Journal articles on the topic 'NnU-Net'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 journal articles for your research on the topic 'NnU-Net.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Savjani, Ricky. "nnU-Net: Further Automating Biomedical Image Autosegmentation." Radiology: Imaging Cancer 3, no. 1 (January 1, 2021): e209039. http://dx.doi.org/10.1148/rycan.2021209039.
Full textSunoqrot, Mohammed R. S., Kirsten M. Selnæs, Elise Sandsmark, Sverre Langørgen, Helena Bertilsson, Tone F. Bathen, and Mattijs Elschot. "The Reproducibility of Deep Learning-Based Segmentation of the Prostate Gland and Zones on T2-Weighted MR Images." Diagnostics 11, no. 9 (September 16, 2021): 1690. http://dx.doi.org/10.3390/diagnostics11091690.
Full textZhang, Guobin, Zhiyong Yang, Bin Huo, Shude Chai, and Shan Jiang. "Multiorgan segmentation from partially labeled datasets with conditional nnU-Net." Computers in Biology and Medicine 136 (September 2021): 104658. http://dx.doi.org/10.1016/j.compbiomed.2021.104658.
Full textLian, Luya, Tianer Zhu, Fudong Zhu, and Haihua Zhu. "Deep Learning for Caries Detection and Classification." Diagnostics 11, no. 9 (September 13, 2021): 1672. http://dx.doi.org/10.3390/diagnostics11091672.
Full textAbel, Lorraine, Jakob Wasserthal, Thomas Weikert, Alexander W. Sauter, Ivan Nesic, Marko Obradovic, Shan Yang, et al. "Automated Detection of Pancreatic Cystic Lesions on CT Using Deep Learning." Diagnostics 11, no. 5 (May 19, 2021): 901. http://dx.doi.org/10.3390/diagnostics11050901.
Full textHuo, Lu, Xiaoxin Hu, Qin Xiao, Yajia Gu, Xu Chu, and Luan Jiang. "Segmentation of whole breast and fibroglandular tissue using nnU-Net in dynamic contrast enhanced MR images." Magnetic Resonance Imaging 82 (October 2021): 31–41. http://dx.doi.org/10.1016/j.mri.2021.06.017.
Full textHeidenreich, Julius F., Tobias Gassenmaier, Markus J. Ankenbrand, Thorsten A. Bley, and Tobias Wech. "Self-configuring nnU-net pipeline enables fully automatic infarct segmentation in late enhancement MRI after myocardial infarction." European Journal of Radiology 141 (August 2021): 109817. http://dx.doi.org/10.1016/j.ejrad.2021.109817.
Full textTahuk, Paulus Klau, Agustinus Agung Dethan, and Stefanus Sio. "ENERGY AND NITROGEN BALANCE OF MALE BALI CATTLE FATTENED BY GREEN FEED IN SMALLHOLDER FARMS." Journal of Tropical Animal Science and Technology 2, no. 1 (July 31, 2020): 23–36. http://dx.doi.org/10.32938/jtast.v2i1.590.
Full textJung, Seok-Ki, Ho-Kyung Lim, Seungjun Lee, Yongwon Cho, and In-Seok Song. "Deep Active Learning for Automatic Segmentation of Maxillary Sinus Lesions Using a Convolutional Neural Network." Diagnostics 11, no. 4 (April 12, 2021): 688. http://dx.doi.org/10.3390/diagnostics11040688.
Full textBouget, David, Roelant S. Eijgelaar, André Pedersen, Ivar Kommers, Hilko Ardon, Frederik Barkhof, Lorenzo Bello, et al. "Glioblastoma Surgery Imaging–Reporting and Data System: Validation and Performance of the Automated Segmentation Task." Cancers 13, no. 18 (September 17, 2021): 4674. http://dx.doi.org/10.3390/cancers13184674.
Full textTampu, Iulian Emil, Neda Haj-Hosseini, and Anders Eklund. "Does Anatomical Contextual Information Improve 3D U-Net-Based Brain Tumor Segmentation?" Diagnostics 11, no. 7 (June 25, 2021): 1159. http://dx.doi.org/10.3390/diagnostics11071159.
Full textIsensee, Fabian, Paul F. Jaeger, Simon A. A. Kohl, Jens Petersen, and Klaus H. Maier-Hein. "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation." Nature Methods, December 7, 2020. http://dx.doi.org/10.1038/s41592-020-01008-z.
Full textTan, Wenjun, Peifang Huang, Xiaoshuo Li, Genqiang Ren, Yufei Chen, and Jinzhu Yang. "A review on segmentation of lung parenchyma based on deep learning methods." Journal of X-Ray Science and Technology, August 28, 2021, 1–15. http://dx.doi.org/10.3233/xst-210956.
Full textZhang, Guobin, Zhiyong Yang, Bin Huo, Shude Chai, and Shan Jiang. "Automatic segmentation of organs at risk and tumors in CT images of lung cancer from partially labelled datasets with a semi-supervised conditional nnU-Net." Computer Methods and Programs in Biomedicine, September 2021, 106419. http://dx.doi.org/10.1016/j.cmpb.2021.106419.
Full textMariscal Harana, J., V. Vergani, C. Asher, R. Razavi, A. King, B. Ruijsink, and E. Puyol Anton. "Large-scale, multi-vendor, multi-protocol, quality-controlled analysis of clinical cine CMR using artificial intelligence." European Heart Journal - Cardiovascular Imaging 22, Supplement_2 (June 1, 2021). http://dx.doi.org/10.1093/ehjci/jeab090.046.
Full textAviles, J., G. Maso Talou, O. Camara, M. Mejia Cordova, E. Ferdian, G. Kat, A. Young, et al. "Automatic segmentation of the aorta on multi-center and multi-vendor phase-contrast enhanced magnetic resonance angiographies and the advantages of transfer learning." European Heart Journal - Cardiovascular Imaging 22, Supplement_2 (June 1, 2021). http://dx.doi.org/10.1093/ehjci/jeab090.121.
Full text