Academic literature on the topic 'Non-arithmetic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-arithmetic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non-arithmetic"
Grunewald, Fritz, and Vladimir Platonov. "Non-arithmetic polycyclic groups." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, no. 12 (June 1998): 1359–64. http://dx.doi.org/10.1016/s0764-4442(98)80392-3.
Full textJovanović, Dejan, and Leonardo de Moura. "Solving non-linear arithmetic." ACM Communications in Computer Algebra 46, no. 3/4 (January 15, 2013): 104–5. http://dx.doi.org/10.1145/2429135.2429155.
Full textCroot, Ernest S. "On non-intersecting arithmetic progressions." Acta Arithmetica 110, no. 3 (2003): 233–38. http://dx.doi.org/10.4064/aa110-3-3.
Full textde la Bretèche, Régis, Kevin Ford, and Joseph Vandehey. "On non-intersecting arithmetic progressions." Acta Arithmetica 157, no. 4 (2013): 381–92. http://dx.doi.org/10.4064/aa157-4-5.
Full textFeferman, Solomon, and Thomas Strahm. "The unfolding of non-finitist arithmetic." Annals of Pure and Applied Logic 104, no. 1-3 (July 2000): 75–96. http://dx.doi.org/10.1016/s0168-0072(00)00008-7.
Full textChen, Yong-Gao, and Yu Ding. "Non-Wieferich primes in arithmetic progressions." Proceedings of the American Mathematical Society 145, no. 5 (January 23, 2017): 1833–36. http://dx.doi.org/10.1090/proc/13201.
Full textHayashi, Tomohiro. "Non-commutative arithmetic-geometric mean inequality." Proceedings of the American Mathematical Society 137, no. 10 (October 1, 2009): 3399. http://dx.doi.org/10.1090/s0002-9939-09-09911-0.
Full textGromov, M., and I. Piatetski-Shapiro. "Non-arithmetic groups in lobachevsky spaces." Publications mathématiques de l'IHÉS 66, no. 1 (December 1987): 93–103. http://dx.doi.org/10.1007/bf02698928.
Full textDeraux, Martin, John R. Parker, and Julien Paupert. "New non-arithmetic complex hyperbolic lattices." Inventiones mathematicae 203, no. 3 (May 8, 2015): 681–771. http://dx.doi.org/10.1007/s00222-015-0600-1.
Full textKneebone, Ronald D., and William M. Scarth. "Is Non-Monetarist Arithmetic Just as Unpleasant?" Southern Economic Journal 57, no. 1 (July 1990): 14. http://dx.doi.org/10.2307/1060474.
Full textDissertations / Theses on the topic "Non-arithmetic"
Ziyang, Wang. "Non-binary Distributed Arithmetic Coding." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32318.
Full textLorenzo, García Elisa. "Arithmetic properties of non-hyperelliptic genus 3 curves." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/279314.
Full textEn esta tesis estudiamos el cálculo explícito de twists de curvas. Se desarrolla un algoritmo para calcular los twists de una curva dada asumiendo que su grupo de automorfismos en conocido. Además, en el caso particular en que la curva es no hiperelíptica se enseña como calcular ecuaciones de los twists. El algoritmo está basado es una correspondencia que establecemos entre el conjunto de twists de la curva y el conjunto de soluciones a un cierto problema de embeding de Galois. Aunque no existe un método general para resolver este tipo de problemas a lo largo de la tesis se exponen algunas ideas para resolver algunos de estos problemas en concreto. Los twists de curvas de género menor o igual que 2 son bien conocidos. Mientras que los casos de género 0 y 1 se conocen desde hace tiempo, el caso de género 2 es más reciente y se debe al trabajo de Cardona y Quer. Todas las curvas de género, 0,1 y 2 son hiperelípticas, sin embargo, las curvas de género mayor o igual que 3 son en su mayoría no hipèrelípticas. Como aplicación a nuestro algoritmo damos una clasificación con ecuaciones de los twists de todas las cuárticas planas lisas, es decir, de todas las curvas no hiperelípticas de género 3, definidas sobre un cuerpo de números k. El primer paso para calcualr estos twists es obtener una clasificación de las cuárticas planas lisas definidas sobre un cuerpo de números k arbitrario. El punto de partida para obtener esta clasificación es la clasificación de Henn de cuárticas planas definidas sobre los números complejos y con grupo de automorfismos no trivial. Un ejemplo de la importancia del estudio de los twists de curvas es que se ha probado que resulta ser de gran utilidad para el mejor entendimiento del carácter de la conjetura de Sato-Tate generalizada, como puede verse en los trabajos de entre otros: Fité, Kedlaya y Sutherland. En la tesis se prueba la conjetura de Sato-Tate para el caso de los twists de las cuárticas de Fermat y de Klein como corolario de un resultado de Johansson, además se calculan los grupos y las distribuciones de Sato-Tate de estos twists. Siguiendo con el estudio de la conjetura generalizada de Sato-Tate, en el último capítulo de la tesis se estudia la conjetura para el caso de las hipersuperficies de Fermat: X_{n}^{m}: x_{0}^{m}+...+x_{n+1}^{m} = 0. Se muestra esplícitamente como calcular los grupos de Sato-Tate y las correspondientes distribuciones. Además se prueba la conjetura para el caso n=1 sobre el cuerpo de los números racionales y para n mayor que 1 sobre el cuerpo de las raíces m-ésimas de la unidad.
Smith, Mark Jason. "Non-linear echo cancellation based on transpose distributed arithmetic adaptive filters." Thesis, University of Edinburgh, 1987. http://hdl.handle.net/1842/12986.
Full textAslett, Helen J. "The function and form of the non-verbal analogue magnitude code in arithmetic processing." Thesis, University of York, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270065.
Full textVollmer, Philipp [Verfasser], and Klaus [Akademischer Betreuer] Künnemann. "Arithmetic Divisors on Products of Curves over non-Archimedean Fields / Philipp Vollmer. Betreuer: Klaus Künnemann." Regensburg : Universitätsbibliothek Regensburg, 2016. http://d-nb.info/1110148542/34.
Full textBeber, Björn [Verfasser]. "Improving interpolants of non-convex polyhedra with linear arithmetic and probably approximatley correct learning for bounded linear arrangements / Björn Beber." Mainz : Universitätsbibliothek Mainz, 2018. http://d-nb.info/1160111235/34.
Full textTurchetti, Danièle. "Contributions to arithmetic geometry in mixed characteristic : lifting covers of curves, non-archimedean geometry and the l-modular Weil representation." Thesis, Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0022/document.
Full textIn this thesis, we study the interplay between positive and zero characteristic. In a first instance, we deal with the local lifting problem of lifting actions of curves. We show necessary conditions for the existence of liftings of some actions of Z/pZ x Z/pZ. Then, for an action of a general finite group, we study the associated Hurwitz tree, showing that every Hurwitz tree has a canonical metric embedding in the Berkovich closed unit disc, and that the Hurwitz data can be described analytically.In the last chapter, we define an analog of the Weil representation with coefficients in an integral domain, showing that such representation satisfies the same properties than in the case with complex coefficients
Antoniou, Austin A. "On Product and Sum Decompositions of Sets: The Factorization Theory of Power Monoids." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586355818066608.
Full textSalas, Donoso Ignacio Antonio. "Packing curved objects with interval methods." Thesis, Nantes, Ecole des Mines, 2016. http://www.theses.fr/2016EMNA0277/document.
Full textA common problem in logistic, warehousing, industrial manufacture, newspaper paging or energy management in data centers is to allocate items in a given enclosing space or container. This is called a packing problem. Many works in the literature handle the packing problem by considering specific shapes or using polygonal approximations. The goal of this thesis is to allow arbitrary shapes, as long as they can be described mathematically (by an algebraic equation or a parametric function). In particular, the shapes can be curved and non-convex. This is what we call the generic packing problem. We propose a framework for solving this generic packing problem, based on interval techniques. The main ingredients of this framework are: An evolutionary algorithm to place the objects, an over lapping function to be minimized by the evolutionary algorithm (violation cost), and an overlapping region that represents a pre-calculated set of all the relative configurations of one object (with respect to the other one) that creates an overlapping. This overlapping region is calculated numerically and distinctly for each pair of objects. The underlying algorithm also depends whether objects are described by inequalities or parametric curves. Preliminary experiments validate the approach and show the potential of this framework
Chakhari, Aymen. "Évaluation analytique de la précision des systèmes en virgule fixe pour des applications de communication numérique." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S059/document.
Full textTraditionally, evaluation of accuracy is performed through two different approaches. The first approach is to perform simulations fixed-point implementation in order to assess its performance. These approaches based on simulation require large computing capacities and lead to prohibitive time evaluation. To avoid this problem, the work done in this thesis focuses on approaches based on the accuracy evaluation through analytical models. These models describe the behavior of the system through analytical expressions that evaluate a defined metric of precision. Several analytical models have been proposed to evaluate the fixed point accuracy of Linear Time Invariant systems (LTI) and of non-LTI non-recursive and recursive linear systems. The objective of this thesis is to propose analytical models to evaluate the accuracy of digital communications systems and algorithms of digital signal processing made up of non-smooth and non-linear operators in terms of noise. In a first step, analytical models for evaluation of the accuracy of decision operators and their iterations and cascades are provided. In a second step, an optimization of the data length is given for fixed-point hardware implementation of the Decision Feedback Equalizer DFE based on analytical models proposed and for iterative decoding algorithms such as turbo decoding and LDPC decoding-(Low-Density Parity-Check) in a particular quantization law. The first aspect of this work concerns the proposition analytical models for evaluating the accuracy of the non-smooth decision operators and the cascading of decision operators. So, the characterization of the quantization errors propagation in the cascade of decision operators is the basis of the proposed analytical models. These models are applied in a second step to evaluate the accuracy of the spherical decoding algorithmSSFE (Selective Spanning with Fast Enumeration) used for transmission MIMO systems (Multiple-Input Multiple -Output). In a second step, the accuracy evaluation of the iterative structures of decision operators has been the interesting subject. Characterization of quantization errors caused by the use of fixed-point arithmetic is introduced to result in analytical models to evaluate the accuracy of application of digital signal processing including iterative structures of decision. A second approach, based on the estimation of an upper bound of the decision error probability in the convergence mode, is proposed for evaluating the accuracy of these applications in order to reduce the evaluation time. These models are applied to the problem of evaluating the fixed-point specification of the Decision Feedback Equalizer DFE. The estimation of resources and power consumption on the FPGA is then obtained using the Xilinx tools to make a proper choice of the data widths aiming to a compromise accuracy/cost. The last step of our work concerns the fixed-point modeling of iterative decoding algorithms. A model of the turbo decoding algorithm and the LDPC decoding is then given. This approach integrates the particular structure of these algorithms which implies that the calculated quantities in the decoder and the operations are quantified following an iterative approach. Furthermore, the used fixed-point representation is different from the conventional representation using the number of bits accorded to the integer part and the fractional part. The proposed approach is based on the dynamic and the total number of bits. Besides, the dynamic choice causes more flexibility for fixed-point models since it is not limited to only a power of two
Books on the topic "Non-arithmetic"
Charles, Sayward, and Garavaso Pieranna, eds. Arithmetic and ontology: A non-realist philosophy of arithmetic. Amsterdam: Rodopi, 2006.
Find full textModuli spaces and arithmetic dynamics. Providence, R.I: American Mathematical Society, 2012.
Find full textTschinkel, Yuri, Carlo Gasbarri, Steven Lu, and Mike Roth. Rational points, rational curves, and entire holomorphic curves on projective varieties: CRM short thematic program, June 3-28, 2013, Centre de Recherches Mathematiques, Universite de Montreal, Quebec, Canada. Providence, Rhode Island: American Mathematical Society, 2015.
Find full text1978-, Ghioca Dragos, and Tucker Thomas J. 1969-, eds. The dynamical Mordell-Lang conjecture. Providence, Rhode Island: American Mathematical Society, 2016.
Find full textGermany) International Conference on p-adic Functional Analysis (13th 2014 Paderborn. Advances in non-Archimedean analysis: 13th International Conference on p-adic Functional Analysis, August 12-16, 2014, University of Paderborn, Paderborn, Germany. Edited by Glöckner Helge 1969 editor, Escassut Alain editor, and Shamseddine Khodr 1966 editor. Providence, Rhode Island: American Mathematical Society, 2016.
Find full textBarbados) Bellairs Workshop in Number Theory (2011 Holetown. Tropical and non-Archimedean geometry: Bellairs Workshop in Number Theory, May 6-13, 2011, Bellairs Research Institute, Holetown, Barbados. Edited by Amini, Omid, 1980- editor of compilation, Baker, Matthew, 1973- editor of compilation, and Faber, Xander, editor of compilation. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textAgrillo, Christian. Numerical and Arithmetic Abilities in Non-primate Species. Edited by Roi Cohen Kadosh and Ann Dowker. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199642342.013.002.
Full textBook chapters on the topic "Non-arithmetic"
Dilworth, R. P. "Non-Commutative Arithmetic." In The Dilworth Theorems, 357–67. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4899-3558-8_34.
Full textJovanović, Dejan, and Leonardo de Moura. "Solving Non-linear Arithmetic." In Automated Reasoning, 339–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31365-3_27.
Full textBorel, A., and N. Wallach. "Non-cocompact 𝑆-arithmetic subgroups." In Mathematical Surveys and Monographs, 247–52. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/surv/067/15.
Full textEggers, Andreas, Evgeny Kruglov, Stefan Kupferschmid, Karsten Scheibler, Tino Teige, and Christoph Weidenbach. "Superposition Modulo Non-linear Arithmetic." In Frontiers of Combining Systems, 119–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24364-6_9.
Full textBorralleras, Cristina, Salvador Lucas, Rafael Navarro-Marset, Enric Rodríguez-Carbonell, and Albert Rubio. "Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic." In Automated Deduction – CADE-22, 294–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02959-2_23.
Full textBeth, T., and F. Schaefer. "Arithmetic on non supersingular elliptic curves." In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 74–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54522-0_97.
Full textLin, Rong, and James L. Schwing. "A Non-Binary Parallel Arithmetic Architecture." In Lecture Notes in Computer Science, 149–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45591-4_19.
Full textZankl, Harald, and Aart Middeldorp. "Satisfiability of Non-linear (Ir)rational Arithmetic." In Logic for Programming, Artificial Intelligence, and Reasoning, 481–500. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17511-4_27.
Full textWright, Steve. "Quadratic Residues and Non-Residues in Arithmetic Progression." In Lecture Notes in Mathematics, 227–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45955-4_9.
Full textBigarella, Filippo, Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Martin Jonáš, Marco Roveri, Roberto Sebastiani, and Patrick Trentin. "Optimization Modulo Non-linear Arithmetic via Incremental Linearization." In Frontiers of Combining Systems, 213–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86205-3_12.
Full textConference papers on the topic "Non-arithmetic"
Wang, Ziyang, Yongyi Mao, and Iluju Kiringa. "Non-binary distributed arithmetic coding." In 2015 IEEE 14th Canadian Workshop on Information Theory (CWIT). IEEE, 2015. http://dx.doi.org/10.1109/cwit.2015.7255140.
Full textHrubeš, Pavel, and Avi Wigderson. "Non-commutative arithmetic circuits with division." In ITCS'14: Innovations in Theoretical Computer Science. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2554797.2554805.
Full textKupferschmid, S., B. Becker, T. Teige, and M. Franzle. "Proof certificates and non-linear arithmetic constraints." In Systems (DDECS). IEEE, 2011. http://dx.doi.org/10.1109/ddecs.2011.5783131.
Full textFrederick, Michael T., and Arun K. Somani. "Non-arithmetic carry chains for reconfigurable fabrics." In 2007 25th International Conference on Computer Design ICCD 2007. IEEE, 2007. http://dx.doi.org/10.1109/iccd.2007.4601892.
Full textKostrzewski, Andrew. "Non-holographic content addressable memory based arithmetic processor." In International Conference on Optoelectronic Science and Engineering '90. SPIE, 2017. http://dx.doi.org/10.1117/12.2294888.
Full textYu, Cunxi, Tiankai Su, Atif Yasin, and Maciej Ciesielski. "Spectral approach to verifying non-linear arithmetic circuits." In ASPDAC '19: 24th Asia and South Pacific Design Automation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3287624.3287662.
Full textBaccelli, Guido, Dimitrios Stathis, Ahmed Hemani, and Maurizio Martina. "NACU: A Non-Linear Arithmetic Unit for Neural Networks." In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020. http://dx.doi.org/10.1109/dac18072.2020.9218549.
Full textSkubch, Hendrik. "Solving non-linear arithmetic constraints in soft realtime environments." In the 27th Annual ACM Symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2245276.2245293.
Full textBabaali, M., and M. Egerstedt. "Pathwise observability through arithmetic progressions and non-pathological sampling." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1384786.
Full textGanai, Malay K., and Franjo Ivancic. "Efficient decision procedure for non-linear arithmetic constraints using CORDIC." In 2009 9th International Conference Formal Methods in Computer-Aided Design (FMCAD). IEEE, 2009. http://dx.doi.org/10.1109/fmcad.2009.5351140.
Full textReports on the topic "Non-arithmetic"
Mulligan, Casey, Russell Bradford, James Davenport, Matthew England, and Zak Tonks. Non-linear Real Arithmetic Benchmarks derived from Automated Reasoning in Economics. Cambridge, MA: National Bureau of Economic Research, May 2018. http://dx.doi.org/10.3386/w24602.
Full textSamet Y. Kadioglu, Robert R. Nourgaliev, and Vincent A. Mousseau. A Comparative Study of the Harmonic and Arithmetic Averaging of Diffusion Coefficients for Non-linear Heat Conduction Problems. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/928087.
Full text