Journal articles on the topic 'Nickase'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Nickase.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
He, Yan, and Tao Jiang. "Nickase-dependent isothermal DNA amplification." Advances in Bioscience and Biotechnology 04, no. 04 (2013): 539–42. http://dx.doi.org/10.4236/abb.2013.44070.
Full textWu, Haibo, Yongsheng Wang, Yan Zhang, Mingqi Yang, Jiaxing Lv, Jun Liu, and Yong Zhang. "TALE nickase-mediatedSP110knockin endows cattle with increased resistance to tuberculosis." Proceedings of the National Academy of Sciences 112, no. 13 (March 2, 2015): E1530—E1539. http://dx.doi.org/10.1073/pnas.1421587112.
Full textKim, Do Yon, Su Bin Moon, Jeong-Heon Ko, Yong-Sam Kim, and Daesik Kim. "Unbiased investigation of specificities of prime editing systems in human cells." Nucleic Acids Research 48, no. 18 (September 17, 2020): 10576–89. http://dx.doi.org/10.1093/nar/gkaa764.
Full textJansson, Vuokko, and Kristian Jansson. "A bioluminescent DNA nickase assay of deoxyribonuclease I." Analytical Biochemistry 333, no. 2 (October 2004): 402–4. http://dx.doi.org/10.1016/j.ab.2004.05.060.
Full textYunusova, A. K., E. A. Rogulin, R. I. Artyukh, L. A. Zheleznaya, and N. I. Matvienko. "Nickase and a protein encoded by an open reading frame downstream from the nickase BspD6I gene form a restriction endonuclease complex." Biochemistry (Moscow) 71, no. 7 (July 2006): 815–20. http://dx.doi.org/10.1134/s0006297906070157.
Full textDavis, Luther, and Nancy Maizels. "Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair." Proceedings of the National Academy of Sciences 111, no. 10 (February 20, 2014): E924—E932. http://dx.doi.org/10.1073/pnas.1400236111.
Full textRen, Xingjie, Zhihao Yang, Decai Mao, Zai Chang, Huan-Huan Qiao, Xia Wang, Jin Sun, et al. "Performance of the Cas9 Nickase System in Drosophila melanogaster." G3: Genes|Genomes|Genetics 4, no. 10 (August 15, 2014): 1955–62. http://dx.doi.org/10.1534/g3.114.013821.
Full textChristensen, Jesper, Susan F. Cotmore, and Peter Tattersall. "Minute Virus of Mice Initiator Protein NS1 and a Host KDWK Family Transcription Factor Must Form a Precise Ternary Complex with Origin DNA for Nicking To Occur." Journal of Virology 75, no. 15 (August 1, 2001): 7009–17. http://dx.doi.org/10.1128/jvi.75.15.7009-7017.2001.
Full textNüesch, Jürg P. F., Jesper Christensen, and Jean Rommelaere. "Initiation of Minute Virus of Mice DNA Replication Is Regulated at the Level of Origin Unwinding by Atypical Protein Kinase C Phosphorylation of NS1." Journal of Virology 75, no. 13 (July 1, 2001): 5730–39. http://dx.doi.org/10.1128/jvi.75.13.5730-5739.2001.
Full textLiebendorfer, Adam. "Novel Cas9-nickase technique repairs mutation without off-target modifications." Scilight 2018, no. 49 (December 3, 2018): 490001. http://dx.doi.org/10.1063/1.5082920.
Full textXu, Tao, Yongchao Li, Zhou Shi, Christopher L. Hemme, Yuan Li, Yonghua Zhu, Joy D. Van Nostrand, Zhili He, and Jizhong Zhou. "Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase." Applied and Environmental Microbiology 81, no. 13 (April 24, 2015): 4423–31. http://dx.doi.org/10.1128/aem.00873-15.
Full textKim, Gap‐Don, Jeong Hyo Lee, Sumin Song, Seo Woo Kim, Ji Seon Han, Seung Pyo Shin, Byung‐Chul Park, and Tae Sub Park. "Generation of myostatin‐knockout chickens mediated by D10A‐Cas9 nickase." FASEB Journal 34, no. 4 (February 25, 2020): 5688–96. http://dx.doi.org/10.1096/fj.201903035r.
Full textMolina, Rafael, María José Marcaida, Pilar Redondo, Marco Marenchino, Phillippe Duchateau, Marco D'Abramo, Guillermo Montoya, and Jesús Prieto. "Engineering a Nickase on the Homing Endonuclease I-DmoI Scaffold." Journal of Biological Chemistry 290, no. 30 (June 4, 2015): 18534–44. http://dx.doi.org/10.1074/jbc.m115.658666.
Full textShao, Yanjiao, Liren Wang, Nana Guo, Shengfei Wang, Lei Yang, Yajing Li, Mingsong Wang, et al. "Cas9-nickase–mediated genome editing corrects hereditary tyrosinemia in rats." Journal of Biological Chemistry 293, no. 18 (March 5, 2018): 6883–92. http://dx.doi.org/10.1074/jbc.ra117.000347.
Full textTomita, Haruyoshi, and Yasuyoshi Ike. "Genetic Analysis of Transfer-Related Regions of the Vancomycin Resistance Enterococcus Conjugative Plasmid pHTβ: Identification of oriT and a Putative Relaxase Gene." Journal of Bacteriology 187, no. 22 (November 15, 2005): 7727–37. http://dx.doi.org/10.1128/jb.187.22.7727-7737.2005.
Full textHenderson, Dorian, and Richard Meyer. "The MobA-Linked Primase Is the Only Replication Protein of R1162 Required for Conjugal Mobilization." Journal of Bacteriology 181, no. 9 (May 1, 1999): 2973–78. http://dx.doi.org/10.1128/jb.181.9.2973-2978.1999.
Full textZargar, Mahsa, Abbas Jamshidizad, Aidin Rahim-Tayefeh, Ehsan Hashemi, Ali Najafi, Mehdi Shamsara, and Mohammad Hossein Modarressi. "Generation of global Spata19 knockout mouse using CRISPR/Cas9 nickase technology." Koomesh journal 22, no. 3 (May 1, 2020): 380–88. http://dx.doi.org/10.29252/koomesh.22.3.380.
Full textShao, Yanjiao, Liren Wang, Nana Guo, Shengfei Wang, Lei Yang, Yajing Li, Mingsong Wang, et al. "Correction: Cas9-nickase–mediated genome editing corrects hereditary tyrosinemia in rats." Journal of Biological Chemistry 294, no. 21 (May 24, 2019): 8348. http://dx.doi.org/10.1074/jbc.aac119.009120.
Full textPemberton, I. K., and J. S. Oxford. "4-Quinolones do not inhibit the nickase activity of HIV integrase." Antiviral Research 15 (April 1991): 72. http://dx.doi.org/10.1016/0166-3542(91)90139-i.
Full textKachalova, Galina S., Eugeny A. Rogulin, Rimma I. Artyukh, Tatyana A. Perevyazova, Ludmila A. Zheleznaya, Nickolay I. Matvienko, and Hans D. Bartunik. "Crystallization and preliminary crystallographic analysis of the site-specific DNA nickase Nb.BspD6I." Acta Crystallographica Section F Structural Biology and Crystallization Communications 61, no. 3 (March 1, 2005): 332–34. http://dx.doi.org/10.1107/s174430910500309x.
Full textFu, Becky Xu Hua, Justin D. Smith, Ryan T. Fuchs, Megumu Mabuchi, Jennifer Curcuru, G. Brett Robb, and Andrew Z. Fire. "Target-dependent nickase activities of the CRISPR–Cas nucleases Cpf1 and Cas9." Nature Microbiology 4, no. 5 (March 4, 2019): 888–97. http://dx.doi.org/10.1038/s41564-019-0382-0.
Full textSatomura, Atsushi, Kouichi Kuroda, and Mitsuyoshi Ueda. "Precise genome editing at single-base resolution by novel CRISPR-nickase system." New Biotechnology 33 (July 2016): S64—S65. http://dx.doi.org/10.1016/j.nbt.2016.06.947.
Full textFujii, T., D. Naka, N. Toyoda, and H. Seto. "LiCl treatment releases a nickase implicated in genetic transformation of Streptococcus pneumoniae." Journal of Bacteriology 169, no. 11 (1987): 4901–6. http://dx.doi.org/10.1128/jb.169.11.4901-4906.1987.
Full textWang, Ting, Yong Liu, Huan‐Huan Sun, Bin‐Cheng Yin, and Bang‐Ce Ye. "An RNA‐Guided Cas9 Nickase‐Based Method for Universal Isothermal DNA Amplification." Angewandte Chemie International Edition 58, no. 16 (April 8, 2019): 5382–86. http://dx.doi.org/10.1002/anie.201901292.
Full textWang, Ting, Yong Liu, Huan‐Huan Sun, Bin‐Cheng Yin, and Bang‐Ce Ye. "An RNA‐Guided Cas9 Nickase‐Based Method for Universal Isothermal DNA Amplification." Angewandte Chemie 131, no. 16 (March 12, 2019): 5436–40. http://dx.doi.org/10.1002/ange.201901292.
Full textShen, Bin, Wensheng Zhang, Jun Zhang, Jiankui Zhou, Jianying Wang, Li Chen, Lu Wang, et al. "Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects." Nature Methods 11, no. 4 (March 2, 2014): 399–402. http://dx.doi.org/10.1038/nmeth.2857.
Full textLing, Alexanda K., Clare C. So, Michael X. Le, Audrey Y. Chen, Lisa Hung, and Alberto Martin. "Double-stranded DNA break polarity skews repair pathway choice during intrachromosomal and interchromosomal recombination." Proceedings of the National Academy of Sciences 115, no. 11 (February 22, 2018): 2800–2805. http://dx.doi.org/10.1073/pnas.1720962115.
Full textNüesch, Jürg P. F., Romuald Corbau, Peter Tattersall, and Jean Rommelaere. "Biochemical Activities of Minute Virus of Mice Nonstructural Protein NS1 Are Modulated In Vitro by the Phosphorylation State of the Polypeptide." Journal of Virology 72, no. 10 (October 1, 1998): 8002–12. http://dx.doi.org/10.1128/jvi.72.10.8002-8012.1998.
Full textRysenkova, Karina D., Ekaterina V. Semina, Maxim N. Karagyaur, Anna A. Shmakova, Daniyar T. Dyikanov, Petr A. Vasiluev, Yury P. Rubtsov, Kseniya A. Rubina, and Vsevolod A. Tkachuk. "CRISPR/Cas9 nickase mediated targeting of urokinase receptor gene inhibits neuroblastoma cell proliferation." Oncotarget 9, no. 50 (June 29, 2018): 29414–30. http://dx.doi.org/10.18632/oncotarget.25647.
Full textIshola, O. A., and K. T. h. e. v. a. Das. "22 Development of DOUBLE NICKASE CRISPR aganist latently infected human immunodeficency virus (HIV)." Journal of Virus Eradication 2 (July 2016): 16. http://dx.doi.org/10.1016/s2055-6640(20)30967-5.
Full textLi, Qi, François M. Seys, Nigel P. Minton, Junjie Yang, Yu Jiang, Weihong Jiang, and Sheng Yang. "CRISPR–Cas9 D10A nickase‐assisted base editing in the solvent producer Clostridium beijerinckii." Biotechnology and Bioengineering 116, no. 6 (February 21, 2019): 1475–83. http://dx.doi.org/10.1002/bit.26949.
Full textAísa-Marín, Izarbe, M. José López-Iniesta, and Gemma Marfany. "Data on the generation of two Nr2e3 mouse models by CRISPR / Cas9D10A nickase." Data in Brief 33 (December 2020): 106447. http://dx.doi.org/10.1016/j.dib.2020.106447.
Full textGe, Xi A., and Craig P. Hunter. "Efficient Homologous Recombination in Mice Using Long Single Stranded DNA and CRISPR Cas9 Nickase." G3: Genes|Genomes|Genetics 9, no. 1 (November 30, 2018): 281–86. http://dx.doi.org/10.1534/g3.118.200758.
Full textIriki, Hoshie, Takefumi Kawata, and Tetsuya Muramoto. "Generation of deletions and precise point mutations in Dictyostelium discoideum using the CRISPR nickase." PLOS ONE 14, no. 10 (October 17, 2019): e0224128. http://dx.doi.org/10.1371/journal.pone.0224128.
Full textSakuma, Tetsushi, Keiichi Masaki, Hiromi Abe-Chayama, Keiji Mochida, Takashi Yamamoto, and Kazuaki Chayama. "Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus." Genes to Cells 21, no. 11 (September 23, 2016): 1253–62. http://dx.doi.org/10.1111/gtc.12437.
Full textTu, Jian, Zijun Huo, Mo Liu, Donghui Wang, An Xu, Ruoji Zhou, Dandan Zhu, et al. "Generation of human embryonic stem cell line with heterozygous RB1 deletion by CRIPSR/Cas9 nickase." Stem Cell Research 28 (April 2018): 29–32. http://dx.doi.org/10.1016/j.scr.2018.01.021.
Full textChernukhin, V. A., J. Seggewiss, Yu G. Kashirina, D. A. Gonchar, and S. Kh Degtyarev. "Purification and properties of recombinant DNA methyltransferase M2.BstSE of the BstSEI nickase-modification system." Molecular Biology 43, no. 1 (February 2009): 8–15. http://dx.doi.org/10.1134/s0026893309010026.
Full textNawaly, Hermanus, Yoshinori Tsuji, and Yusuke Matsuda. "Rapid and precise genome editing in a marine diatom, Thalassiosira pseudonana by Cas9 nickase (D10A)." Algal Research 47 (May 2020): 101855. http://dx.doi.org/10.1016/j.algal.2020.101855.
Full textLunsford, R. Dwayne, Nga Nguyen, and J. London. "DNA-Binding Activities in Streptococcus gordonii : Identification of a Receptor-Nickase and a Histonelike Protein." Current Microbiology 32, no. 2 (February 1, 1996): 95–100. http://dx.doi.org/10.1007/s002849900017.
Full textLee, Angus Yiu-fai, and Kevin C. Kent Lloyd. "Conditional targeting of Ispd using paired Cas9 nickase and a single DNA template in mice." FEBS Open Bio 4, no. 1 (January 1, 2014): 637–42. http://dx.doi.org/10.1016/j.fob.2014.06.007.
Full textTrafoier, T., S. Hainzl, T. Kocher, U. Koller, J. Reichelt, C. Heufler Tiefenthaler, and M. Schmuth. "159 CRISPR/Cas9 nickase mediated gene therapy in primary keratinocytes derived from patients with EPPK." Journal of Investigative Dermatology 141, no. 10 (October 2021): S175. http://dx.doi.org/10.1016/j.jid.2021.08.163.
Full textLee, Jeong Hyo, Si Won Kim, and Tae Sub Park. "Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect." Asian-Australasian Journal of Animal Sciences 30, no. 5 (October 19, 2016): 743–48. http://dx.doi.org/10.5713/ajas.16.0695.
Full textTewary, S. K., H. Zhao, W. Shen, J. Qiu, and L. Tang. "Structure of the NS1 Protein N-Terminal Origin Recognition/Nickase Domain from the Emerging Human Bocavirus." Journal of Virology 87, no. 21 (August 21, 2013): 11487–93. http://dx.doi.org/10.1128/jvi.01770-13.
Full textWu, Yong, Tieli Gao, Xiaolin Wang, Youjin Hu, Xuyun Hu, Zhiqing Hu, Jialun Pang, et al. "TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus." Biochemical and Biophysical Research Communications 446, no. 1 (March 2014): 261–66. http://dx.doi.org/10.1016/j.bbrc.2014.02.099.
Full textZhao, Guannan, Qinghui Wang, Qingqing Gu, Wenan Qiang, Jian-Jun Wei, Peixin Dong, Hidemichi Watari, Wei Li, and Junming Yue. "Lentiviral CRISPR/Cas9 nickase vector mediated BIRC5 editing inhibits epithelial to mesenchymal transition in ovarian cancer cells." Oncotarget 8, no. 55 (October 17, 2017): 94666–80. http://dx.doi.org/10.18632/oncotarget.21863.
Full textChoi, Ji-Young, Chulman Jo, and Sangmee Ahn Jo. "Construction of a new T-vector: Nickase (Nt.BspQI)-generated T-vector bearing a reddish-orange indicator gene." Tissue Engineering and Regenerative Medicine 13, no. 1 (February 2016): 66–69. http://dx.doi.org/10.1007/s13770-015-0118-z.
Full textRogulin, E. A., T. A. Perevyazova, L. A. Zheleznaya, and N. I. Matvienko. "Plasmid pRARE as a Vector for Cloning to Construct a Superproducer of the Site-Specific Nickase N.BspD6I." Biochemistry (Moscow) 69, no. 10 (October 2004): 1123–27. http://dx.doi.org/10.1023/b:biry.0000046886.19428.d5.
Full textWang, Luying, Xingying Shen, Ting Wang, Pinru Chen, Nan Qi, Bin-Cheng Yin, and Bang-Ce Ye. "A lateral flow strip combined with Cas9 nickase-triggered amplification reaction for dual food-borne pathogen detection." Biosensors and Bioelectronics 165 (October 2020): 112364. http://dx.doi.org/10.1016/j.bios.2020.112364.
Full textRong, Zhili, Shengyun Zhu, Yang Xu, and Xuemei Fu. "Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template." Protein & Cell 5, no. 4 (March 14, 2014): 258–60. http://dx.doi.org/10.1007/s13238-014-0032-5.
Full textNaeem, Muhammad, Saman Majeed, Mubasher Zahir Hoque, and Irshad Ahmad. "Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing." Cells 9, no. 7 (July 2, 2020): 1608. http://dx.doi.org/10.3390/cells9071608.
Full text