Academic literature on the topic 'Nitroxide-Mediated Radical Polymerization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nitroxide-Mediated Radical Polymerization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nitroxide-Mediated Radical Polymerization"
Chen, Mao, Honghong Gong, and Yu Gu. "Controlled/Living Radical Polymerization of Semifluorinated (Meth)acrylates." Synlett 29, no. 12 (April 18, 2018): 1543–51. http://dx.doi.org/10.1055/s-0036-1591974.
Full textWakamatsu, Junpei, Masahiro Kawasaki, Per B. Zetterlund, and Masayoshi Okubo. "Nitroxide-Mediated Radical Polymerization in Microemulsion." Macromolecular Rapid Communications 28, no. 24 (December 14, 2007): 2346–53. http://dx.doi.org/10.1002/marc.200700576.
Full textSill, Kevin, and Todd Emrick. "Nitroxide-Mediated Radical Polymerization from CdSe Nanoparticles." Chemistry of Materials 16, no. 7 (April 2004): 1240–43. http://dx.doi.org/10.1021/cm035077b.
Full textLi, Jieai, Xiulin Zhu, Jian Zhu, and Zhenping Cheng. "Imidazoline Nitroxide‐Mediated Radical Polymerization of Styrene." Journal of Macromolecular Science, Part A 44, no. 1 (January 2007): 41–46. http://dx.doi.org/10.1080/10601320601044401.
Full textCano-Valdez, Andrés, Enrique Saldívar-Guerra, Roberto González-Blanco, Michael F. Cunningham, and Jorge Herrera-Ordóñez. "Nitroxide Mediated Radical Emulsion Polymerization: Mathematical Modeling." Macromolecular Symposia 374, no. 1 (August 2017): 1600150. http://dx.doi.org/10.1002/masy.201600150.
Full textCunningham, M. F., K. Tortosa, J. W. Ma, K. B. McAuley, B. Keoshkerian, and M. K. Georges. "Nitroxide mediated living radical polymerization in miniemulsion." Macromolecular Symposia 182, no. 1 (June 2002): 273–82. http://dx.doi.org/10.1002/1521-3900(200206)182:1<273::aid-masy273>3.0.co;2-l.
Full textRuehl, Jean, Niwat Ningnuek, Thanchanok Thongpaisanwong, and Rebecca Braslau. "Cyclic alkoxyamines for nitroxide-mediated radical polymerization." Journal of Polymer Science Part A: Polymer Chemistry 46, no. 24 (December 15, 2008): 8049–69. http://dx.doi.org/10.1002/pola.23103.
Full textFu, Yao, Michael F. Cunningham, and Robin A. Hutchinson. "Modeling of Nitroxide-Mediated Semibatch Radical Polymerization." Macromolecular Reaction Engineering 1, no. 2 (February 7, 2007): 243–52. http://dx.doi.org/10.1002/mren.200600024.
Full textGeorges, Michael K., R. Andrew Kee, Richard P. N. Veregin, Gordon K. Hamer, and Peter M. Kazmaier. "Nitroxide mediated free radical polymerization process - autopolymerization." Journal of Physical Organic Chemistry 8, no. 4 (April 1995): 301–5. http://dx.doi.org/10.1002/poc.610080413.
Full textGrubbs, Robert B. "Nitroxide-Mediated Radical Polymerization: Limitations and Versatility." Polymer Reviews 51, no. 2 (April 22, 2011): 104–37. http://dx.doi.org/10.1080/15583724.2011.566405.
Full textDissertations / Theses on the topic "Nitroxide-Mediated Radical Polymerization"
Lin, Anna. "Nitroxide-mediated photo-polymerization." Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0264.
Full textNowadays, photopolymerization has become an important process in the field of polymer science. This method presents several advantages such as the speed of the reaction, the environmental-friendly side (limited formation of released volatile organic compound and possibility of a reaction at room temperature) but also a spatial and temporal control. This photochemical approach applied in the past decades to controlled radical polymerization techniques such as ATRP, RAFT or NMP enable the control of polymer properties but also the preparation of block polymers. Among these techniques, the Nitroxide-Mediated Photopolymerization (NMP²) requires the use of a photosensitive alkoxyamine which has a chromophore group on the nitroxide moiety. In this manuscript, we present both the synthesis of photosensitive alkoxyamines and the studies of their photochemical properties investigated by absorption spectroscopy and by electron spin resonance experiments. We evaluated the polymerization abilities of the best obtained candidates. Finally, another approach has been tested to perform a reaction of NMP² from alkoxyamines made by ESCP (Enhanced Spin Capturing Polymerization) or via NMRC (Nitrone-Mediated Radical Coupling)
Xie, Min. "Nitroxide-mediated living radical styrene polymerization in miniemulsion." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0020/MQ54494.pdf.
Full textRuehl, Jean K. "Alkoxyamine initiators for nitroxide mediated radical polymerization : synthesis, characterization, and applications /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2008. http://uclibs.org/PID/11984.
Full textHlalele, Lebohang. "Kinetic and mechanistic features of nitroxide mediated (co)polymerization." Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6515.
Full textSkene, William G. "Investigation of nitroxide-mediated thermal and photochemical reactions of living free radical polymerization." Thesis, University of Ottawa (Canada), 2002. http://hdl.handle.net/10393/6351.
Full textLessard, Benoît. "Advances in Nitroxide-mediated controlled radical polymerization from Poly(Methacrylate)s to perfectly alternating copolymers." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110396.
Full textL'utilisation de la polymèrisation radicale contrôlée en présence de radicaux nitroxyde (NMP) a débuté vers les annèes 1990s. Cette technique est simple et robuste, portant facilement à la synthèse de diverses nouvelles architectures de polymères. Grâce au développement d'initiateurs de deuxième génération basés sur radicaux stables de SG1 et de TIPNO, l'NMP n'est plus limité à la polymérisation des styrènes et peut maintenant homopolymériser une varietée de monoméres tels que des acrylates et des acrylamides. Dans cette thèse, plusieurs développements de l'NMP dus à ces initiateurs de deuxième génération, ont été explorés. L'homopolymérisation des methacrylates, par NMP, a pour consèquence un excés de terminaisons irréversibles en raison de à la concentration élevée de radicaux libres produits au début de la polymérisation. Cependant, une petite quantité de comonomère "contrôlant" peut être utilisée pour contrôler la copolymèrisation, donnant comme résultat une augmentation linéaire de la masse molaire moyenne en nombre (Mn) avec la conversion (X) ainsi que des copolymères qui possèdent une distribution moléculaire étroite (Mw/Mn < 1.5). Le styrène ( 10 mol%) a été utilisé comme comonomère "contrôlant" pour la synthèse du méthacrylate éthylique, le méthacrylate n-butylique et le méthacrylate de tert- butyl. Dans tous les cas la copolymèrisation était contrôlée, donnant comme résultat un copolymère qui est "vivant" et qui possède une distribution moléculaire étroite (Mw/Mn = 1.2-1.5). En ajout du styrène, 9-(4-vinylbenzyl)-9H-carbazole) (VBK) a été employé comme comonomère "contr^olant" pour le méthacrylate méthylique et le méthacrylate de 2-diméthylaminoéthyle, mais cette fois exigeant que 1-2 mol% de VBK par rapport aux méthacrylates, ayant comme résultat une copolymèrisationcontr^olée et des copolymères _naux qui sont "vivants". Dans la deuxième partie de la thèse, NMP a été utilisé pour contrôler la microstructure de divers copolymères. En employant une formulation non-équimolaire d'anhydride maléique (MA) et de styrène (s), la synthèse de blocs copolymères poly(MA-alt-S)-b-poly(S) ayant une distribution moléculaire étroite (Mw/Mn = 1.3) a été réalisée lorsque la température de polymérisation était maintenue en dessous de 90C. Finalement l'initiateur poly(éthyléne-co-butyléne)-SG12 a été synthètisé et employé pour la polymèrisation de S et de mélanges de S/MA. Finalement, des copolymères en bloc poly(éthyléne-co-butyléne)-poly(MA-alt-S)2 ont été examinés comme compatibilisateur de mélanges avec le nylon-6.
Klumperman, Bert. "NMR studies of radical polymerization processes." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71596.
Full textENGLISH ABSTRACT: Examples of the use of NMR spectroscopy in the study of radical polymerization processes have been described. The studies presented have made a significant contribution to the understanding of the fundamental mechanistic processes in these polymerization systems. It is pointed out that NMR in conventional radical polymerization is of limited use due to the concurrent occurrence of all elementary reactions (initiation, propagation and termination). Conversely, for living radical polymerization, NMR has great value. In that case, the elementary reactions are somewhat more restricted to specific times of the polymerization process. This allows for example the detailed study of the early stages of chain growth in Reversible Addition-‐Fragmentation Chain Transfer (RAFT) mediated polymerization. Two different studies are described. The first is related to the early stages of RAFT-‐mediated polymerization. A process for which we coined the name initialization was studied via in situ 1H NMR spectroscopy. It is shown that in many cases, there is a selective reaction that converts the original RAFT agent into its single monomer adduct. A few different examples and their mechanistic interpretation are discussed. It is also shown that NMR spectroscopy can be a valuable tool for the assessment of a RAFT agent in conjunction with a specific monomer and polymerization conditions. In the second study, 15N NMR, 31P NMR and 1H NMR are used for two different types of experiments. The first is a conventional radical copolymerization in which the growing chains are trapped by a 15N labeled nitroxide to yield a stable product. In the second experiment, a similar copolymerization is conducted under nitroxide-‐mediated conditions. The nitroxide of choice contains phosphorous, which enables the quantification of the terminal monomer in the dormant chains. Each of the experiments individually provides interesting information on conventional radical copolymerization and nitroxide-‐mediated copolymerization, respectively. Combination of the experimental data reveals an interesting discrepancy in the ratio of terminal monomer units in active chains and dormant chains. Although not unexpected, this result is interesting and useful from a mechanistic as well as a synthetic point of view. In terms of future perspectives, it is expected that the advanced analytical techniques as described here will remain crucial in polymer science. Present developments in radical polymerization, such as investigations into monomer sequence control, rely on accurate knowledge of kinetic and mechanistic details of elementary reactions. It is expected that such detailed studies will be a main challenge for the next decade of polymer research.
AFRIKAANSE OPSOMMING: Voorbeelde van die gebruik van KMR-‐spektroskopie in die studie van radikaalpolimerisasies word beskryf. Hierdie studies het ʼn beduidende bydrae gelewer tot die verstaan van die fundamentele meganistiese prosesse in hierdie polimerisasiesisteme. Dit het daarop gewys dat KMR beperkte gebruike het in konvensionele radikaalpolimerisasies as gevolg van die gelyktydige voorkoms van alle basiese reaksies (afsetting, voortsetting en beëindiging). Aan die anderkant het KMR groot waarde vir lewende radikaalpolimerisasie. In hierdie geval is die elementêre reaksies ietwat meer beperk tot spesifieke tye van die polimerisasieproses. Gedetailleerde studies kan byvoorbeeld van die vroeë stadiums van die kettinggroei in Omkeerbare Addisie-‐Fragmentasie-‐ KettingOordrag (OAFO)-‐bemiddelde polimerisasie gedoen word. Twee verskillende studies is beskryf. Die eerste het betrekking op die vroeë stadiums van die OAFO-‐bemiddelde polimerisasie. 'n Proses wat “inisialisering” genoem is, is bestudeer deur middel van in situ 1H KMR-‐spektroskopie. Dit is bewys dat daar in baie gevalle 'n selektiewe reaksie is wat die oorspronklike OAFO-‐agent in sy enkelmonomeeradduk verander voor polimerisasie. 'n Paar ander voorbeelde en hul meganistiese interpretasie is bespreek. Dit is ook bewys dat KMR-‐spektroskopie 'n waardevolle hulpmiddel kan wees vir die assessering van 'n OAFO-‐agent in samewerking met 'n spesifieke monomeer en polimerisasie toestande. In die tweede studie is 15N KMR, 31P KMR en 1H KMR gebruik vir twee verskillende tipes van die eksperiment. Die eerste is 'n konvensionele radikaalkopolimerisasie waarin die groeiende kettings vasgevang word deur 'n 15N-‐gemerkte nitroksied om 'n stabiele produk te lewer. In die tweede eksperiment is 'n soortgelyke kopolimerisasie gedoen onder nitroksied-‐ bemiddelde toestande. Die gekose nitroksied bevat fosfor wat die kwantifisering van die terminale monomeer in die dormante kettings moontlik maak. Elkeen van die individuele eksperimente lewer interessante inligting oor konvensionele radikale kopolimerisasie en nitroksied-‐bemiddelde kopolimerisasie, onderskeidelik. ʼn Kombinasie van die eksperimentele data toon 'n interessante verskil aan in die verhouding van die terminale monomeereenhede in die aktiewe en sluimerende kettings. Alhoewel dit nie onverwags is nie, is die resultate interessant en van waarde vanuit 'n meganistiese-‐ sowel as 'n sintetiese oogpunt. In terme van toekomstige perspektiewe word daar verwag dat gevorderde analitiese tegnieke soos hier beskryf, belangrik sal bly in polimeerwetenskap. Huidige ontwikkelinge in radikaalpolimerisasie, soos ondersoeke na die beheer van monomeervolgorde, maak staat op akkurate kennis van kinetiese en meganistiese besonderhede van die basiese reaksies. Daar word verwag dat sulke gedetailleerde studies ʼn uitdaging sal bied vir die volgende dekade van polimeernavorsing.
Nilsen, Aaron. "The design, synthesis and testing of n-alkoxy amine initiators for nitroxide-mediated 'living' free radical polymerization /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2005. http://uclibs.org/PID/11984.
Full textPasquale, Anthony J. "Synthesis and Characterization of Multi-Component Polymeric Materials Prepared via Free Radical Polymerization." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27251.
Full textPh. D.
Hamelinck, Paul Johan. "Functional surface-initiated polymers : device applications and polymerization techniques." Thesis, University of Cambridge, 2008. https://www.repository.cam.ac.uk/handle/1810/270327.
Full textBook chapters on the topic "Nitroxide-Mediated Radical Polymerization"
Nicolas, Julien, and Yohann Guillaneuf. "Living Radical Polymerization: Nitroxide-Mediated Polymerization." In Encyclopedia of Polymeric Nanomaterials, 1133–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_191.
Full textNicolas, Julien, and Yohann Guillaneuf. "Living Radical Polymerization: Nitroxide-Mediated Polymerization." In Encyclopedia of Polymeric Nanomaterials, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_191-1.
Full textPhan, Trang N. T., Jacques Jestin, and Didier Gigmes. "Nitroxide-Mediated Polymerization from Surfaces." In Controlled Radical Polymerization at and from Solid Surfaces, 1–27. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/12_2015_317.
Full textZhu, Yucheng, I. Q. Li, B. A. Howell, and D. B. Priddy. "Nitroxide-Mediated Radical Polymerization: End-Group Analysis." In ACS Symposium Series, 214–24. Washington, DC: American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0685.ch013.
Full textCunningham, Michael, Marcus Lin, Jodi-Anne Smith, John Ma, Kim McAuley, Barkev Keoshkerian, and Michael Georges. "Nitroxide-mediated living radical polymerization in dispersed systems." In Aqueous Polymer Dispersions, 88–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b12144.
Full textCunningham, Michael, Marcus Lin, Jodi-Anne Smith, John Ma, Kim McAuley, Barkev Keoshkerian, and Michael Georges. "Nitroxide-mediated living radical polymerization in dispersed systems." In Aqueous Polymer Dispersions, 88–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-36474-0_18.
Full textBon, Stefan A. F., Frank A. C. Bergman, J. J. G. Steven van Es, Bert Klumperman, and Anton L. German. "Nitroxide-Mediated Controlled Radical Polymerization: Toward Control of Molar Mass." In ACS Symposium Series, 236–55. Washington, DC: American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0685.ch015.
Full textRobin, Sophie, and Yves Gnanou. "Synthesis of Polystyrene—Polyacrylate Block Copolymers by Nitroxide-Mediated Radical Polymerization." In ACS Symposium Series, 334–46. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2000-0768.ch023.
Full textLansalot, M., C. Farcet, B. Charleux, J. P. Vairon, R. Pirri, and P. Tordo. "Nitroxide-Mediated Controlled Free-Radical Emulsion and Miniemulsion Polymerizations of Styrene." In ACS Symposium Series, 138–51. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2000-0768.ch010.
Full textFischer, Hanns. "Criteria for Livingness and Control in Nitroxide-Mediated and Related Radical Polymerizations." In ACS Symposium Series, 10–23. Washington, DC: American Chemical Society, 2003. http://dx.doi.org/10.1021/bk-2003-0854.ch002.
Full textConference papers on the topic "Nitroxide-Mediated Radical Polymerization"
Kollár, Jozef, Štefan Chmela, Ľudmila Hrčková, and Pavol Hrdlovič. "Fluorescent dye-labelled polymer synthesis by nitroxide mediated radical polymerization." In 6TH INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2012. http://dx.doi.org/10.1063/1.4738438.
Full text