Academic literature on the topic 'NnU-Net'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'NnU-Net.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "NnU-Net"
Savjani, Ricky. "nnU-Net: Further Automating Biomedical Image Autosegmentation." Radiology: Imaging Cancer 3, no. 1 (2021): e209039. http://dx.doi.org/10.1148/rycan.2021209039.
Full textSunoqrot, Mohammed R. S., Kirsten M. Selnæs, Elise Sandsmark, et al. "The Reproducibility of Deep Learning-Based Segmentation of the Prostate Gland and Zones on T2-Weighted MR Images." Diagnostics 11, no. 9 (2021): 1690. http://dx.doi.org/10.3390/diagnostics11091690.
Full textZhang, Guobin, Zhiyong Yang, Bin Huo, Shude Chai, and Shan Jiang. "Multiorgan segmentation from partially labeled datasets with conditional nnU-Net." Computers in Biology and Medicine 136 (September 2021): 104658. http://dx.doi.org/10.1016/j.compbiomed.2021.104658.
Full textLian, Luya, Tianer Zhu, Fudong Zhu, and Haihua Zhu. "Deep Learning for Caries Detection and Classification." Diagnostics 11, no. 9 (2021): 1672. http://dx.doi.org/10.3390/diagnostics11091672.
Full textAbel, Lorraine, Jakob Wasserthal, Thomas Weikert, et al. "Automated Detection of Pancreatic Cystic Lesions on CT Using Deep Learning." Diagnostics 11, no. 5 (2021): 901. http://dx.doi.org/10.3390/diagnostics11050901.
Full textHuo, Lu, Xiaoxin Hu, Qin Xiao, Yajia Gu, Xu Chu, and Luan Jiang. "Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images." Magnetic Resonance Imaging 82 (October 2021): 31–41. http://dx.doi.org/10.1016/j.mri.2021.06.017.
Full textHeidenreich, Julius F., Tobias Gassenmaier, Markus J. Ankenbrand, Thorsten A. Bley, and Tobias Wech. "Self-configuring nnU-net pipeline enables fully automatic infarct segmentation in late enhancement MRI after myocardial infarction." European Journal of Radiology 141 (August 2021): 109817. http://dx.doi.org/10.1016/j.ejrad.2021.109817.
Full textTahuk, Paulus Klau, Agustinus Agung Dethan, and Stefanus Sio. "ENERGY AND NITROGEN BALANCE OF MALE BALI CATTLE FATTENED BY GREEN FEED IN SMALLHOLDER FARMS." Journal of Tropical Animal Science and Technology 2, no. 1 (2020): 23–36. http://dx.doi.org/10.32938/jtast.v2i1.590.
Full textJung, Seok-Ki, Ho-Kyung Lim, Seungjun Lee, Yongwon Cho, and In-Seok Song. "Deep Active Learning for Automatic Segmentation of Maxillary Sinus Lesions Using a Convolutional Neural Network." Diagnostics 11, no. 4 (2021): 688. http://dx.doi.org/10.3390/diagnostics11040688.
Full textBouget, David, Roelant S. Eijgelaar, André Pedersen, et al. "Glioblastoma Surgery Imaging–Reporting and Data System: Validation and Performance of the Automated Segmentation Task." Cancers 13, no. 18 (2021): 4674. http://dx.doi.org/10.3390/cancers13184674.
Full textDissertations / Theses on the topic "NnU-Net"
Bergsneider, Andres. "Biological Semantic Segmentation on CT Medical Images for Kidney Tumor Detection Using nnU-Net Framework." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2298.
Full textBook chapters on the topic "NnU-Net"
Isensee, Fabian, Paul F. Jäger, Peter M. Full, Philipp Vollmuth, and Klaus H. Maier-Hein. "nnU-Net for Brain Tumor Segmentation." In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72087-2_11.
Full textIsensee, Fabian, Jens Petersen, Andre Klein, et al. "Abstract: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation." In Informatik aktuell. Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-25326-4_7.
Full textGonzalez, Camila, Karol Gotkowski, Andreas Bucher, Ricarda Fischbach, Isabel Kaltenborn, and Anirban Mukhopadhyay. "Detecting When Pre-trained nnU-Net Models Fail Silently for Covid-19 Lung Lesion Segmentation." In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87234-2_29.
Full textXie, Juanying, and Ying Peng. "The Head and Neck Tumor Segmentation Using nnU-Net with Spatial and Channel ‘Squeeze & Excitation’ Blocks." In Head and Neck Tumor Segmentation. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67194-5_3.
Full textConference papers on the topic "NnU-Net"
Graham-Knight, J. B., A. Djavadifar, Dr P. Lasserre, and H. Najjaran. "Applying nnU-Net to the KiTS19 Grand Challenge." In 2019 Kidney Tumor Segmentation Challenge: KiTS19. University of Minnesota Libraries Publishing, 2019. http://dx.doi.org/10.24926/548719.015.
Full text