Dissertations / Theses on the topic 'NO-cGMP pathway'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 16 dissertations / theses for your research on the topic 'NO-cGMP pathway.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Picot, Joanna. "The NO-cGMP signalling pathway in the CNS of the pond snail Lymnaea stagnalis." Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363375.
Full textOgunshola, Omolara O. "Molecular studies of the NO-cGMP signalling pathway in the desert locust Schistocerca gregaria." Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363369.
Full textRetief, Renché. "The role of the NO-cGMP pathway as a putative target in antidepressant action / Renché Retief." Thesis, North-West University, 2004. http://hdl.handle.net/10394/731.
Full textThesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2005.
Slabbert, Francois Naudé. "The effect of acute and chronic sildenafil treatment with and without atropine co-administration on anxiety-like behaviour in rats / Francois Naudé Slabbert." Thesis, North-West University, 2010. http://hdl.handle.net/10394/8424.
Full textThesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2011
Bothma, Tanya. "Investigating the role of the NO-cGMP pathway in an animal model of posttraumatic stress disorder (PTSD) / Tanya Bothma." Thesis, North-West University, 2004. http://hdl.handle.net/10394/477.
Full textThesis (M.Sc. (Pharmacology))--North-West University, Potchefstroom Campus, 2005.
Holmberg, Kristina. "Expression and regulation of neuronal messenger molecules : focus on the NO-cGMP pathway and galanin in autonomic and sensory neurons /." Stockholm, 2001. http://diss.kib.ki.se/2001/91-628-4909-3/.
Full textMedeiros, Mariana Siqueira de. "Efeitos do tratamento periodontal não-cirúrgico na via L-arginina-óxido nítrico e no estresse oxidativo em plaquetas." Universidade do Estado do Rio de Janeiro, 2011. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=3486.
Full textEstudos publicados nas duas últimas décadas sugerem um aumento do risco de doença cardiovascular (DCV) em pacientes com periodontite, mas os mecanismos fisiopatológicos dessa associação ainda não estão completamente esclarecidos. Uma vez que foi demonstrado aumento da ativação plaquetária e do estresse oxidativo na periodontite, o objetivo do presente estudo foi investigar a via L-arginina-óxido nítrico (NO)- guanosina monofosfato cíclica (GMPc) e parâmetros de estresse oxidativo em plaquetas de pacientes com periodontite, bem como avaliar o efeito do tratamento periodontal não-cirúrgico nessas variáveis. Um total de 10 pacientes sem periodontite (periodontalmente saudáveis ou com gengivite) e 10 pacientes com periodontite participaram do estudo. A avaliação clínica, laboratorial e experimental foi realizada no início do estudo e 90 dias após realização da terapia periodontal básica (grupo periodontite). A avaliação clínica periodontal incluiu registros de: profundidade de bolsa à sondagem (PBS), nível de inserção (NIC), percentual de placa e percentual de sangramento à sondagem. Os seguintes experimentos foram realizados: influxo de L-arginina; atividade e expressão das enzimas óxido nítrico sintase e da arginase; expressão das enzimas guanilato ciclase solúvel e fosfodiesterase 5; determinação dos níveis intraplaquetários de GMPc; agregação plaquetária; avaliação do estresse oxidativo (atividade oxidante total, atividade das enzimas antioxidantes catalase e da superóxido dismutase - SOD); medição dos níveis de proteína C reativa (CRP) e de fibrinogênio. Os resultados obtidos no início do estudo demonstraram ativação do influxo de L-arginina em plaquetas via sistema y+L nos pacientes com periodontite, bem como concentrações intraplaquetárias de GMPc diminuídas e aumento sistêmico da CRP. Após o tratamento periodontal, observou-se redução do percentual de sítios com PBS ≥ 6 mm, NIC 4-5 mm e NIC ≥ 6 mm, aumento nos níveis de GMPc, para níveis comparáveis aos dos pacientes sem periodontite, acompanhado por uma maior atividade das enzimas antioxidantes SOD e catalase. Os demais parâmetros avaliados não apresentaram alterações significativas tanto pré- quanto pós-tratamento. Esses resultados considerados em conjunto sugerem uma menor biodisponibilidade de NO em plaquetas na periodontite e que o tratamento periodontal não-cirúrgico foi capaz de reverter este quadro por um aumento das defesas antioxidantes. Portanto, alterações na via L-arginina-NO-GMPc e no estresse oxidativo podem levar à disfunção plaquetária, que poderia contribuir para um maior risco de DCV nos pacientes com periodontite.
Studies published over the last two decades have suggested an increase of cardiovascular disease (CVD) risk on periodontitis patients, but the physiopathological mechanisms involved in this association are not yet clear. Since it has been demonstrated an enhancement on both platelet activation and oxidative stress on periodontitis patients, the aim of this study was to investigate the L-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway on platelets from periodontitis patients, and the effect of non-surgical periodontal treatment in these variables. A total of 10 patients without periodontitis (periodontal healthy controls or gingivitis patients) and 10 periodontitis patients were included in this study. The clinical, laboratorial, and experimental evaluations were performed at the beginning of the study and 90 days after the basic periodontal therapy (periodontitis group). The clinical periodontal evaluation included the measurements of probing pocket depth (PPD), clinical attachment level (CAL), plaque percentage, and percentage of bleeding on probing. The following experiments were performed: L-arginine influx; nitric oxide synthase and arginase enzymes activity and expression; expression of guanylate cyclase and phosphodiesterase-5 enzymes; measurement of intraplatelet cGMP levels; platelet aggregation; oxidative stress evaluation (total oxidant activity and activity of both antioxidant enzymes catalase and superoxide dismutase SOD); measurement of C reactive protein (CRP) and fibrinogen. The initial results demonstrated an activation of L-arginine influx in platelets from periodontitis patients via y+L system, reduced intraplatelet cGMP levels and increased CRP. After periodontal treatment, it was observed reduction on percentage of sites with PPD ≥ 6 mm, CAL 4-5 mm and CAL ≥ 6 mm, enhancement on cGMP levels, to levels comparables to patients without periodontitis, accompanied by a higher activity of both antioxidant enzymes SOD and catalase. The other evaluated parameters did not showed significant alterations before and after periodontal treatment. The present results suggested a decreased NO biodisponibility in platelets from periodontitis patients and that the non-surgical periodontal treatment was effective to revert this condition, due to an enhancement on antioxidant defence. Therefore, alterations on L-arginine-NO-cGMP pathway and oxidative stress may lead to platelet dysfunction, which could contribute to a higher risk of CVD in periodontitis patients.
Schaffner, Denise [Verfasser], and Irmgard [Akademischer Betreuer] Merfort. "Investigations of hepatic hemodynamics and alterations in the NO-cGMP pathway in an animal model of liver fibrosis / cirrhosis suggest PDE5 inhibitors as promising adjunct in portal hypertension therapy." Freiburg : Universität, 2018. http://d-nb.info/1189583216/34.
Full textMoughaizel, Michelle. "Metabolic and cardiovascular effects of nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling pathway modulation : Study in the WHHL rabbit as an experimental model of high fructose high fat diet-induced metabolic syndrome." Thesis, Nantes, Ecole nationale vétérinaire, 2020. http://www.theses.fr/2020ONIR151F.
Full textMetabolic syndrome (MetS) is characterized by abdominal adiposity, insulin resistance (IR), glucose intolerance, arterial hypertension and dyslipidemia. Experimental studies have revealed that modulation of the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signaling pathway in MetS can exert protective metabolic and cardiovascular effects. In this regard, we explored the effect of mirabegron and BAY 41-2272, two molecules known for their ability to activate the NO-cGMP pathway. We first developed an experimental animal model with two main components of the MetS, dyslipidemia and IR. Our results showed that after 12 weeks of high-fructose high-fat diet (HFFD) feeding, the Watanabe heritable hyperlipidemic (WHHL) rabbit, an animal model of spontaneous dyslipidemia, exhibited glucose intolerance, IR (HOMA-IR test), an aggravation in dyslipidemia and a decrease in cardiac contractility (ex-vivo approach). Twelve weeks of mirabegron and BAY 41-2272 treatment prevented weight gain and the increase in TG levels and improved insulin sensitivity, carotid endothelial function, and cardiac function (mirabegron). We were able to develop an experimental model combining dyslipidemia and IR in the WHHL rabbit. Furthermore, our results showed that long-term activation of the NO-cGMP signaling pathway represents a promising pharmacological approach in the management of the MetS and its metabolic and cardiovascular consequences
Lukowski, Robert [Verfasser]. "Control of vasculo-proliferative processes by the NO-cGMP-cGKI pathway / Robert Lukowski." 2006. http://d-nb.info/98517773X/34.
Full textWang, Yi-Ya, and 王怡雅. "KMUP-1 Potentiates NO/cGMP Signaling Pathway in Hypertension and Inhibits ROCK/VEGF Signaling Pathway in Hypoxic Pulmonary Arterial Hypertension." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/61202971141379369865.
Full text高雄醫學大學
藥理學研究所
96
The endothelial dysfunction resulting in vessel contraction observed in hypertension appears to be a consequence of high blood pressure. In normal endothelial cell, activation of endothelial nitric oxide synthase (eNOS), soluble guanylyl cyclase (sGC) and protein kinase G (PKG) resulted in vasodilation and anti-hypertension. Our previous studies have demonstrated that KMUP-1, a unique xanthine and piperazine derivative, activated the NO/ sGC/ cGMP pathway, and could lead to vascular relaxation. We used 8 week-old Spontaneously hypertensive rat (SHR) and Wistar-Kyoto (WKY) rat for our experimental model. In the present study, the experimental rats were subdivided into five groups:(1) W1 (WKY group 1:control), (2) W2 [WKY group 2:treating with KMUP-1 (10 mg/kg)], (3) S1 (SHR group 1:control), (4) S2 [SHR group 2:treating with KMUP-1 (10 mg/kg)], (5) S3 [SHR group 3:treating with KMUP-1 (30 mg/kg)]. During 28 days of treatments, systolic blood pressure (SBP) was measured weekly to confirm whether KMUP-1 could ameliorate SBP in SHR. Furthermore, we used aorta to check eNOS, sGCα1, PKG protein expression by Western blotting.Our results showed that SBP of SHR elevated more than that of WKY with age. KMUP-1 (10 mg/kg) did not significantly decrease SBP of WKY. However, SBP of SHR by treating with KMUP-1 (10 mg/kg, 30 mg/kg) was significantly decreased as compared with SHR control. Moreover, eNOS, sGCα1 and PKG protein expression in SHR or WKY aorta by treating with KMUP-1 were significantly increased. In conclusion, KMUP-1 could active NO/cGMP pathway to improve SBP of SHR, suggesting that KMUP-1 could be a potential drug for hypertension. Hypoxia exposure induced impairment in the structure and function of cardiopulmonary circulation. The pathological changes of cardiopulmonary arteries included endothelial injury, vessel remodeling, and contraction. It has been confirmed that hypoxia promoted downregulation of endothelial nitric oxide synthase (eNOS), upregulation of Rho kinase (ROCK) and vascular endothelial growth factor (VEGF) expression resulting in vascular contraction and remodeling to induce pulmonary arterial hypertension. Furthermore, activation of eNOS, soluble guanylyl cyclase (sGC), and protein kinase G (PKG) protein expression resulted in pulmonary arterial vasodilation and anti-remodeling. Previous studies have demonstrated that KMUP-1, a unique xanthine and piperazine derivative, activated the NO/sGC/cGMP pathway, and could lead to vascular relaxation. In the present study, the Wistar rats were subdivided into four groups:(1) Normoxia, (2) Hypoxia (10% O2) for 21 days, (3) Hypoxia (10% O2) + KMUP-1 (5 mg/kg/day) for 21 days, (4) Hypoxia (10% O2) + Sildenafil (5 mg/kg/day) for 21 days. After 21 days of hypoxia, we measured pulmonary arterial pressure to evaluate the development of pulmonary arterial hypertension. Through method of Hematoxylin-Eosin staining, we investigated wall thickness of pulmonary artery and right ventricular hypertrophy. Moreover, molecular mechanism was analyzed by Western blotting and immunohistochemistry.Our findings indicated that hypoxia could increase pulmonary arterial pressure, wall thickness ratio of pulmonary artery, and right ventricular hypertrophy as well as downregulate eNOS, sGCα1 and PKG protein expression whereas upregulate ROCK II and VEGF protein expression in molecular mechanism. However, the above effects could be reversed by treating with KMUP-1 or Sildenafil. In conclusion, our study confirmed that KMUP-1 is involved in the expression of eNOS/sGCα1/PKG signaling pathway resulting in vessel relaxation and may be useful for the improvement of hypoxia-induced pulmonary arterial hypertension in the future.
Egemnazarov, Bakytbek [Verfasser]. "Role of NO-cGMP signalling pathway in mediation of ischemia-reperfusion lung injury / by Bakytbek Egemnazarov." 2008. http://d-nb.info/99968342X/34.
Full textShaw, Moxam Raquel Antonia. "Food related behaviours in Drosophila melanogaster : genetic and pharmacological investigation for regulation by the NO/cGMP signalling pathway /." 2005.
Find full textTypescript. Includes bibliographical references (leaves 61-76). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url%5Fver=Z39.88-2004&res%5Fdat=xri:pqdiss &rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR11893
"Role of nitric oxide (NO), NO synthases and soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway in the regulation of apoptosis and cell proliferation in pancreatic islets and ovarian cancer cells." Thesis, 2006. http://library.cuhk.edu.hk/record=b6074229.
Full textInhibition of Src-kinase activity reduces DNA synthesis in ovarian cancer cells. In an in vitro experiment, Src phosphorylated PKG on a tyrosine residue and PKG, presumable via serine-phosphorylation of Src, enhanced Src auto(tyrosine)phosphorylation. In ovarian cancer cells, inhibition of basal PKG activity with DT-2 decreased both basal and EGF-stimulated Src kinase activation and DNA synthesis. The data suggest that PKG at basal activity, is necessary for both basal and growth factor-stimulated Src kinase activation and enhanced DNA synthesis in human ovarian cancer cells.
The novel role of sGC/cGMP/PKG pathway on stimulating cell proliferation, potentially via interaction with the Src kinase pathway in human ovarian cancer cells, was demonstrated. ODQ dramatically reduced DNA synthesis rates, suggesting that basal sGC activity and basal cGMP levels are needed for ovarian cancer cell proliferation. DT-2 also reduced cell proliferation, suggesting the direct involvement of PKG. ANP and BNP had no effect on cell proliferation, suggesting that further activation of cGMP/PKG pathway above basal levels does not further enhance cell proliferation.
The present study also demonstrated that elevating cGMP slightly above the basal levels further protects pancreatic islet cells against spontaneous onset of apoptosis. The results showed that natriuretic peptides (both ANP and BNP) and low-level NO (i.e. physiological levels) as supply by NO donor, S-nitroso-N-acetylpenicilamine (SNAP) further prevented spontaneous apoptosis in pancreatic islets after isolation, whereas NO at high concentrations (i.e. pathological levels) promoted apoptosis in pancreatic islet cells. The commonly-used PKG inhibitor KT5823 and the newly-developed specific PKG inhibitor DT-2 completely prevented anti-apoptosic effect of ANP, suggesting the direct involvement of PKG in protection against spontaneous apoptosis.
The present study demonstrated that basal activity of sGC/cGMP/PKG signaling pathway is essential for partially limiting spontaneous apoptosis in pancreatic islet cells. The sGC inhibitor ODQ caused induction of apoptosis, which was completely blocked by co-treatment with ANP or BNP, agents that elevate cGMP via pGC, bypassing the ODQ block. Co-treatment with 8-Br-cGMP, a direct activator of PKG also completely prevented ODQ-induced apoptosis in islets.
Leung Lai-han.
"July 2006."
Adviser: Ronald Ray Fiscus.
Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1483.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2006.
Includes bibliographical references (p. 175-191).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.
Jurak, Begonja Antonija. "NO/cGMP and ROS Pathways in Regulation of Platelet Function and Megakaryocyte Maturation." Doctoral thesis, 2007. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-21954.
Full textIn physiological conditions platelets have a major role in maintaining haemostasis. Platelets prevent bleeding from wounds by distinguishing normal endothelial cells in vasculature from areas with lesions to which they adhere. Interaction of platelet agonists and their receptors is controlled by intracellular signaling molecules that regulate the activation state of platelets. Very important intracellular signaling molecules are cyclic nucleotides (cGMP and cAMP), both involved in inhibition of platelet activation. Formation of cGMP and cAMP in platelets is stimulated by endothelial-derived NO and prostacyclin (PGI2), which then mediate inhibition of platelets by activating protein kinase G (PKG) and protein kinase A (PKA). Recently, it has been suggested that reactive oxygen species (ROS) represent new modulators of cell signaling within different cell types. The work summarized here describes the involvement of platelet ROS production in platelet activation, the relation of NO/cGMP/PKG I pathway to ROS and to mitogen-activated protein kinases (MAP kinase) signaling, and the involvement of cyclic nucleotides in megakaryocyte and platelet development. Platelets activated with different agonists produce intracellular but not extracellular ROS by activation of NAD(P)H oxidase. In addition, ROS produced in platelets significantly affects αIIbβ3 integrin activation but not alpha/dense granule secretion and platelet shape change. Thrombin induced integrin αIIbβ3 activation is significantly decreased after pretreatment of platelets with NAD(P)H oxidase inhibitors and superoxide scavengers. These inhibitors also reduce platelet aggregation and thrombus formation on collagen under high shear and achieve their effects independently of the NO/cGMP pathway. ADP secreted from platelet dense granules with subsequent activation of P2Y12 receptors as well as thromboxane A2 release are found to be important upstream mediators of p38 MAP kinase activation by thrombin. However, p38 MAP kinase activation does not significantly contribute to calcium mobilization, P-selectin expression, αIIbβ3 integrin activation and aggregation of human platelets in response to thrombin. Finally, PKG activation does not stimulate, but rather inhibit, p38 and ERK MAP kinases in human platelets. Further study revealed that cyclic nucleotides not only inhibit platelet activation, but are also involved, albeit differentially, in megakaryocyte and platelet development. cAMP is engaged in haematopoietic stem cell differentiation to megakaryocytes, and cGMP has no impact on this process. While PKA is already present in stem cells, expression of proteins involved in cGMP signaling (soluble guanylyl cyclase, sGC; PKG) increases with maturation of megakaryocytes. In the final step of megakaryocyte maturation that includes release of platelets, cGMP and cAMP have mild but opposing effects: cGMP increases platelet production while cAMP decreases it indicating a finely regulated process that could depend on stimulus coming from adjacent endothelial cells of sinusoids in bone marrow. The results of this thesis contribute to a better understanding of platelet regulation and of the possible molecular mechanisms involved in megakaryocyte maturation in bone marrow vascular microenvironment
Jurak, Begonja Antonija [Verfasser]. "NO-cGMP and ROS pathways in regulation of platelet function and megakaryocyte maturation / vorgelegt von Antonija Jurak Begonja." 2007. http://d-nb.info/983907099/34.
Full text