Academic literature on the topic 'Non-arithmetic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-arithmetic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Non-arithmetic"

1

Grunewald, Fritz, and Vladimir Platonov. "Non-arithmetic polycyclic groups." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, no. 12 (June 1998): 1359–64. http://dx.doi.org/10.1016/s0764-4442(98)80392-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jovanović, Dejan, and Leonardo de Moura. "Solving non-linear arithmetic." ACM Communications in Computer Algebra 46, no. 3/4 (January 15, 2013): 104–5. http://dx.doi.org/10.1145/2429135.2429155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Croot, Ernest S. "On non-intersecting arithmetic progressions." Acta Arithmetica 110, no. 3 (2003): 233–38. http://dx.doi.org/10.4064/aa110-3-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

de la Bretèche, Régis, Kevin Ford, and Joseph Vandehey. "On non-intersecting arithmetic progressions." Acta Arithmetica 157, no. 4 (2013): 381–92. http://dx.doi.org/10.4064/aa157-4-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Feferman, Solomon, and Thomas Strahm. "The unfolding of non-finitist arithmetic." Annals of Pure and Applied Logic 104, no. 1-3 (July 2000): 75–96. http://dx.doi.org/10.1016/s0168-0072(00)00008-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Yong-Gao, and Yu Ding. "Non-Wieferich primes in arithmetic progressions." Proceedings of the American Mathematical Society 145, no. 5 (January 23, 2017): 1833–36. http://dx.doi.org/10.1090/proc/13201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hayashi, Tomohiro. "Non-commutative arithmetic-geometric mean inequality." Proceedings of the American Mathematical Society 137, no. 10 (October 1, 2009): 3399. http://dx.doi.org/10.1090/s0002-9939-09-09911-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gromov, M., and I. Piatetski-Shapiro. "Non-arithmetic groups in lobachevsky spaces." Publications mathématiques de l'IHÉS 66, no. 1 (December 1987): 93–103. http://dx.doi.org/10.1007/bf02698928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deraux, Martin, John R. Parker, and Julien Paupert. "New non-arithmetic complex hyperbolic lattices." Inventiones mathematicae 203, no. 3 (May 8, 2015): 681–771. http://dx.doi.org/10.1007/s00222-015-0600-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kneebone, Ronald D., and William M. Scarth. "Is Non-Monetarist Arithmetic Just as Unpleasant?" Southern Economic Journal 57, no. 1 (July 1990): 14. http://dx.doi.org/10.2307/1060474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Non-arithmetic"

1

Ziyang, Wang. "Non-binary Distributed Arithmetic Coding." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32318.

Full text
Abstract:
Distributed source coding (DSC) is a fundamental concept in information theory. It refers to distributed compression of correlated but geographically separated sources. With the development of wireless sensor networks, DSC has attracted great research interest in the recent years [26]. Although many channel code based DSC schemes have been developed (e.g., those based on turbo codes [11]and LDPC codes [20]), this thesis focuses on the arithmetic coding based approaches, namely, Distributed Arithmetic Coding (DAC) due to its simplicity in encoding [8]. To date, most of the DAC approaches that have been proposed deal with binary sources and can not handle non-binary cases. Little research has been done to extend DAC for non-binary sources. This work aims at developing efficient DAC techniques for the compression of non-binary sources. The key idea of DAC is representing the source symbols by overlapping intervals, as opposed to the case of conventional arithmetic coding where the intervals representing the symbols do not overlap. However the design of the overlapping intervals has been completely of heuristic nature to date. As such, the first part of this work is a thorough study of various interval-overlapping rules in binary DAC so as to understand how these rules impact the performance of DAC. The insight acquired in this study is used in the second part of this work, where two DAC algorithms are proposed to compress non-binary non-uniform sources. The first algorithm applies a designed overlap structure in DAC process, while the second converts a non-binary sequence into a binary sequence by Huffman Coding and encoding the result in binary DAC. Simulation studies are performed to demonstrate the efficiencies of the two proposed algorithms in a variety of source parameter settings.
APA, Harvard, Vancouver, ISO, and other styles
2

Lorenzo, García Elisa. "Arithmetic properties of non-hyperelliptic genus 3 curves." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/279314.

Full text
Abstract:
This thesis explores the explicit computation of twists of curves. We develope an algorithm for computing the twists of a given curve assuming that its automorphism group is known. And in the particular case in which the curve is non-hyperelliptic we show how to compute equations of the twists. The algorithm is based on a correspondence that we establish beetwen the set of twists and the set of solutions of a certain Galois embedding problem. In general is not known how to compute all the solution of a Galois embedding problem. Throughout the thesis we give some ideas of how to solve these problems. The twists of curves of genus less or equal than 2 are well-known. While the genus 0 and 1 cases go back from long ago, the genus 2 case is due to the work of Cardona and Quer. All the genus 0, 1 or 2 curves are hyperelliptic, however for genus greater than 2 almost all the curves are non-hyperelliptic. As an application to our algorithm we give a classification with equations of the twists of all plane quartic curves, that is, the non-hyperelliptic genus 3 curves, defined over any number field k. The first step for computing such twists is providing a classification of the plane quartic curves defined over a concrete number field k. The starting point for doing this is Henn classification of plane quartic curves with non-trivial automorphism group over the complex numbers. An example of the importance of the study of the set of twists of a curve is that it has been proven to be really useful for a better understanding of the behaviour of the Generalize Sato-Tate conjecture, see the work of Fité, Kedlaya and Sutherland. We show a proof of the Sato-Tate conjecture for the twists of the Fermat and Klein quartics as a corollary of a deep result of Johansson, and we compute the Sato-Tate groups and Sato-Tate distributions of them. Following with the study of the Generalize Sato-Tate conjecture, in the last chapter of this thesis we explore such conjecture for the Fermat hypersurfaces X_{n}^{m}: x_{0}^{m}+...+x_{n+1}^{m} = 0. We explicitly show how to compute the Sato-Tate groups and the Sato-Tate distributions of these Fermat hypersurfaces. We also prove the conjecture over the rational numbers for n=1 and over than the cyclotomic field of mth-roots of the unity if n is greater 1.
En esta tesis estudiamos el cálculo explícito de twists de curvas. Se desarrolla un algoritmo para calcular los twists de una curva dada asumiendo que su grupo de automorfismos en conocido. Además, en el caso particular en que la curva es no hiperelíptica se enseña como calcular ecuaciones de los twists. El algoritmo está basado es una correspondencia que establecemos entre el conjunto de twists de la curva y el conjunto de soluciones a un cierto problema de embeding de Galois. Aunque no existe un método general para resolver este tipo de problemas a lo largo de la tesis se exponen algunas ideas para resolver algunos de estos problemas en concreto. Los twists de curvas de género menor o igual que 2 son bien conocidos. Mientras que los casos de género 0 y 1 se conocen desde hace tiempo, el caso de género 2 es más reciente y se debe al trabajo de Cardona y Quer. Todas las curvas de género, 0,1 y 2 son hiperelípticas, sin embargo, las curvas de género mayor o igual que 3 son en su mayoría no hipèrelípticas. Como aplicación a nuestro algoritmo damos una clasificación con ecuaciones de los twists de todas las cuárticas planas lisas, es decir, de todas las curvas no hiperelípticas de género 3, definidas sobre un cuerpo de números k. El primer paso para calcualr estos twists es obtener una clasificación de las cuárticas planas lisas definidas sobre un cuerpo de números k arbitrario. El punto de partida para obtener esta clasificación es la clasificación de Henn de cuárticas planas definidas sobre los números complejos y con grupo de automorfismos no trivial. Un ejemplo de la importancia del estudio de los twists de curvas es que se ha probado que resulta ser de gran utilidad para el mejor entendimiento del carácter de la conjetura de Sato-Tate generalizada, como puede verse en los trabajos de entre otros: Fité, Kedlaya y Sutherland. En la tesis se prueba la conjetura de Sato-Tate para el caso de los twists de las cuárticas de Fermat y de Klein como corolario de un resultado de Johansson, además se calculan los grupos y las distribuciones de Sato-Tate de estos twists. Siguiendo con el estudio de la conjetura generalizada de Sato-Tate, en el último capítulo de la tesis se estudia la conjetura para el caso de las hipersuperficies de Fermat: X_{n}^{m}: x_{0}^{m}+...+x_{n+1}^{m} = 0. Se muestra esplícitamente como calcular los grupos de Sato-Tate y las correspondientes distribuciones. Además se prueba la conjetura para el caso n=1 sobre el cuerpo de los números racionales y para n mayor que 1 sobre el cuerpo de las raíces m-ésimas de la unidad.
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, Mark Jason. "Non-linear echo cancellation based on transpose distributed arithmetic adaptive filters." Thesis, University of Edinburgh, 1987. http://hdl.handle.net/1842/12986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aslett, Helen J. "The function and form of the non-verbal analogue magnitude code in arithmetic processing." Thesis, University of York, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vollmer, Philipp [Verfasser], and Klaus [Akademischer Betreuer] Künnemann. "Arithmetic Divisors on Products of Curves over non-Archimedean Fields / Philipp Vollmer. Betreuer: Klaus Künnemann." Regensburg : Universitätsbibliothek Regensburg, 2016. http://d-nb.info/1110148542/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beber, Björn [Verfasser]. "Improving interpolants of non-convex polyhedra with linear arithmetic and probably approximatley correct learning for bounded linear arrangements / Björn Beber." Mainz : Universitätsbibliothek Mainz, 2018. http://d-nb.info/1160111235/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Turchetti, Danièle. "Contributions to arithmetic geometry in mixed characteristic : lifting covers of curves, non-archimedean geometry and the l-modular Weil representation." Thesis, Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0022/document.

Full text
Abstract:
Dans cette thèse on étudie certains phénomènes d'interactions entre caractéristique positive et caractéristique nulle. Dans un premier temps on s'occupe du problème de relèvement locale d'actions de groupes. On y montre des conditions nécessaires pour l'existence de relèvement de certains actions du groupe Z/pZ x Z/pZ. Pour une action d'un groupe fini quelconque, on y étudie les arbres de Hurwitz, en montrant que chaque arbre de Hurwitz admet un plongement dans le disque unitaire fermé de Berkovich et que ses données de Hurwitz peuvent être décrites de façon analytique. Dans une deuxième partie nous construisons un analogue de la représentation de Weil à coefficients dans un anneau intègre, et nous montrons que cela satisfait les mêmes propriétés que dans le cas de coefficients complexes
In this thesis, we study the interplay between positive and zero characteristic. In a first instance, we deal with the local lifting problem of lifting actions of curves. We show necessary conditions for the existence of liftings of some actions of Z/pZ x Z/pZ. Then, for an action of a general finite group, we study the associated Hurwitz tree, showing that every Hurwitz tree has a canonical metric embedding in the Berkovich closed unit disc, and that the Hurwitz data can be described analytically.In the last chapter, we define an analog of the Weil representation with coefficients in an integral domain, showing that such representation satisfies the same properties than in the case with complex coefficients
APA, Harvard, Vancouver, ISO, and other styles
8

Antoniou, Austin A. "On Product and Sum Decompositions of Sets: The Factorization Theory of Power Monoids." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586355818066608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Salas, Donoso Ignacio Antonio. "Packing curved objects with interval methods." Thesis, Nantes, Ecole des Mines, 2016. http://www.theses.fr/2016EMNA0277/document.

Full text
Abstract:
Un problème courant en logistique, gestion d’entrepôt, industrie manufacturière ou gestion d’énergie dans les centres de données est de placer des objets dans un espace limité, ou conteneur. Ce problème est appelé problème de placement. De nombreux travaux dans la littérature gèrent le problème de placement en considérant des objets de formes particulières ou en effectuant des approximations polygonales. L’objectif de cette thèse est d’autoriser toute forme qui admet une définition mathématique (que ce soit avec des inégalités algébriques ou des fonctions paramétrées). Les objets peuvent notamment être courbes et non-convexes. C’est ce que nous appelons le problème de placement générique. Nous proposons un cadre de résolution pour résoudre ce problème de placement générique, basé sur les techniques d’intervalles. Ce cadre possède trois ingrédients essentiels : un algorithme évolutionnaire plaçant les objets, une fonction de chevauchement minimisée par cet algorithme évolutionnaire (coût de violation), et une région de chevauchement qui représente un ensemble pré-calculé des configurations relatives d’un objet (par rapport à un autre) qui créent un chevauchement. Cette région de chevauchement est calculée de façon numérique et distinctement pour chaque paire d’objets. L’algorithme sous-jacent dépend également du fait qu’un objet soit représenté par des inégalités ou des fonctions paramétrées. Des expérimentations préliminaires permettent de valider l’approche et d’en montrer le potentiel
A common problem in logistic, warehousing, industrial manufacture, newspaper paging or energy management in data centers is to allocate items in a given enclosing space or container. This is called a packing problem. Many works in the literature handle the packing problem by considering specific shapes or using polygonal approximations. The goal of this thesis is to allow arbitrary shapes, as long as they can be described mathematically (by an algebraic equation or a parametric function). In particular, the shapes can be curved and non-convex. This is what we call the generic packing problem. We propose a framework for solving this generic packing problem, based on interval techniques. The main ingredients of this framework are: An evolutionary algorithm to place the objects, an over lapping function to be minimized by the evolutionary algorithm (violation cost), and an overlapping region that represents a pre-calculated set of all the relative configurations of one object (with respect to the other one) that creates an overlapping. This overlapping region is calculated numerically and distinctly for each pair of objects. The underlying algorithm also depends whether objects are described by inequalities or parametric curves. Preliminary experiments validate the approach and show the potential of this framework
APA, Harvard, Vancouver, ISO, and other styles
10

Chakhari, Aymen. "Évaluation analytique de la précision des systèmes en virgule fixe pour des applications de communication numérique." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S059/document.

Full text
Abstract:
Par rapport à l'arithmétique virgule flottante, l'arithmétique virgule fixe se révèle plus avantageuse en termes de contraintes de coût et de consommation, cependant la conversion en arithmétique virgule fixe d'un algorithme spécifié initialement en virgule flottante se révèle être une tâche fastidieuse. Au sein de ce processus de conversion, l'une des étapes majeures concerne l'évaluation de la précision de la spécification en virgule fixe. En effet, le changement du format des données de l'application s'effectue en éliminant des bits ce qui conduit à la génération de bruits de quantification qui se propagent au sein du système et dégradent la précision des calculs en sortie de l'application. Par conséquent, cette perte de précision de calcul doit être maîtrisée et évaluée afin de garantir l'intégrité de l'algorithme et répondre aux spécifications initiales de l'application. Le travail mené dans le cadre de cette thèse se concentre sur des approches basées sur l'évaluation de la précision à travers des modèles analytiques (par opposition à l'approche par simulations). Ce travail traite en premier lieu de la recherche de modèles analytiques pour évaluer la précision des opérateurs non lisses de décision ainsi que la cascade d'opérateurs de décision. Par conséquent, la caractérisation de la propagation des erreurs de quantification dans la cascade d'opérateurs de décision est le fondement des modèles analytiques proposés. Ces modèles sont appliqués à la problématique de l'évaluation de la précision de l'algorithme de décodage sphérique SSFE (Selective Spanning with Fast Enumeration) utilisé pour les systèmes de transmission de type MIMO (Multiple-Input Multiple-Output). Dans une seconde étape, l'évaluation de la précision des structures itératives d'opérateurs de décision a fait l'objet d'intérêt. Une caractérisation des erreurs de quantification engendrées par l'utilisation de l'arithmétique en virgule fixe est menée afin de proposer des modèles analytiques basés sur l'estimation d'une borne supérieure de la probabilité d'erreur de décision ce qui permet de réduire les temps d'évaluation. Ces modèles sont ensuite appliqués à la problématique de l'évaluation de la spécification virgule fixe de l'égaliseur à retour de décision DFE (Decision Feedback Equalizer). Le second aspect du travail concerne l'optimisation des largeurs de données en virgule fixe. Ce processus d'optimisation est basé sur la minimisation de la probabilité d'erreur de décision dans le cadre d'une implémentation sur un FPGA (Field-Programmable Gate Array) de l'algorithme DFE complexe sous contrainte d'une précision donnée. Par conséquent, pour chaque spécification en virgule fixe, la précision est évaluée à travers les modèles analytiques proposés. L'estimation de la consommation des ressources et de la puissance sur le FPGA est ensuite obtenue à l'aide des outils de Xilinx pour faire un choix adéquat des largeurs des données en visant à un compromis précision/coût. La dernière phase de ce travail traite de la modélisation en virgule fixe des algorithmes de décodage itératif reposant sur les concepts de turbo-décodage et de décodage LDPC (Low-Density Parity-Check). L'approche proposée prend en compte la structure spécifique de ces algorithmes ce qui implique que les quantités calculées au sein du décodeur (ainsi que les opérations) soient quantifiées suivant une approche itérative. De plus, la représentation en virgule fixe utilisée (reposant sur le couple dynamique et le nombre de bits total) diffère de la représentation classique qui, elle, utilise le nombre de bits accordé à la partie entière et la partie fractionnaire. Avec une telle représentation, le choix de la dynamique engendre davantage de flexibilité puisque la dynamique n'est plus limitée uniquement à une puissance de deux. Enfin, la réduction de la taille des mémoires par des techniques de saturation et de troncature est proposée de manière à cibler des architectures à faible-complexité
Traditionally, evaluation of accuracy is performed through two different approaches. The first approach is to perform simulations fixed-point implementation in order to assess its performance. These approaches based on simulation require large computing capacities and lead to prohibitive time evaluation. To avoid this problem, the work done in this thesis focuses on approaches based on the accuracy evaluation through analytical models. These models describe the behavior of the system through analytical expressions that evaluate a defined metric of precision. Several analytical models have been proposed to evaluate the fixed point accuracy of Linear Time Invariant systems (LTI) and of non-LTI non-recursive and recursive linear systems. The objective of this thesis is to propose analytical models to evaluate the accuracy of digital communications systems and algorithms of digital signal processing made up of non-smooth and non-linear operators in terms of noise. In a first step, analytical models for evaluation of the accuracy of decision operators and their iterations and cascades are provided. In a second step, an optimization of the data length is given for fixed-point hardware implementation of the Decision Feedback Equalizer DFE based on analytical models proposed and for iterative decoding algorithms such as turbo decoding and LDPC decoding-(Low-Density Parity-Check) in a particular quantization law. The first aspect of this work concerns the proposition analytical models for evaluating the accuracy of the non-smooth decision operators and the cascading of decision operators. So, the characterization of the quantization errors propagation in the cascade of decision operators is the basis of the proposed analytical models. These models are applied in a second step to evaluate the accuracy of the spherical decoding algorithmSSFE (Selective Spanning with Fast Enumeration) used for transmission MIMO systems (Multiple-Input Multiple -Output). In a second step, the accuracy evaluation of the iterative structures of decision operators has been the interesting subject. Characterization of quantization errors caused by the use of fixed-point arithmetic is introduced to result in analytical models to evaluate the accuracy of application of digital signal processing including iterative structures of decision. A second approach, based on the estimation of an upper bound of the decision error probability in the convergence mode, is proposed for evaluating the accuracy of these applications in order to reduce the evaluation time. These models are applied to the problem of evaluating the fixed-point specification of the Decision Feedback Equalizer DFE. The estimation of resources and power consumption on the FPGA is then obtained using the Xilinx tools to make a proper choice of the data widths aiming to a compromise accuracy/cost. The last step of our work concerns the fixed-point modeling of iterative decoding algorithms. A model of the turbo decoding algorithm and the LDPC decoding is then given. This approach integrates the particular structure of these algorithms which implies that the calculated quantities in the decoder and the operations are quantified following an iterative approach. Furthermore, the used fixed-point representation is different from the conventional representation using the number of bits accorded to the integer part and the fractional part. The proposed approach is based on the dynamic and the total number of bits. Besides, the dynamic choice causes more flexibility for fixed-point models since it is not limited to only a power of two
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Non-arithmetic"

1

Charles, Sayward, and Garavaso Pieranna, eds. Arithmetic and ontology: A non-realist philosophy of arithmetic. Amsterdam: Rodopi, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hilbert, David. Anschauliche Geometrie. 2nd ed. Berlin: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moduli spaces and arithmetic dynamics. Providence, R.I: American Mathematical Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arakelov geometry. Providence, Rhode Island: American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tschinkel, Yuri, Carlo Gasbarri, Steven Lu, and Mike Roth. Rational points, rational curves, and entire holomorphic curves on projective varieties: CRM short thematic program, June 3-28, 2013, Centre de Recherches Mathematiques, Universite de Montreal, Quebec, Canada. Providence, Rhode Island: American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1978-, Ghioca Dragos, and Tucker Thomas J. 1969-, eds. The dynamical Mordell-Lang conjecture. Providence, Rhode Island: American Mathematical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Germany) International Conference on p-adic Functional Analysis (13th 2014 Paderborn. Advances in non-Archimedean analysis: 13th International Conference on p-adic Functional Analysis, August 12-16, 2014, University of Paderborn, Paderborn, Germany. Edited by Glöckner Helge 1969 editor, Escassut Alain editor, and Shamseddine Khodr 1966 editor. Providence, Rhode Island: American Mathematical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barbados) Bellairs Workshop in Number Theory (2011 Holetown. Tropical and non-Archimedean geometry: Bellairs Workshop in Number Theory, May 6-13, 2011, Bellairs Research Institute, Holetown, Barbados. Edited by Amini, Omid, 1980- editor of compilation, Baker, Matthew, 1973- editor of compilation, and Faber, Xander, editor of compilation. Providence, Rhode Island: American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Applegate, Katherine. The visitor. New York: Scholastic Inc., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Agrillo, Christian. Numerical and Arithmetic Abilities in Non-primate Species. Edited by Roi Cohen Kadosh and Ann Dowker. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199642342.013.002.

Full text
Abstract:
In the last decade, several studies have suggested that dozens of animal species are capable of processing numerical information. Animals as diverse as mammals, birds, amphibians, fish, and even some invertebrates have been successfully investigated through extensive training and the observation of spontaneous behaviour, providing evidence that numerical abilities are not limited to primates. The study of non-primate species represents a useful tool to broaden our comprehension of the uniqueness of our cognitive abilities, particularly with regard to the evolutionary roots of the mathematical mind. In this chapter, I will summarize the current state of our understanding of non-primate numerical abilities in the comparative literature, focusing on three main topics: the relationship between discrete (numerical) and continuous quantity, the debate surrounding the existence of a precise subitizing-like process, and the ontogeny of numerical abilities.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Non-arithmetic"

1

Dilworth, R. P. "Non-Commutative Arithmetic." In The Dilworth Theorems, 357–67. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4899-3558-8_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jovanović, Dejan, and Leonardo de Moura. "Solving Non-linear Arithmetic." In Automated Reasoning, 339–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31365-3_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Borel, A., and N. Wallach. "Non-cocompact 𝑆-arithmetic subgroups." In Mathematical Surveys and Monographs, 247–52. Providence, Rhode Island: American Mathematical Society, 2000. http://dx.doi.org/10.1090/surv/067/15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eggers, Andreas, Evgeny Kruglov, Stefan Kupferschmid, Karsten Scheibler, Tino Teige, and Christoph Weidenbach. "Superposition Modulo Non-linear Arithmetic." In Frontiers of Combining Systems, 119–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24364-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Borralleras, Cristina, Salvador Lucas, Rafael Navarro-Marset, Enric Rodríguez-Carbonell, and Albert Rubio. "Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic." In Automated Deduction – CADE-22, 294–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02959-2_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beth, T., and F. Schaefer. "Arithmetic on non supersingular elliptic curves." In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 74–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54522-0_97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, Rong, and James L. Schwing. "A Non-Binary Parallel Arithmetic Architecture." In Lecture Notes in Computer Science, 149–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45591-4_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zankl, Harald, and Aart Middeldorp. "Satisfiability of Non-linear (Ir)rational Arithmetic." In Logic for Programming, Artificial Intelligence, and Reasoning, 481–500. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-17511-4_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wright, Steve. "Quadratic Residues and Non-Residues in Arithmetic Progression." In Lecture Notes in Mathematics, 227–71. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45955-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bigarella, Filippo, Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Martin Jonáš, Marco Roveri, Roberto Sebastiani, and Patrick Trentin. "Optimization Modulo Non-linear Arithmetic via Incremental Linearization." In Frontiers of Combining Systems, 213–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86205-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Non-arithmetic"

1

Wang, Ziyang, Yongyi Mao, and Iluju Kiringa. "Non-binary distributed arithmetic coding." In 2015 IEEE 14th Canadian Workshop on Information Theory (CWIT). IEEE, 2015. http://dx.doi.org/10.1109/cwit.2015.7255140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hrubeš, Pavel, and Avi Wigderson. "Non-commutative arithmetic circuits with division." In ITCS'14: Innovations in Theoretical Computer Science. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2554797.2554805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kupferschmid, S., B. Becker, T. Teige, and M. Franzle. "Proof certificates and non-linear arithmetic constraints." In Systems (DDECS). IEEE, 2011. http://dx.doi.org/10.1109/ddecs.2011.5783131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Frederick, Michael T., and Arun K. Somani. "Non-arithmetic carry chains for reconfigurable fabrics." In 2007 25th International Conference on Computer Design ICCD 2007. IEEE, 2007. http://dx.doi.org/10.1109/iccd.2007.4601892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kostrzewski, Andrew. "Non-holographic content addressable memory based arithmetic processor." In International Conference on Optoelectronic Science and Engineering '90. SPIE, 2017. http://dx.doi.org/10.1117/12.2294888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Cunxi, Tiankai Su, Atif Yasin, and Maciej Ciesielski. "Spectral approach to verifying non-linear arithmetic circuits." In ASPDAC '19: 24th Asia and South Pacific Design Automation Conference. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3287624.3287662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baccelli, Guido, Dimitrios Stathis, Ahmed Hemani, and Maurizio Martina. "NACU: A Non-Linear Arithmetic Unit for Neural Networks." In 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020. http://dx.doi.org/10.1109/dac18072.2020.9218549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Skubch, Hendrik. "Solving non-linear arithmetic constraints in soft realtime environments." In the 27th Annual ACM Symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2245276.2245293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Babaali, M., and M. Egerstedt. "Pathwise observability through arithmetic progressions and non-pathological sampling." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1384786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ganai, Malay K., and Franjo Ivancic. "Efficient decision procedure for non-linear arithmetic constraints using CORDIC." In 2009 9th International Conference Formal Methods in Computer-Aided Design (FMCAD). IEEE, 2009. http://dx.doi.org/10.1109/fmcad.2009.5351140.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Non-arithmetic"

1

Mulligan, Casey, Russell Bradford, James Davenport, Matthew England, and Zak Tonks. Non-linear Real Arithmetic Benchmarks derived from Automated Reasoning in Economics. Cambridge, MA: National Bureau of Economic Research, May 2018. http://dx.doi.org/10.3386/w24602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Samet Y. Kadioglu, Robert R. Nourgaliev, and Vincent A. Mousseau. A Comparative Study of the Harmonic and Arithmetic Averaging of Diffusion Coefficients for Non-linear Heat Conduction Problems. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/928087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography