To see the other types of publications on this topic, follow the link: Nitrogen afterglow.

Journal articles on the topic 'Nitrogen afterglow'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nitrogen afterglow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tálský, A., O. Štec, M. Pazderka, and V. Kudrle. "Kinetic Study of Atmospheric Pressure Nitrogen Plasma Afterglow Using Quantitative Electron Spin Resonance Spectroscopy." Journal of Spectroscopy 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/5473874.

Full text
Abstract:
Quantitative electron spin resonance spectroscopy is used to measure nitrogen atom density in atmospheric pressure dielectric barrier discharge afterglow. The experiment shows that oxygen injection into early afterglow increases the nitrogen dissociation in certain parts of the afterglow while it is decreased in the rest of the afterglow. Numerical kinetic modelling supports and explains the experimental data while the best fit provides some a priori unknown parameters such as initial concentrations and rate constants.
APA, Harvard, Vancouver, ISO, and other styles
2

Amorim, J., and V. Kiohara. "N(2D) in nitrogen afterglow." Chemical Physics Letters 385, no. 3-4 (February 2004): 268–72. http://dx.doi.org/10.1016/j.cplett.2003.12.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kolar, Metod, and Gregor Primc. "Haemostatic Response of Polyethylene Terephthalate Treated by Oxygen and Nitrogen Plasma Afterglows." International Journal of Polymer Science 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/1749285.

Full text
Abstract:
Samples of polymer polyethylene terephthalate were coated with heparin and the haemostatic response has been determined by optical imaging of samples after incubation with fresh blood from a healthy donor. Prior to coating the samples were treated by neutral reactive particles of the oxygen or nitrogen plasma flowing afterglow. X-ray photoelectron spectroscopy analysis showed intensive functionalization of the polymer foils upon treatment with afterglows; however, the concentration of sulphur from heparin remained below the detection limit. The optical imaging showed densely distributed blood platelets in highly activated forms on untreated samples, whereas treatment with both afterglows revealed improved hemocompatibility. Best results were obtained for oxygen-functionalized polymer, whereas additional coating with heparin caused moderate loss of hemocompatibility, that was explained by deactivation of surface functional groups upon incubation with heparin.
APA, Harvard, Vancouver, ISO, and other styles
4

Guerra, Vasco, Paulo A. Sá, and Jorge Loureiro. "Nitrogen pink afterglow: the mystery continues." Journal of Physics: Conference Series 63 (April 1, 2007): 012007. http://dx.doi.org/10.1088/1742-6596/63/1/012007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krčma, F., and M. Žáková. "Pink afterglow in nitrogen-argon mixtures." European Physical Journal D 54, no. 2 (May 8, 2009): 369–75. http://dx.doi.org/10.1140/epjd/e2009-00147-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zivanovic, Emilija. "Investigation of the effect of additional electrons originating from the ultraviolet radiation on the nitrogen memory effect." Facta universitatis - series: Electronics and Energetics 28, no. 3 (2015): 423–37. http://dx.doi.org/10.2298/fuee1503423z.

Full text
Abstract:
The influence of ultraviolet radiation on memory effect in nitrogen has been investigated. The spectrum of the radiation which passes through the walls of the experimental sample was obtained by the spectrometer. A detailed comparison of experimental results of electrical breakdown time delay as a function of afterglow period with and without ultraviolet irradiation was performed. These studies were done for such product of gas pressure and inter-electrode distance when both breakdown initiation mechanisms exist. The research has shown that ultraviolet radiation leads to the decrease in ion concentration in early nitrogen afterglow due to recombination of nitrogen ions with electrons released from the tube walls and electrodes. Meanwhile, it has been cofirmed that this radiation has a negligible influence on the breakdown initiation in late nitrogen afterglow when a significant nitogen atom concentration is persistent. When the concentration of nitrogen atoms decreases enough, the breakdown initiation is caused by cosmic rays but UV photons have an important influence because of the rise of the electron yield.
APA, Harvard, Vancouver, ISO, and other styles
7

Piper, Lawrence G. "Further observations on the nitrogen orange afterglow." Journal of Chemical Physics 101, no. 12 (December 15, 1994): 10229–36. http://dx.doi.org/10.1063/1.467903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Janča, J., A. Tálský, and F. Krčma. "Recombination in nitrogen afterglow at low temperatures." Czechoslovak Journal of Physics 43, no. 12 (December 1993): 1213–21. http://dx.doi.org/10.1007/bf01590189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Markovic, Vidosav, Sasa Gocic, and Suzana Stamenkovic. "Homogeneous gas phase models of relaxation kinetics in neon afterglow." Facta universitatis - series: Physics, Chemistry and Technology 5, no. 1 (2007): 33–44. http://dx.doi.org/10.2298/fupct0701033m.

Full text
Abstract:
The homogeneous gas phase models of relaxation kinetics (application of the gas phase effective coefficients to represent surface losses) are applied for the study of charged and neutral active particles decay in neon afterglow. The experimental data obtained by the breakdown time delay measurements as a function of the relaxation time td (?) (memory curve) is modeled in early, as well as in late afterglow. The number density decay of metastable states can explain neither the early, nor the late afterglow kinetics (memory effect), because their effective lifetimes are of the order of milliseconds and are determined by numerous collision quenching processes. The afterglow kinetics up to hundreds of milliseconds is dominated by the decay of molecular neon Ne2 + and nitrogen ions N2 + (present as impurities) and the approximate value of N2 + ambipolar diffusion coefficient is determined. After the charged particle decay, the secondary emitted electrons from the surface catalyzed excitation of nitrogen atoms on the cathode determine the breakdown time delay down to the cosmic rays and natural radioactivity level. Due to the neglecting of number density spatial profiles, the homogeneous gas phase models give only the approximate values of the corresponding coefficients, but reproduce correctly other characteristics of afterglow kinetics from simple fits to the experimental data.
APA, Harvard, Vancouver, ISO, and other styles
10

Legrand, J. C., A. M. Diamy, R. Hrach, and V. Hrachová. "Mechanisms of methane decomposition in nitrogen afterglow plasma." Vacuum 52, no. 1-2 (January 1999): 27–32. http://dx.doi.org/10.1016/s0042-207x(98)00208-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Guerra, V., P. A. S, and J. Loureiro. "Electron and metastable kinetics in the nitrogen afterglow." Plasma Sources Science and Technology 12, no. 4 (September 18, 2003): S8—S15. http://dx.doi.org/10.1088/0963-0252/12/4/314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jauberteau, J. L., I. Jauberteau, M. J. Cinelli, and J. Aubreton. "Reactivity of methane in a nitrogen discharge afterglow." New Journal of Physics 4 (July 5, 2002): 39. http://dx.doi.org/10.1088/1367-2630/4/1/339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Pejovic, M., and V. Markovic. "Decay of positive space charge in nitrogen afterglow." Journal of Physics D: Applied Physics 25, no. 8 (August 14, 1992): 1217–20. http://dx.doi.org/10.1088/0022-3727/25/8/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Pejović, M. M., N. T. Nešić, M. M. Pejović, and E. N. Živanović. "Afterglow processes responsible for memory effect in nitrogen." Journal of Applied Physics 112, no. 1 (July 2012): 013301. http://dx.doi.org/10.1063/1.4730622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mazánková, V., D. Trunec, and F. Krčma. "Study of argon flowing afterglow with nitrogen injection." Journal of Chemical Physics 139, no. 16 (October 28, 2013): 164311. http://dx.doi.org/10.1063/1.4826650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Levaton, J., J. Amorim, and A. Ricard. "The local dissociation phenomenon in a nitrogen afterglow." Journal of Physics D: Applied Physics 45, no. 50 (November 19, 2012): 505203. http://dx.doi.org/10.1088/0022-3727/45/50/505203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Marković, V. Lj, Z. Lj Petrović, and M. M. Pejović. "Surface recombination of atoms in a nitrogen afterglow." Journal of Chemical Physics 100, no. 11 (June 1994): 8514–21. http://dx.doi.org/10.1063/1.466750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Markovic, V. Lj, Z. Lj Petrovic, and M. M. Pejovic. "Modelling of charged particle decay in nitrogen afterglow." Plasma Sources Science and Technology 6, no. 2 (May 1, 1997): 240–46. http://dx.doi.org/10.1088/0963-0252/6/2/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

PEJOVIĆ, MOMČILO M., IVANA V. SPASIĆ, MILIĆ M. PEJOVIĆ, NIKOLA T. NEŠIĆ, and DRAGAN V. BRAJOVIĆ. "Processes in afterglow responsible for initiation of electrical breakdown in xenon at low pressure." Journal of Plasma Physics 79, no. 5 (February 22, 2013): 641–46. http://dx.doi.org/10.1017/s0022377813000238.

Full text
Abstract:
AbstractThe processes responsible for initiation of electrical breakdown in xenon-filled tube with two spherical iron electrodes at 2.7-mbar pressure have been analyzed. The analysis is based on the experimental data of electrical breakdown time delay as a function of afterglow period. It is shown that positive ions remaining from previous discharge, as well as positive ions created in mutual collisions of metastable atoms in afterglow, have a dominant role in secondary emission of electrons from the cathode which lead to initiation of breakdown in early afterglow. In late afterglow, dominant role in initiation of breakdown is taken by N(4S) atoms formed during the discharge by dissociation of ground state nitrogen molecules that are present as impurities in xenon. When the concentration of N(4S) atoms decreases sufficiently, the initiation of breakdown is caused by cosmic radiation. Small doses of gamma-ray irradiation also contribute to the initiation of breakdown, but only for large values of the afterglow period.
APA, Harvard, Vancouver, ISO, and other styles
20

Lin, Cunjian, Yixi Zhuang, Wuhui Li, Tian-Liang Zhou, and Rong-Jun Xie. "Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots." Nanoscale 11, no. 14 (2019): 6584–90. http://dx.doi.org/10.1039/c8nr09672d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hood, W. H., and T. M. Niemczyk. "Excitation Temperatures in the Microwave-Induced Active-Nitrogen Afterglow." Applied Spectroscopy 41, no. 4 (May 1987): 674–78. http://dx.doi.org/10.1366/0003702874448526.

Full text
Abstract:
A systematic study of the excitation temperature obtained from microwave-produced active nitrogen is reported. Iron atoms are used as the thermometric species, and the excitation temperatures are calculated with the use of the two-line ratio method. The excitation temperatures determined cover the range of approximately 3000 K to 4000 K, depending on the region of the plasma viewed. The large difference between the excitation temperature and the thermal temperature, as well as the fact that the excitation temperature is relatively insensitive to operating conditions, gives credence to the excitation mechanism proposed for active nitrogen systems.
APA, Harvard, Vancouver, ISO, and other styles
22

Mazánková, V., D. Trunec, and F. Krčma. "Study of nitrogen flowing afterglow with mercury vapor injection." Journal of Chemical Physics 141, no. 15 (October 21, 2014): 154307. http://dx.doi.org/10.1063/1.4898367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Adamovich, Igor V., and J. William Rich. "Emission and shock visualization in nonequilibrium nitrogen afterglow plasma." Journal of Applied Physics 102, no. 8 (October 15, 2007): 083303. http://dx.doi.org/10.1063/1.2798984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Akishev, Yu S., M. E. Grushin, V. B. Karal’nik, A. V. Petryakov, and N. I. Trushkin. "Pink splash of active nitrogen in the discharge afterglow." Plasma Physics Reports 33, no. 9 (September 2007): 757–73. http://dx.doi.org/10.1134/s1063780x07090061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Black, G., T. Nishiya, H. Shinohara, N. Nishi, and I. Hanazaki. "REMPI studies in the Lewis-Rayleigh afterglow of nitrogen." Chemical Physics Letters 142, no. 5 (December 1987): 409–12. http://dx.doi.org/10.1016/0009-2614(87)85133-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Krčma, F., V. Mazánková, and I. Soural. "Secondary “pink afterglow” in post-discharge in pure nitrogen." Czechoslovak Journal of Physics 56, S2 (October 2006): B871—B876. http://dx.doi.org/10.1007/s10582-006-0297-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Coitout, H., G. Cernogora, and L. Magne. "Nitrogen Atoms and Triplet States N2(B3?g), N2(C3?u) in Nitrogen Afterglow." Journal de Physique III 5, no. 2 (February 1995): 203–17. http://dx.doi.org/10.1051/jp3:1995120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Aubreton, J., D. Conte, J. L. Jauberteau, and I. Jauberteau. "Measurement of rate constants between atomic nitrogen and silane in a nitrogen discharge afterglow." Journal of Physics D: Applied Physics 33, no. 12 (May 31, 2000): 1499–506. http://dx.doi.org/10.1088/0022-3727/33/12/312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Robert Bigras, G., R. Martel, and L. Stafford. "Incorporation-limiting mechanisms during nitrogenation of monolayer graphene films in nitrogen flowing afterglows." Nanoscale 13, no. 5 (2021): 2891–901. http://dx.doi.org/10.1039/d0nr07827a.

Full text
Abstract:
Modification of graphene films in the flowing afterglow of microwave N2 plasmas. Nitrogenation is first limited by the formation of defect sites by plasma-generated N and N2(A) at low damage and then by the adsorption of nitrogen atoms at high damage.
APA, Harvard, Vancouver, ISO, and other styles
30

Gorse, C., and M. Capitelli. "Coupled electron and excited‐state kinetics in a nitrogen afterglow." Journal of Applied Physics 62, no. 10 (November 15, 1987): 4072–76. http://dx.doi.org/10.1063/1.339119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Supiot, P., D. Blois, S. De Benedictis, G. Dilecce, M. Barj, A. Chapput, O. Dessaux, and P. Goudmand. "Excitation of N2(B3Pig) in the nitrogen short-lived afterglow." Journal of Physics D: Applied Physics 32, no. 15 (July 26, 1999): 1887–93. http://dx.doi.org/10.1088/0022-3727/32/15/317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Horikawa, Yoshimine, Toshio Hayashi, and Koichi Sasaki. "Lifetime of Molecular Nitrogen at Metastable A3Σu+State in Afterglow of Inductively-Coupled Nitrogen Plasma." Japanese Journal of Applied Physics 51, no. 12R (December 1, 2012): 126301. http://dx.doi.org/10.7567/jjap.51.126301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kudryavtsev, A. A., and A. I. Ledyankin. "On the electron and vibrational temperatures in a nitrogen afterglow plasma." Physica Scripta 53, no. 5 (May 1, 1996): 597–602. http://dx.doi.org/10.1088/0031-8949/53/5/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Clément, F., E. Panousis, B. Held, J.-F. Loiseau, A. Ricard, and J.-P. Sarrette. "Solitary wave effect in a dielectric barrier discharge afterglow in nitrogen." Journal of Physics D: Applied Physics 41, no. 8 (March 11, 2008): 085206. http://dx.doi.org/10.1088/0022-3727/41/8/085206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Magne, L., G. Cernogora, and P. Veis. "Relaxation of metastable N2(a1Pig, V'=0-2) in nitrogen afterglow." Journal of Physics D: Applied Physics 25, no. 3 (March 14, 1992): 472–76. http://dx.doi.org/10.1088/0022-3727/25/3/020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Chapput, A., M. Barj, P. Supiot, D. Blois, O. Dessaux, and P. Goudmand. "Low-Pressure Pulsed Multichannel Raman Scattering in Short-Lived Nitrogen Afterglow." Journal of Raman Spectroscopy 27, no. 11 (November 1996): 863–65. http://dx.doi.org/10.1002/(sici)1097-4555(199611)27:11<863::aid-jrs51>3.0.co;2-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Dyatko, N. A., Y. Z. Ionikh, N. B. Kolokolov, A. V. Meshchanov, and A. P. Napartovich. "Experimental and theoretical studies of the electron temperature in nitrogen afterglow." IEEE Transactions on Plasma Science 31, no. 4 (August 2003): 553–63. http://dx.doi.org/10.1109/tps.2003.815250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Sá, P. A., V. Guerra, J. Loureiro, and N. Sadeghi. "Self-consistent kinetic model of the short-lived afterglow in flowing nitrogen." Journal of Physics D: Applied Physics 37, no. 2 (December 19, 2003): 221–31. http://dx.doi.org/10.1088/0022-3727/37/2/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Nowling, G. R., S. E. Babayan, X. Yang, M. Moravej, R. Agarwal, and R. F. Hicks. "The reactions of silane in the afterglow of a helium–nitrogen plasma." Plasma Sources Science and Technology 13, no. 1 (December 16, 2003): 156–63. http://dx.doi.org/10.1088/0963-0252/13/1/020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Supiot, P., O. Dessaux, and P. Goudmand. "Spectroscopic analysis of the nitrogen short-lived afterglow induced at 433 MHz." Journal of Physics D: Applied Physics 28, no. 9 (September 14, 1995): 1826–39. http://dx.doi.org/10.1088/0022-3727/28/9/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lj. Markovi\'c, Vidosav, Zoran Lj. Petrovi\'c, and Mom\v cilo M. Pejovi\'c. "Influence of Impurities on Surface Recombination of Nitrogen Atoms in Late Afterglow." Japanese Journal of Applied Physics 34, Part 1, No. 5A (May 15, 1995): 2466–70. http://dx.doi.org/10.1143/jjap.34.2466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Takashima, Seigo, Keigo Takeda, Satoshi Kato, Mineo Hiramatsu, and Masaru Hori. "Surface Loss Probability of Nitrogen Atom on Stainless-Steel in N2Plasma Afterglow." Japanese Journal of Applied Physics 49, no. 7 (July 20, 2010): 076101. http://dx.doi.org/10.1143/jjap.49.076101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Guerra, V., F. M. Dias, J. Loureiro, P. Araujo Sa, P. Supiot, C. Dupret, and T. Popov. "Time-dependence of the electron energy distribution function in the nitrogen afterglow." IEEE Transactions on Plasma Science 31, no. 4 (August 2003): 542–52. http://dx.doi.org/10.1109/tps.2003.815485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Krcma, Frantisek, Vera Mazankova, Ivo Soural, and Vasco Guerra. "Power Dependence of the Pink Afterglow in Flowing Postdischarge in Pure Nitrogen." IEEE Transactions on Plasma Science 42, no. 10 (October 2014): 2384–85. http://dx.doi.org/10.1109/tps.2014.2307611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kumar, Vijay, and Ajai Kumar. "The study of afterglow spectra of nitrogen at different temperatures and pressures." Physica B+C 132, no. 2 (July 1985): 273–94. http://dx.doi.org/10.1016/0378-4363(85)90073-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Dyatko, Nikolay, Yury Ionikh, and Anatoly Napartovich. "Influence of Nitrogen Admixture on Plasma Characteristics in a dc Argon Glow Discharge and in Afterglow." Atoms 7, no. 1 (January 19, 2019): 13. http://dx.doi.org/10.3390/atoms7010013.

Full text
Abstract:
The present paper is based on the materials of the Invited Lecture presented at 29th Summer School and International Symposium on the Physics of Ionized Gases (28 August 2018–1 September 2018, Belgrade, Serbia). In the paper, the effect of nitrogen admixture on various characteristics of a dc glow discharge in argon (the volt-ampere characteristic, rate of plasma decay in the afterglow, discharge constriction condition, and formation of a partially constricted discharge) is considered.
APA, Harvard, Vancouver, ISO, and other styles
47

Gaboriau, F., U. Cvelbar, M. Mozetic, A. Erradi, and B. Rouffet. "Comparison of TALIF and catalytic probes for the determination of nitrogen atom density in a nitrogen plasma afterglow." Journal of Physics D: Applied Physics 42, no. 5 (February 11, 2009): 055204. http://dx.doi.org/10.1088/0022-3727/42/5/055204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chng, T. L., N. D. Lepikhin, I. S. Orel, N. A. Popov, and S. M. Starikovskaia. "TALIF measurements of atomic nitrogen in the afterglow of a nanosecond capillary discharge." Plasma Sources Science and Technology 29, no. 3 (March 6, 2020): 035017. http://dx.doi.org/10.1088/1361-6595/ab6f9c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rice, Gary W., Arthur P. D'Silva, and V. A. Fassel. "Molecular Chemiluminescence from Mercury Halides Excited in an Atmospheric-Pressure Active-Nitrogen Afterglow." Applied Spectroscopy 39, no. 3 (May 1985): 554–56. http://dx.doi.org/10.1366/0003702854248584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Markovic, V. L., M. M. Pejovic, and Z. L. Petrovic. "Kinetics of activated nitrogen states in late afterglow by the time-delay method." Journal of Physics D: Applied Physics 27, no. 5 (May 14, 1994): 979–84. http://dx.doi.org/10.1088/0022-3727/27/5/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography