationsproblemen, die eine spezielle Klasse von inversen Problemen bilden. Der Inhalt der Dissertation ist folgendermaßen gegliedert. Nach dem einführenden Abschnitt 1 wird in Abschnitt 2 ein Überblick von Optimierungs- und Regularisierungsverfahren zur stabilen Lösung nichtlinearer inverser Probleme diskutiert. In Abschnitt 3 betrachten wir die Identifikation von skalaren und stückweise konstanten Parametern in linearen elliptischen Differentialgleichungen. Hierbei werden zwei Testprobleme erörtert, die Identifikation von Diffusions- und Reaktionsparameter in einer allgemeinen elliptischen Differentialgleichung und die Identifikation der Lame-Konstanten in einem Modell der linearisierten Elastizität. Die zugrunde liegenden PDE-Modelle und Lösungszugänge werden erläutert. Insbesondere betrachten wir hier Newton-artige Algorithmen, Gradientenmethoden, Multi-Parameter Regularisierung and den evolutionären Algorithmus CMAES. Abschließend werden Ergebnisse einer numerischen Studie präsentiert. Im Abschnitt 4 konzentrieren wir uns auf die Identifikation von verteilten Parametern in hyperelastischen Materialmodellen. Das nichtlineare Elastizitätsproblem wird detailiert erläutert und verschiedene Materialmodelle werden diskutiert (linear elastisches St.-Venant-Kirchhoff Material und nichtlineare Neo-Hooke, Mooney-Rivlin und Modified-Fung Materialien. Zur Lösung des resultierenden Parameteridentifikationsproblems werden Lösungsansätze aus der optimalen Steuerung in Form eines Newton-Lagrange SQP Algorithmus verwendet. Die Resultate einer numerischen Studie werden präsentiert, basierend auf einem zweidimensionales Testproblem mit einer sogenannten Cook-Mebran. Abschließend wird im Abschnitt 5 die Verwendung adaptiver FEM für die Lösung von Parameteridentifikationsproblems kurz erörtert
The dissertation is focussed on parameter identification problems arising in the context of structural mechanics. At this, we consider the identification of material parameters - which typically represent the properties of an underlying material - from given measured displacements and forces of a loaded test body. In mathematical terms such problems denote identification problems as a special case of general inverse problems. The dissertation is organized as follows. After the introductive section 1, section 2 is devoted to a survey of optimization and regularization methods for the stable solution of nonlinear inverse problems. In section 3 we consider the identification of scalar and piecewise constant parameters in linear elliptic differential equations and examine two test problems, namely the identification of diffusion and reaction parameters in a generalized linear elliptic differential equation of second order and the identification of the Lame constants in the linearized elasticity model. The underlying PDE models are introduced and solution approaches are discussed in detail. At this, we consider Newton-type algorithms, gradient methods, multi-parameter regularization, and the evolutionary algorithm CMAES. Consequently, numerical studies for a two-dimensional test problem are presented. In section 4 we point out the identification of distributed material parameters in hyperelastic deformation models. The nonlinear elasticity boundary value problem for large deformations is introduced. We discuss several material laws for linear elastic (St.-Venant-Kirchhoff) materials and nonlinear Neo-Hooke, Mooney-Rivlin, and Modified-Fung materials. For the solution of the corresponding parameter identification problem, we focus on an optimal control solution approach and introduce a regularized Newton-Lagrange SQP method. The Newton-Lagrange algorithm is demonstrated within a numerical study. Therefore, a simplified two-dimensional Cook membrane test problem is solved. Additionally, in section 5 the application of adaptive methods for the solution of parameter identification problems is discussed briefly
APA, Harvard, Vancouver, ISO, and other styles
11

Meyer, Marcus. "Parameter identification problems for elastic large deformations - Part I: model and solution of the inverse problem." Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901869.

Full text
Abstract:
In this paper we discuss the identification of parameter functions in material models for elastic large deformations. A model of the the forward problem is given, where the displacement of a deformed material is found as the solution of a n onlinear PDE. Here, the crucial point is the definition of the 2nd Piola-Kirchhoff stress tensor by using several material laws including a number of material parameters. In the main part of the paper we consider the identification of such parameters from measured displacements, where the inverse problem is given as an optimal control problem. We introduce a solution of the identification problem with Lagrange and SQP methods. The presented algorithm is applied to linear elastic material with large deformations.
APA, Harvard, Vancouver, ISO, and other styles
12

Saal, Martin [Verfasser]. "Nichtlineare Integro-Differentialgleichungen zweiter Ordnung / Martin Saal." Konstanz : Bibliothek der Universität Konstanz, 2014. http://d-nb.info/1055909923/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bock, Hans Georg. "Randwertproblemmethoden zur Parameteridentifizierung in Systemen Nichtlinearer Differentialgleichungen." Bonn : Rheinische Friedrich-Wilhelms-Universität, 1987. http://catalog.hathitrust.org/api/volumes/oclc/16795956.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Branding, Volker. "The evolution equations for Dirac-harmonic Maps." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2013/6420/.

Full text
Abstract:
This thesis investigates the gradient flow of Dirac-harmonic maps. Dirac-harmonic maps are critical points of an energy functional that is motivated from supersymmetric field theories. The critical points of this energy functional couple the equation for harmonic maps with spinor fields. At present, many analytical properties of Dirac-harmonic maps are known, but a general existence result is still missing. In this thesis the existence question is studied using the evolution equations for a regularized version of Dirac-harmonic maps. Since the energy functional for Dirac-harmonic maps is unbounded from below the method of the gradient flow cannot be applied directly. Thus, we first of all consider a regularization prescription for Dirac-harmonic maps and then study the gradient flow. Chapter 1 gives some background material on harmonic maps/harmonic spinors and summarizes the current known results about Dirac-harmonic maps. Chapter 2 introduces the notion of Dirac-harmonic maps in detail and presents a regularization prescription for Dirac-harmonic maps. In Chapter 3 the evolution equations for regularized Dirac-harmonic maps are introduced. In addition, the evolution of certain energies is discussed. Moreover, the existence of a short-time solution to the evolution equations is established. Chapter 4 analyzes the evolution equations in the case that the domain manifold is a closed curve. Here, the existence of a smooth long-time solution is proven. Moreover, for the regularization being large enough, it is shown that the evolution equations converge to a regularized Dirac-harmonic map. Finally, it is discussed in which sense the regularization can be removed. In Chapter 5 the evolution equations are studied when the domain manifold is a closed Riemmannian spin surface. For the regularization being large enough, the existence of a global weak solution, which is smooth away from finitely many singularities is proven. It is shown that the evolution equations converge weakly to a regularized Dirac-harmonic map. In addition, it is discussed if the regularization can be removed in this case.
Die vorliegende Dissertation untersucht den Gradientenfluss von Dirac-harmonischen Abbildungen. Dirac-harmonische Abbildungen sind kritische Punkte eines Energiefunktionals, welches aus supersymmetrischen Feldtheorien motiviert ist. Die kritischen Punkte dieses Energiefunktionals koppeln die Gleichung für harmonische Abbildungen mit Spinorfeldern. Viele analytische Eigenschaften von Dirac-harmonischen Abbildungen sind bereits bekannt, ein allgemeines Existenzresultat wurde aber noch nicht erzielt. Diese Dissertation untersucht das Existenzproblem, indem der Gradientenfluss von einer regularisierten Version Dirac-harmonischer Abbildungen untersucht wird. Die Methode des Gradientenflusses kann nicht direkt angewendet werden, da das Energiefunktional für Dirac-harmonische Abbildungen nach unten unbeschränkt ist. Daher wird zunächst eine Regularisierungsvorschrift für Dirac-harmonische Abbildungen eingeführt und dann der Gradientenfluss betrachtet. Kapitel 1 stellt für die Arbeit wichtige Resultate über harmonische Abbildungen/harmonische Spinoren zusammen. Außerdem werden die zur Zeit bekannten Resultate über Dirac-harmonische Abbildungen zusammengefasst. In Kapitel 2 werden Dirac-harmonische Abbildungen im Detail eingeführt, außerdem wird eine Regularisierungsvorschrift präsentiert. Kapitel 3 führt die Evolutionsgleichungen für regularisierte Dirac-harmonische Abbildungen ein. Zusätzlich wird die Evolution von verschiedenen Energien diskutiert. Schließlich wird die Existenz einer Kurzzeitlösung bewiesen. In Kapitel 4 werden die Evolutionsgleichungen für den Fall analysiert, dass die Ursprungsmannigfaltigkeit eine geschlossene Kurve ist. Die Existenz einer Langzeitlösung der Evolutionsgleichungen wird bewiesen. Es wird außerdem gezeigt, dass die Evolutionsgleichungen konvergieren, falls die Regularisierung groß genug gewählt wurde. Schließlich wird diskutiert, ob die Regularisierung wieder entfernt werden kann. Kapitel 5 schlussendlich untersucht die Evolutionsgleichungen für den Fall, dass die Ursprungsmannigfaltigkeit eine geschlossene Riemannsche Spin Fläche ist. Es wird die Existenz einer global schwachen Lösung bewiesen, welche bis auf endlich viele Singularitäten glatt ist. Die Lösung konvergiert im schwachen Sinne gegen eine regularisierte Dirac-harmonische Abbildung. Auch hier wird schließlich untersucht, ob die Regularisierung wieder entfernt werden kann.
APA, Harvard, Vancouver, ISO, and other styles
15

Kurth, Patrick [Verfasser]. "Nichtlineare Integro-Differentialgleichungen aus der mathematischen Physik / Patrick Kurth." Konstanz : Bibliothek der Universität Konstanz, 2013. http://d-nb.info/1041224605/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Brawer, Robert Alfred. "Numerik und Existenzsätze schwacher Lösungen nichtlinearer partieller Differentialgleichungen /." [S.l.] : [s.n.], 1991. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=9485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Friedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234307.

Full text
Abstract:
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations. We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization. In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn). In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems. On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden)
Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten
APA, Harvard, Vancouver, ISO, and other styles
18

Bartholomäus, Lukas [Verfasser]. "Nichtlineare partielle Differentialgleichungen vom gemischten elliptisch-hyperbolischen Typ / Lukas Bartholomäus." Ulm : Universität Ulm, 2017. http://d-nb.info/1139050524/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Otto, Andreas. "Frequency domain methods for the analysis of time delay systems." Doctoral thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-208749.

Full text
Abstract:
In this thesis a new frequency domain approach for the analysis of time delay systems is presented. After linearization of a nonlinear delay differential equation (DDE) with constant distributed delay around a constant or periodic reference solution the so-called Hill-Floquet method can be used for the analysis of the resulting linear DDE. In addition, systems with fast or slowly time-varying delays, systems with variable transport delays originating from a transport with variable velocity, and the corresponding spatially extended systems are presented, which can be also analyzed with the presented method. The newly introduced Hill-Floquet method is based on the Hill’s infinite determinant method and enables the transformation of a system with periodic coefficients to an autonomous system with constant coefficients. This makes the usage of a variety of existing methods for autonomous systems available for the analysis of periodic systems, which implies that the typical calculation of the monodromy matrix for the time evolution of the solution over the principle period is no longer required. In this thesis, the Chebyshev collocation method is used for the analysis of the autonomous systems. Specifically, in this case the periodic part of the solution is expanded in a Fourier series and the exponential behavior of the solution is approximated by the discrete values of the Fourier coefficients at the Chebyshev nodes, whereas in classical spectral or pseudo-spectral methods for the analysis of linear periodic DDEs the complete solution is expanded in terms of basis functions. In the last part of this thesis, new results for three applications with time delay effects are presented, which were analyzed with the presented methods. On the one hand, the occurrence of diffusion-driven instabilities in reaction-diffusion systems with delay is investigated. It is shown that wave instabilities are possible already for single-species reaction diffusion systems with distributed or time-varying delay. On the other hand, the stability of metal cutting vibrations at machine tools is analyzed. In particular, parallel orthogonal turning processes with multiple discrete delays and turning processes with a time-varying delay due to a spindle speed variation are studied. Finally, the stability of the synchronized solution in networks with heterogeneous coupling delays is studied. In particular, the eigenmode expansion for synchronized periodic orbits is derived, which includes an extension of the classical master stability function to networks with heterogeneous coupling delays. Numerical results are shown for a network of Hodgkin-Huxley neurons with two delays in the coupling
In dieser Dissertation wird ein neues Verfahren zur Analyse von Systemen mit Totzeiten im Frequenzraum vorgestellt. Nach Linearisierung einer nichtlinearen retardierten Differentialgleichung (DDE) mit konstanter verteilter Totzeit um eine konstante oder periodische Referenzlösung kann die sogenannte Hill-Floquet Methode für die Analyse der resultierende linearen DDE angewendet werden. Darüber hinaus werden Systeme mit schnell oder langsam variierender Totzeit, Systeme mit einer variablen Totzeit, resultierend aus einem Transport mit variabler Geschwindigkeit, und entsprechende räumlich ausgedehnte Systeme vorgestellt, welche ebenfalls mit der vorgestellten Methode analysiert werden können. Die neu eingeführte Hill-Floquet Methode basiert auf der Hillschen unendlichen Determinante und ermöglicht die Transformation eines Systems mit periodischen Koeffizienten auf ein autonomes System mit konstanten Koeffizienten. Dadurch können zur Analyse periodischer Systeme auch eine Vielzahl existierender Methoden für autonome Systeme genutzt werden und die Berechnung der Monodromie-Matrix für die Lösung des Systems über eine Periode entfällt. In dieser Arbeit wird zur Analyse des autonomen Systems die Tschebyscheff-Kollokationsmethode verwendet. Im Speziellen wird bei diesem Verfahren der periodische Teil der Lösung in einer Fourierreihe entwickelt und das exponentielle Verhalten durch die Werte der Fourierkoeffizienten an den Tschebyscheff Knoten approximiert, wohingegen bei klassischen spektralen Verfahren die komplette Lösung in bestimmten Basisfunktionen entwickelt wird. Im Anwendungsteil der Arbeit werden neue Ergebnisse für drei Beispielsysteme präsentiert, welche mit den vorgestellten Methoden analysiert wurden. Es wird gezeigt, dass Welleninstabilitäten schon bei Einkomponenten-Reaktionsdiffusionsgleichungen mit verteilter oder variabler Totzeit auftreten können. In einem zweiten Beispiel werden Schwingungen an Werkzeugmaschinen betrachtet, wobei speziell simultane Drehbearbeitungsprozesse und Prozesse mit Drehzahlvariationen genauer untersucht werden. Am Ende wird die Synchronisation in Netzwerken mit heterogenen Totzeiten in den Kopplungstermen untersucht, wobei die Zerlegung in Netzwerk-Eigenmoden für synchrone periodische Orbits hergeleitet wird und konkrete numerische Ergebnisse für ein Netzwerk aus Hodgkin-Huxley Neuronen gezeigt werden
APA, Harvard, Vancouver, ISO, and other styles
20

Wolf, Jörg. "Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2002. http://dx.doi.org/10.18452/14792.

Full text
Abstract:
In der vorliegenden Arbeit untersuchen wir schwache Lösungen, die zu einem geeigneten Sobolevraum gehören, q-elliptischer und parabolischer Systeme partieller Differentialgleichungen auf deren Regularität für den Fall 1
In the present work we study the regularity of weak solution to q-elliptic and parabolic systems partial differential equations in appropriate Sobolev spaces in case 1
APA, Harvard, Vancouver, ISO, and other styles
21

Wolf, Jörg. "Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung der Fall 1 [p[2 /." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966135091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hönig, Oliver [Verfasser], and Rudolf [Akademischer Betreuer] Hilfer. "Laufende Wellenlösungen von Systemen nichtlinearer partieller Differentialgleichungen am Beispiel von Mehrphasenströmungen in porösen Medien / Oliver Hönig. Betreuer: Rudolf Hilfer." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2012. http://d-nb.info/1025672437/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hegewald, Sabine. "Temporale Aggregation von heteroskedastischen Prozessen : stochastische Differenzengleichungen versus stochastische Differentialgleichungen unter Berücksichtigung von Lévy-Ornstein-Uhlenbeck-Prozessen, Tsallis-Entropie und nichtlinearer Fokker-Planck-Dynamik /." Göttingen : Cuvillier, 2006. http://www.gbv.de/dms/zbw/511985681.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pester, Cornelia. "A posteriori error estimation for non-linear eigenvalue problems for differential operators of second order with focus on 3D vertex singularities." Doctoral thesis, Berlin Logos-Verl, 2006. http://deposit.ddb.de/cgi-bin/dokserv?id=2806614&prov=M&dok_var=1&dok_ext=htm.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Huth, Robert. "On a Fokker–Planck equation coupled with a constraint." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012. http://dx.doi.org/10.18452/16557.

Full text
Abstract:
In dieser Arbeit untersuchen wir zwei Modelle, die das Laden und Entladen einer Lithium-Ionen Batterie beschreiben. Beide Modelle spiegeln eine Hysterese in dem Spannungs-Ladungs-Verlauf wider. Wir skizzieren den Modellierungsprozess von einem diskreten vielteilchen Modell sowie einem kontinuierlichen vielteilchen Modell. Das erste führt zu einer axiomatischen Beschreibung der Evolution makroskopischer Größen, während das zweite in eine nichtlineare Fokker-Planck Gleichung mündet. Wir zeigen die Existenz und Eindeutigkeit von Lösungen der nichtlinearen Fokker-Planck Gleichung und untersuchen deren qualitative Eigenschaften. Wir benutzen Interpolationsräume und Halbgruppen sektorieller Operatoren um den semilinearen Charakter der partiellen Differentialgleichung auszunutzen. Um globale Existenz zu erhalten, schätzen wir die Dissipation einer mit dem Modell verknüpften Energie ab. Diese Energie ist verwandt mit der L-log-L Norm, welche wir mithilfe einer Gagliardo-Nirenberg Ungleichung zu der L^2 Norm in Verbindung setzen können. Die notwendigen und hinreichenden Bedingungen zur globalen Existenz von Lösungen sind aus physikalischer Sicht plausibel. Der Ladezustand der Batterie muss innerhalb der Werte Voll und Leer sein. In numerischen Experimenten untersuchen wir das qualitative Verhalten von Lösungen. Wir zeigen die Konvergenz der numerischen Lösungen zu den exakten Lösungen. Dafür nutzen wir ähnliche Techniken wie bei der lokalen Existenztheorie. Wir beobachten die Tendenz von Lösungen sich um bestimmte Punkte zu konzentrieren. Unterstützt durch die formale Asymptotik zeigt dies für eine bestimmte Wahl von Parameter-Skalierungen, dass Lösungen gegen Dirac-Maße konvergieren. In diesem Grenzverhalten wird das System durch die Evolution von makroskopischen Größen beschrieben, welche wir auch in dem diskreten vielteilchen Modell wiederfinden. In diesen makroskopischen Größen lässt sich eine Hysterese beobachten.
We discuss two models which describe the charging and discharging of a lithium-ion battery and especially the hysteretical behaviour therein. We give an overview on the modelling process for a discrete many particle model and a continuous many particle model. The former results in an axiomatic description of macroscopic quantities while the latter gives a nonlinear Fokker-Planck equation. The nonlinear Fokker-Planck equation is analysed with respect to existence and uniqueness of solutions as well as qualitative behaviour of solutions. The nonlinearity in this partial differential equation stems from a coefficient which depends on the solution first non-local and second in a higher order. We use interpolation spaces and semigroups generated from sectorial operators to show the existence and uniqueness of solutions locally in time. The global existence in time relies on estimates for the dissipation of an energy. The suitable energy is related to the L-log-L norm and so a Gagliardo-Nirenberg inequality is needed to connect this back to L^2 estimates. It turns out that the conditions for global in time existence of solutions are physical reasonable. One needs that the loading state of the battery shall stay between totally empty and totally full. In numerical experiments we investigate the qualitative behaviour of solutions to the nonlinear Fokker-Planck equation. We are able to show convergence of the numerical solutions to the exact solution. We observe that solutions tend to concentrate at certain points. Supported by results from formal asymptotic expansions, we document the limiting behaviour in a certain scaling of the appearing parameters, which is the formation of Dirac measures. The evolution of the global quantities, which we observe in numerical simulations, is the same as what results from the discrete many particle model and one observes hysteretic behaviour in macroscopic quantities.
APA, Harvard, Vancouver, ISO, and other styles
26

Gelbrecht, Maximilian. "Physics-based Machine Learning Approaches to Complex Systems and Climate Analysis." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/23010.

Full text
Abstract:
Komplexe Systeme wie das Klima der Erde bestehen aus vielen Komponenten, die durch eine komplizierte Kopplungsstruktur miteinander verbunden sind. Für die Analyse solcher Systeme erscheint es daher naheliegend, Methoden aus der Netzwerktheorie, der Theorie dynamischer Systeme und dem maschinellen Lernen zusammenzubringen. Durch die Kombination verschiedener Konzepte aus diesen Bereichen werden in dieser Arbeit drei neuartige Ansätze zur Untersuchung komplexer Systeme betrachtet. Im ersten Teil wird eine Methode zur Konstruktion komplexer Netzwerke vorgestellt, die in der Lage ist, Windpfade des südamerikanischen Monsunsystems zu identifizieren. Diese Analyse weist u.a. auf den Einfluss der Rossby-Wellenzüge auf das Monsunsystem hin. Dies wird weiter untersucht, indem gezeigt wird, dass der Niederschlag mit den Rossby-Wellen phasenkohärent ist. So zeigt der erste Teil dieser Arbeit, wie komplexe Netzwerke verwendet werden können, um räumlich-zeitliche Variabilitätsmuster zu identifizieren, die dann mit Methoden der nichtlinearen Dynamik weiter analysiert werden können. Die meisten komplexen Systeme weisen eine große Anzahl von möglichen asymptotischen Zuständen auf. Um solche Zustände zu beschreiben, wird im zweiten Teil die Monte Carlo Basin Bifurcation Analyse (MCBB), eine neuartige numerische Methode, vorgestellt. Angesiedelt zwischen der klassischen Analyse mit Ordnungsparametern und einer gründlicheren, detaillierteren Bifurkationsanalyse, kombiniert MCBB Zufallsstichproben mit Clustering, um die verschiedenen Zustände und ihre Einzugsgebiete zu identifizieren. Bei von Vorhersagen von komplexen Systemen ist es nicht immer einfach, wie Vorwissen in datengetriebenen Methoden integriert werden kann. Eine Möglichkeit hierzu ist die Verwendung von Neuronalen Partiellen Differentialgleichungen. Hier wird im letzten Teil der Arbeit gezeigt, wie hochdimensionale räumlich-zeitlich chaotische Systeme mit einem solchen Ansatz modelliert und vorhergesagt werden können.
Complex systems such as the Earth's climate are comprised of many constituents that are interlinked through an intricate coupling structure. For the analysis of such systems it therefore seems natural to bring together methods from network theory, dynamical systems theory and machine learning. By combining different concepts from these fields three novel approaches for the study of complex systems are considered throughout this thesis. In the first part, a novel complex network construction method is introduced that is able to identify the most important wind paths of the South American Monsoon system. Aside from the importance of cross-equatorial flows, this analysis points to the impact Rossby Wave trains have both on the precipitation and low-level circulation. This connection is then further explored by showing that the precipitation is phase coherent to the Rossby Wave. As such, the first part of this thesis demonstrates how complex networks can be used to identify spatiotemporal variability patterns within large amounts of data, that are then further analysed with methods from nonlinear dynamics. Most complex systems exhibit a large number of possible asymptotic states. To investigate and track such states, Monte Carlo Basin Bifurcation analysis (MCBB), a novel numerical method is introduced in the second part. Situated between the classical analysis with macroscopic order parameters and a more thorough, detailed bifurcation analysis, MCBB combines random sampling with clustering methods to identify and characterise the different asymptotic states and their basins of attraction. Forecasts of complex system are the next logical step. When doing so, it is not always straightforward how prior knowledge in data-driven methods. One possibility to do is by using Neural Partial Differential Equations. Here, it is demonstrated how high-dimensional spatiotemporally chaotic systems can be modelled and predicted with such an approach in the last part of the thesis.
APA, Harvard, Vancouver, ISO, and other styles
27

Heinz, Sebastian. "Preservation of quasiconvexity and quasimonotonicity in polynomial approximation of variational problems." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2008. http://dx.doi.org/10.18452/15808.

Full text
Abstract:
Die vorliegende Arbeit beschäftigt sich mit drei Klassen ausgewählter nichtlinearer Probleme, die Forschungsgegenstand der angewandten Mathematik sind. Diese Probleme behandeln die Minimierung von Integralen in der Variationsrechnung (Kapitel 3), das Lösen partieller Differentialgleichungen (Kapitel 4) und das Lösen nichtlinearer Optimierungsaufgaben (Kapitel 5). Mit deren Hilfe lassen sich unterschiedlichste Phänomene der Natur- und Ingenieurwissenschaften sowie der Ökonomie mathematisch modellieren. Als konkretes Beispiel werden mathematische Modelle der Theorie elastischer Festkörper betrachtet. Das Ziel der vorliegenden Arbeit besteht darin, ein gegebenes nichtlineares Problem durch polynomiale Probleme zu approximieren. Um dieses Ziel zu erreichen, beschäftigt sich ein großer Teil der vorliegenden Arbeit mit der polynomialen Approximation von nichtlinearen Funktionen. Den Ausgangspunkt dafür bildet der Weierstraßsche Approximationssatz. Auf der Basis dieses bekannten Satzes und eigener Sätze wird als Hauptresultat der vorliegenden Arbeit gezeigt, dass im Übergang von einer gegebenen Funktion zum approximierenden Polynom wesentliche Eigenschaften der gegebenen Funktion erhalten werden können. Die wichtigsten Eigenschaften, für die dies bisher nicht bekannt war, sind: Quasikonvexität im Sinne der Variationsrechnung, Quasimonotonie im Zusammenhang mit partiellen Differentialgleichungen sowie Quasikonvexität im Sinne der nichtlinearen Optimierung (Theoreme 3.16, 4.10 und 5.5). Schließlich wird gezeigt, dass die zu den untersuchten Klassen gehörenden nichtlinearen Probleme durch polynomiale Probleme approximiert werden können (Theoreme 3.26, 4.16 und 5.8). Die dieser Approximation zugrunde liegende Konvergenz garantiert sowohl eine Approximation im Parameterraum als auch eine Approximation im Lösungsraum. Für letztere werden die Konzepte der Gamma-Konvergenz (Epi-Konvergenz) und der G-Konvergenz verwendet.
In this thesis, we are concerned with three classes of non-linear problems that appear naturally in various fields of science, engineering and economics. In order to cover many different applications, we study problems in the calculus of variation (Chapter 3), partial differential equations (Chapter 4) as well as non-linear programming problems (Chapter 5). As an example of possible applications, we consider models of non-linear elasticity theory. The aim of this thesis is to approximate a given non-linear problem by polynomial problems. In order to achieve the desired polynomial approximation of problems, a large part of this thesis is dedicated to the polynomial approximation of non-linear functions. The Weierstraß approximation theorem forms the starting point. Based on this well-known theorem, we prove theorems that eventually lead to our main result: A given non-linear function can be approximated by polynomials so that essential properties of the function are preserved. This result is new for three properties that are important in the context of the considered non-linear problems. These properties are: quasiconvexity in the sense of the calculus of variation, quasimonotonicity in the context of partial differential equations and quasiconvexity in the sense of non-linear programming (Theorems 3.16, 4.10 and 5.5). Finally, we show the following: Every non-linear problem that belongs to one of the three considered classes of problems can be approximated by polynomial problems (Theorems 3.26, 4.16 and 5.8). The underlying convergence guarantees both the approximation in the parameter space and the approximation in the solution space. In this context, we use the concepts of Gamma-convergence (epi-convergence) and of G-convergence.
APA, Harvard, Vancouver, ISO, and other styles
28

Uecker, Hannes. "Rollen und modulierende Multipulse in musterbildenden Systemen /." 2000. http://www.gbv.de/dms/goettingen/316106542.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Karl, Stefan. "Control Centrality in Non-Linear Biological Networks." Doctoral thesis, 2016. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-150838.

Full text
Abstract:
Biological systems such as cells or whole organisms are governed by complex regulatory networks of transcription factors, hormones and other regulators which determine the behavior of the system depending on internal and external stimuli. In mathematical models of these networks, genes are represented by interacting “nodes” whose “value” represents the activity of the gene. Control processes in these regulatory networks are challenging to elucidate and quantify. Previous control centrality metrics, which aim to mathematically capture the ability of individual nodes to control biological systems, have been found to suffer from problems regarding biological plausibility. This thesis presents a new approach to control centrality in biological networks. Three types of network control are distinguished: Total control centrality quantifies the impact of gene mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signaling cascades (e.g control in mouse colon stem cells). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Well-defined network manipulations define all three centralities not only for nodes, but also for the interactions between them, enabling detailed insights into network pathways. The calculation of the new metrics is made possible by substantial computational improvements in the simulation algorithms for several widely used mathematical modeling paradigms for genetic regulatory networks, which are implemented in the regulatory network simulation framework Jimena created for this thesis. Applying the new metrics to biological networks and artificial random networks shows how these mathematical concepts correspond to experimentally verified gene functions and signaling pathways in immunity and cell differentiation. In contrast to controversial previous results even from the Barabási group, all results indicate that the ability to control biological networks resides in only few driver nodes characterized by a high number of connections to the rest of the network. Autoregulatory loops strongly increase the controllability of the network, i.e. its ability to control itself, and biological networks are characterized by high controllability in conjunction with high robustness against mutations, a combination that can be achieved best in sparsely connected networks with densities (i.e. connections to nodes ratios) around 2.0 - 3.0. The new concepts are thus considerably narrowing the gap between network science and biology and can be used in various areas such as system modeling, plausibility trials and system analyses. Medical applications discussed in this thesis include the search for oncogenes and pharmacological targets, as well their functional characterization
Biologische Systeme wie Zellen aber auch ganze Organismen werden durch ein komplexes Netzwerk von Transkriptionsfaktoren, Hormonen und anderen Regulatoren kontrolliert, welche das Verhalten des Systems in Abhängigkeit von internen und externen Einflüssen steuern. In mathematischen Modellen dieser Netzwerke werden Gene durch „Knoten“ repräsentiert, deren „Wert“ die Aktivität des Gens wiederspiegelt. Kontrollvorgänge in diesen Regulationsnetzwerken sind schwierig zu quantifizieren. Existierende Maße für die Kontrollzentralität, d.h. die Fähigkeit einzelner Knoten biologische Systeme zu kontrollieren, zeigen vor allem Probleme mit der biologischen Plausibilität der Ergebnisse. Diese Dissertation stellt eine neue Definition der Kontrollzentralität vor. Dabei werden drei Typen der Kontrollzentralität unterschieden: Totale Kontrollzentralität quantifiziert den Einfluss von Mutationen eines Gens und hilft mögliche pharmakologische Ziele wie etwa Onkogene (z. B. das Zinkfingerprotein GLI2 oder Bone Morphogenetic Proteins in Chondrozyten) zu identifizieren. Dynamische Kontrollzentralität beschreibt signalweiterleitende Funktionen in Signalkaskaden (z. B. in Kontrollprozessen in Stammzellen des Mauskolons). Wert-Kontrollzentralität misst den Einfluss des Werts des Knotens (zum Beispiel die Rolle von Indian hedgehog als essentieller Regulator der Chondrozytenproliferation). Durch gezielte Manipulation von Netzwerken können die Zentralitäten nicht nur für Knoten, sondern auch für die Interaktionen zwischen ihnen bestimmt werden, was detaillierte Einblicke in Netzwerkpfade erlaubt. Möglich wird die Berechnung der neuen Maße durch substantielle Verbesserungen der Simulationsalgorithmen mehrerer häufig verwendeter mathematischer Muster für Genregulationsnetzwerke, welche in der für diese Dissertation entwickelten Software Jimena implementiert wurden. Durch die Anwendung der neuen Metriken auf biologische Netzwerke und künstliche Zufallsnetzwerke kann gezeigt werden, dass die mathematischen Konzepte experimentell bestätigte Funktionen von Genen und Signalpfaden im Immunsystem und der Zelldifferenzierung korrekt wiedergeben. Im Gegensatz zu umstrittenen Ergebnissen der Forschungsgruppe Barabási zeigt sich hier, dass die Fähigkeit, biologische Netzwerke zu kontrollieren, in nur wenigen Knoten konzentriert ist, welche sich vor allem durch viele Verbindungen zum Rest des Netzwerks auszeichnen. Knoten, welche ihre eigene Expression beeinflussen, steigern die Fähigkeit eines Netzwerkes sich selbst zu kontrollieren (Kontrollierbarkeit), und biologische Netzwerke zeichnen sich durch hohe Kontrollierbarkeit bei gleichzeitig hoher Resistenz gegenüber Mutationen aus. Diese Kombination kann am besten durch eher schwach verbundene Netzwerke erreicht werden, bei denen auf einen Knoten nur etwa 2 bis 3 Verbindungen kommen. Die neuen Konzepte schlagen so eine Brücke zwischen Netzwerkwissenschaften und Biologie, und sind in einer Vielzahl von Gebieten wie der Modellierung von Systemen sowie der Überprüfung ihrer Plausibilität und ihrer Analyse anwendbar. Medizinische Anwendungen, auf welche in dieser Dissertation eingegangen wird, sind zum Beispiel die Suche nach Onkogenen und pharmakologischen Zielen, aber auch deren funktionelle Analyse
APA, Harvard, Vancouver, ISO, and other styles
30

Rieger, Marc Oliver. "Nonconvex variational problems /." 2002. http://www.gbv.de/dms/goettingen/357205898.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gehre, Nico. "Lösungsoperatoren für Delaysysteme und Nutzung zur Stabilitätsanalyse." 2017. https://monarch.qucosa.de/id/qucosa%3A21053.

Full text
Abstract:
In diese Dissertation werden lineare retardierte Differentialgleichungen (DDEs) und deren Lösungsoperatoren untersucht. Wir stellen eine neue Methode vor, mit der die Lösungsoperatoren für autonome und nicht-autonome DDEs bestimmt werden. Die neue Methode basiert auf dem Pfadintegralformalismus, der aus der Quantenmechanik und von der Analyse stochastischer Differentialgleichungen bekannt ist. Es zeigt sich, dass die Lösung eines Delaysystems zum Zeitpunkt t durch die Integration aller möglicher Pfade von der Anfangsbedingung bis zur Zeit t gebildet werden kann. Die Pfade bestehen dabei aus verschiedenen Schritten unterschiedlicher Längen und Gewichte. Für skalare autonome DDEs können analytische Ausdrücke des Lösungsoperators in der Literatur gefunden werden, allerdings existieren keine für nicht-autonome oder höherdimensionale DDEs. Mithilfe der neuen Methode werden wir die Lösungsoperatoren der genannten DDEs aufstellen und zusätzlich auf Delaysysteme mit mehreren Delaytermen erweitern. Dabei bestätigen wir unsere Ergebnisse sowohl analytisch wie auch numerisch. Die gewonnenen Lösungsoperatoren verwenden wir anschließend zur Stabilitätsanalyse periodischer Delaysysteme. Es werden zwei neue Verfahren präsentiert, die mithilfe des Lösungsoperators den transformierten Monodromieoperator des Delaysystems nähern und daraus die Stabilität bestimmen können. Beide neue Verfahren sind spektrale Methoden für autonome sowie nicht-autonome Delaysysteme und haben keine Einschränkungen wie bei der bekannten Chebyshev-Kollokationsmethode oder der Chebyshev-Polynomentwicklung. Die beiden bisherigen Verfahren beschränken sich auf Delaysysteme mit rationalem Verhältnis zwischen Periode und Delay. Außerdem werden wir eine bereits bekannte Methode erweitern und zu einer spektralen Methode für periodische nicht-autonome Delaysysteme entwickeln. Wir bestätigen alle drei neue Verfahren numerisch. Damit werden in dieser Dissertation drei neue spektrale Verfahren zur Stabilitätsanalyse periodischer Delaysysteme vorgestellt.
In this thesis linear delay differential equations (DDEs) and its solutions operators are studied. We present a new method to calculate the solution operators for autonomous and non-autonomous DDEs. The new method is related to the path integral formalism, which is known from quantum mechanics and the analysis of stochastic differential equations. It will be shown that the solution of a time delay system at time t can be constructed by integrating over all paths from the initial condition to time t. The paths consist of several steps with different lengths and weights. Analytic expressions for the solution operator for scalar autonomous DDEs can be found in the literature but no results exist for non-autonomous or high dimensional DDEs. With the help of the new method we can calculate the solution operators for such DDEs and for time delay systems with several delay terms. We verify our results analytically and numerically. We use the obtained solution operators for the stability analysis of periodic time delay systems. Two new methods will be presented to approximate the transformed monodromy operator with the help of the solution operator and to get the stability. Both new methods are spectral methods for autonomous and non-autonomous delay systems and have no limitations like the known Chebyshev collocation method or Chebyshev polynomial expansion. Both previously known methods are limited to time delay systems with a rational relation between period and delay. Furthermore we will extend a known method to a spectral method for non-autonomous time delay systems. We verify all three new methods numerically. Hence, in this thesis three new spectral methods for the stability analysis of periodic time delay systems are presented.
APA, Harvard, Vancouver, ISO, and other styles
32

Theil, Florian [Verfasser]. "Young-Maß-Lösungen für nichtlineare partielle Differentialgleichungen / von Florian Theil." 1997. http://d-nb.info/954319141/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Friedrich, Benjamin M. "Nonlinear dynamics and fluctuations in biological systems." Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30879.

Full text
Abstract:
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations. We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization. In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn). In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems. On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden).:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66
Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66
APA, Harvard, Vancouver, ISO, and other styles
34

Sapozhnikova, Kateryna. "Robust Stability of Differential Equations with Maximum." Doctoral thesis, 2018. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-173945.

Full text
Abstract:
In this thesis stability and robustness properties of systems of functional differential equations which dynamics depends on the maximum of a solution over a prehistory time interval is studied. Max-operator is analyzed and it is proved that due to its presence such kind of systems are particular case of state dependent delay differential equations with piecewise continuous delay function. They are nonlinear, infinite-dimensional and may reduce to one-dimensional along its solution. Stability analysis with respect to input is accomplished by trajectory estimate and via averaging method. Numerical method is proposed
In dieser These werden die Eigenschaften der Stabilität und Robustheit von Systemen funktioneller Differentialgleichungen untersucht, deren Dynamik von einem Maximum in der Lösung eines vergangenen Zeitintervalls abhängt. Der Max-Operator wird analysiert und durch seine Anwesenheit ist bewiesen, dass diese Art von Systemen einen spezifischen Fall von zustandsabhängigen Verzögerungsdifferenzialgleichungen mit stückweiser, kontinuierlicher Verzögerungsfunktion darstellen. Sie sind nicht-linear, unendlich dimensional und entlang ihrer Lösung können sie eindimensional werden. Die Stabilitätsanalyse, unter Berücksichtigung der Eingabe, wird sowohl durch eine Richtungsschätzung, als auch mittels der Durchschnittsmethode durchgeführt. Eine numerische Methode wird vorgeschlagen
APA, Harvard, Vancouver, ISO, and other styles
35

Wolf, Jörg [Verfasser]. "Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung : der Fall 1 ." 2002. http://d-nb.info/966135091/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ambani, Joseph Stephane [Verfasser]. "Newton-Methode für optimale Steuerungsprobleme bei nichtlinearen hyperbolischen partiellen Differentialgleichungen zweiter Ordnung / vorgelegt von Joseph Stephane Ambani." 2004. http://d-nb.info/972664289/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Müller-Bender, David. "Nonlinear Dynamics and Chaos in Systems with Time-Varying Delay." 2020. https://monarch.qucosa.de/id/qucosa%3A72483.

Full text
Abstract:
Systeme mit Zeitverzögerung sind dadurch charakterisiert, dass deren zukünftige Entwicklung durch den Zustand zum aktuellen Zeitpunkt nicht eindeutig festgelegt ist. Die Historie des Zustands muss in einem Zeitraum bekannt sein, dessen Länge Totzeit genannt wird und die Gedächtnislänge festlegt. In dieser Arbeit werden fundamentale Effekte untersucht, die sich ergeben, wenn die Totzeit zeitlich variiert wird. Im ersten Teil werden zwei Klassen periodischer Totzeitvariationen eingeführt. Da diese von den dynamischen Eigenschaften einer eindimensionalen iterierten Abbildung abgeleitet werden, die über die Totzeit definiert wird, werden die Klassen entsprechend der zugehörigen Dynamik konservativ oder dissipativ genannt. Systeme mit konservativer Totzeit können in Systeme mit konstanter Totzeit transformiert werden und besitzen gleiche charakteristische Eigenschaften. Dagegen weisen Systeme mit dissipativer Totzeit fundamentale Unterschiede z.B. in der Tangentialraumdynamik auf. Im zweiten Teil werden diese Ergebnisse auf Systeme angewendet, deren Totzeit im Vergleich zur internen Relaxationszeit des Systems groß ist. Es zeigt sich, dass ein durch dissipative Totzeitvariationen induzierter Mechanismus, genannt resonanter Dopplereffekt, unter anderem zu neuen Arten chaotischer Dynamik führt. Diese sind im Vergleich zur bekannten chaotischen Dynamik in Systemen mit konstanter Totzeit sehr niedrig-dimensional. Als Spezialfall wird das so genannte laminare Chaos betrachtet, dessen Zeitreihen durch nahezu konstante Phasen periodischer Dauer gekennzeichnet sind, deren Amplitude chaotisch variiert. Im dritten Teil dieser Arbeit wird auf der Basis experimenteller Daten und durch die Analyse einer nichtlinearen retardierten Langevin-Gleichung gezeigt, dass laminares Chaos robust gegenüber Störungen wie zum Beispiel Rauschen ist und experimentell realisiert werden kann. Es werden Methoden zur Zeitreihenanalyse entwickelt, um laminares Chaos in experimentellen Daten ohne Kenntnis des erzeugenden Systems zu detektieren. Mit diesen Methoden ist selbst dann eine Detektion möglich, wenn das Rauschen so stark ist, dass laminares Chaos mit bloßem Auge nur schwer erkennbar ist.:1. Introduction 2. Dissipative and conservative delays in systems with time-varying delay 3. Laminar Chaos and the resonant Doppler effect 4. Laminar Chaos: a robust phenomenon 5. Summary and concluding remarks A. Appendix
In systems with time-delay, the evolution of a system is not uniquely determined by the state at the current time. The history of the state must be known for a time period of finite duration, where the duration is called delay and determines the memory length of the system. In this work, fundamental effects arising from a temporal variation of the time-delay are investigated. In the first part, two classes of periodically time-varying delays are introduced. They are related to a specific dynamics of a one-dimensional iterated map that is defined by the time-varying delay. Referring to the related map dynamics the classes are called conservative or dissipative. Systems with conservative delay can be transformed into systems with constant delay, and thus have the same characteristic properties as constant delay systems. In contrast, there are fundamental differences, for instance, in the tangent space dynamics, between systems with dissipative delay and systems with constant delay. In the second part, these results are applied to systems with a delay that is considered large compared to the internal relaxation time of the system. It is shown that a mechanism induced by dissipative delays leads to new kinds of regular and chaotic dynamics. The dynamics caused by the so-called resonant Doppler effect is fundamentally different from the behavior known from systems with constant delay. For instance, the chaotic attractors in systems with dissipative delay are very low-dimensional compared to typical ones arising in systems with constant delay. An example of this new kind of low-dimensional dynamics is given by the so-called Laminar Chaos. It is characterized by nearly constant laminar phases of periodic duration, where the amplitude varies chaotically. In the third part of this work, it is shown that Laminar Chaos is a robust phenomenon, which survives perturbations such as noise and can be observed experimentally. Therefore experimental data is provided and a nonlinear delayed Langevin equation is analyzed. Using the robust features that characterize Laminar Chaos, methods for time series analysis are developed, which enable us to detect Laminar Chaos without the knowledge of the specific system that has generated the time series. By these methods Laminar Chaos can be detected even for comparably large noise strengths, where the characteristic properties are nearly invisible to the eye.:1. Introduction 2. Dissipative and conservative delays in systems with time-varying delay 3. Laminar Chaos and the resonant Doppler effect 4. Laminar Chaos: a robust phenomenon 5. Summary and concluding remarks A. Appendix
APA, Harvard, Vancouver, ISO, and other styles
38

Berendsen, Judith. "Cross Diffusion and Nonlocal Interaction: Some Results on Energy Functionals and PDE Systems." 2019. https://monarch.qucosa.de/id/qucosa%3A70842.

Full text
Abstract:
In this thesis we present some results on cross-diffusion and nonlocal interaction. In the first part we study a PDE model for two diffusing species interacting by local size exclusion and global attraction. This leads to a nonlinear degenerate cross-diffusion system, for which we provide a global existence result. The analysis is motivated by the formulation of the system as a formal gradient flow for an appropriate energy functional consisting of entropic terms as well as quadratic nonlocal terms. Key ingredients are entropy dissipation methods as well as the recently developed boundedness by entropy principle. Moreover, we investigate phase separation effects inherent in the cross-diffusion model by an analytical and numerical study of minimizers of the energy functional and their asymptotics to a previously studied case as the diffusivity tends to zero. Finally we briefly discuss coarsening dynamics in the system, which can be observed in numerical results and is motivated by rewriting the PDEs as a system of nonlocal Cahn-Hilliard equations. Proving the uniqueness of solutions to multi-species cross-diffusion systems is a difficult task in the general case, and very few results exist in this direction. In the second part of this thesis, we study a particular system with zero-flux boundary conditions for which the existence of a weak solution has been proven in [60]. Under additional assumptions on the value of the cross-diffusion coefficients, we are able to show the existence and uniqueness of nonnegative strong solutions. The proof of the existence relies on the use of an appropriate linearized problem and a fixed-point argument. In addition, a weak-strong stability result is obtained for this system in dimension one which also implies uniqueness of weak solutions. In the third part we focus on a class of integral functionals known as nonlocal perimeters. Intuitively, these functionals express a weighted interaction between a set and its complement. The weight is provided by a positive kernel K which might be singular. We show that these functionals are indeed perimeters in a generalised sense and we establish existence of minimisers for the corresponding Plateau’s problem. Also, when K is radial and strictly decreasing, we prove that halfspaces are minimisers if we prescribe “flat” boundary conditions. Furthermore, a Γ-convergence result is discussed. We study the limiting behaviour of the nonlocal perimeters associated with certain rescalings of a given kernel which might be singular in the origin but that have faster-than-L 1 decay at infinity and we show that the Γ-limit is the classical perimeter, up to a multiplicative constant that we give explicitly.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography