To see the other types of publications on this topic, follow the link: Non-arithmetic.

Journal articles on the topic 'Non-arithmetic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Non-arithmetic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Grunewald, Fritz, and Vladimir Platonov. "Non-arithmetic polycyclic groups." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, no. 12 (June 1998): 1359–64. http://dx.doi.org/10.1016/s0764-4442(98)80392-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jovanović, Dejan, and Leonardo de Moura. "Solving non-linear arithmetic." ACM Communications in Computer Algebra 46, no. 3/4 (January 15, 2013): 104–5. http://dx.doi.org/10.1145/2429135.2429155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Croot, Ernest S. "On non-intersecting arithmetic progressions." Acta Arithmetica 110, no. 3 (2003): 233–38. http://dx.doi.org/10.4064/aa110-3-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

de la Bretèche, Régis, Kevin Ford, and Joseph Vandehey. "On non-intersecting arithmetic progressions." Acta Arithmetica 157, no. 4 (2013): 381–92. http://dx.doi.org/10.4064/aa157-4-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Feferman, Solomon, and Thomas Strahm. "The unfolding of non-finitist arithmetic." Annals of Pure and Applied Logic 104, no. 1-3 (July 2000): 75–96. http://dx.doi.org/10.1016/s0168-0072(00)00008-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Yong-Gao, and Yu Ding. "Non-Wieferich primes in arithmetic progressions." Proceedings of the American Mathematical Society 145, no. 5 (January 23, 2017): 1833–36. http://dx.doi.org/10.1090/proc/13201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hayashi, Tomohiro. "Non-commutative arithmetic-geometric mean inequality." Proceedings of the American Mathematical Society 137, no. 10 (October 1, 2009): 3399. http://dx.doi.org/10.1090/s0002-9939-09-09911-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gromov, M., and I. Piatetski-Shapiro. "Non-arithmetic groups in lobachevsky spaces." Publications mathématiques de l'IHÉS 66, no. 1 (December 1987): 93–103. http://dx.doi.org/10.1007/bf02698928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deraux, Martin, John R. Parker, and Julien Paupert. "New non-arithmetic complex hyperbolic lattices." Inventiones mathematicae 203, no. 3 (May 8, 2015): 681–771. http://dx.doi.org/10.1007/s00222-015-0600-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kneebone, Ronald D., and William M. Scarth. "Is Non-Monetarist Arithmetic Just as Unpleasant?" Southern Economic Journal 57, no. 1 (July 1990): 14. http://dx.doi.org/10.2307/1060474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Maclachlan, C., and G. J. Martin. "The non-compact arithmetic generalised triangle groups." Topology 40, no. 5 (September 2001): 927–44. http://dx.doi.org/10.1016/s0040-9383(00)00003-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tverskoi, A. A. "Constructivizable and non-constructivizable formal arithmetic structures." Russian Mathematical Surveys 40, no. 6 (December 31, 1985): 145–46. http://dx.doi.org/10.1070/rm1985v040n06abeh003720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Deraux, Martin. "Non-arithmetic lattices and the Klein quartic." Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, no. 754 (September 1, 2019): 253–79. http://dx.doi.org/10.1515/crelle-2017-0005.

Full text
Abstract:
Abstract We give an algebro-geometric construction of some of the non-arithmetic ball quotients constructed by the author, Parker and Paupert. The new construction reveals a relationship between the corresponding orbifold fundamental groups and the automorphism group of the Klein quartic, and also with groups constructed by Barthel–Hirzebruch–Höfer and Couwenberg–Heckman–Looijenga.
APA, Harvard, Vancouver, ISO, and other styles
14

Rout, Sudhansu Sekhar. "Lucas non-Wieferich primes in arithmetic progressions." Functiones et Approximatio Commentarii Mathematici 60, no. 2 (March 2019): 167–75. http://dx.doi.org/10.7169/facm/1709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

MILLER, ALISON, and AARON PIXTON. "ARITHMETIC TRACES OF NON-HOLOMORPHIC MODULAR INVARIANTS." International Journal of Number Theory 06, no. 01 (February 2010): 69–87. http://dx.doi.org/10.1142/s1793042110002818.

Full text
Abstract:
We extend results of Bringmann and Ono that relate certain generalized traces of Maass–Poincaré series to Fourier coefficients of modular forms of half-integral weight. By specializing to cases in which these traces are usual traces of algebraic numbers, we generalize results of Zagier describing arithmetic traces associated to modular forms. We define correspondences [Formula: see text] and [Formula: see text]. We show that if f is a modular form of non-positive weight 2 - 2 λ and odd level N, holomorphic away from the cusp at infinity, then the traces of values at Heegner points of a certain iterated non-holomorphic derivative of f are equal to Fourier coefficients of the half-integral weight modular forms [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
16

Sanders, Sam. "A note on non-classical nonstandard arithmetic." Annals of Pure and Applied Logic 170, no. 4 (April 2019): 427–45. http://dx.doi.org/10.1016/j.apal.2018.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Moerdijk, Ieke. "A model for intuitionistic non-standard arithmetic." Annals of Pure and Applied Logic 73, no. 1 (May 1995): 37–51. http://dx.doi.org/10.1016/0168-0072(93)e0071-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kessler, V. "Crossed Product Orders and Non-commutative Arithmetic." Journal of Number Theory 46, no. 3 (March 1994): 255–302. http://dx.doi.org/10.1006/jnth.1994.1015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Parker, John R. "Non-arithmetic monodromy of higher hypergeometric functions." Journal d'Analyse Mathématique 142, no. 1 (November 2020): 41–70. http://dx.doi.org/10.1007/s11854-020-0132-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lachlan, Alistair H., and Robert I. Soare. "Models of arithmetic and subuniform bounds for the arithmetic sets." Journal of Symbolic Logic 63, no. 1 (March 1998): 59–72. http://dx.doi.org/10.2307/2586587.

Full text
Abstract:
AbstractIt has been known for more than thirty years that the degree of a non-standard model of true arithmetic is a subuniform upper bound for the arithmetic sets (suub). Here a notion of generic enumeration is presented with the property that the degree of such an enumeration is an suub but not the degree of a non-standard model of true arithmetic. This answers a question posed in the literature.
APA, Harvard, Vancouver, ISO, and other styles
21

Au, Jacky, Susanne M. Jaeggi, and Martin Buschkuehl. "Effects of non-symbolic arithmetic training on symbolic arithmetic and the approximate number system." Acta Psychologica 185 (April 2018): 1–12. http://dx.doi.org/10.1016/j.actpsy.2018.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cohen, Paula, and Jürgen Wolfart. "Modular embeddings for some non-arithmetic Fuchsian groups." Acta Arithmetica 56, no. 2 (1990): 93–110. http://dx.doi.org/10.4064/aa-56-2-93-110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

B. Vinberg, E. "Non-Arithmetic Hyperbolic Reflection Groups in Higher Dimensions." Moscow Mathematical Journal 15, no. 3 (2015): 593–602. http://dx.doi.org/10.17323/1609-4514-2015-15-3-593-602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wright, Steve. "Quadratic residues and non-residues in arithmetic progression." Journal of Number Theory 133, no. 7 (July 2013): 2398–430. http://dx.doi.org/10.1016/j.jnt.2013.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Iswariya, S., and A. R. "An Arithmetic Technique for Non-Abelian Group Cryptosystem." International Journal of Computer Applications 161, no. 2 (March 15, 2017): 32–35. http://dx.doi.org/10.5120/ijca2017913122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Venkatraman, Vinod, Daniel Ansari, and Michael W. L. Chee. "Neural correlates of symbolic and non-symbolic arithmetic." Neuropsychologia 43, no. 5 (January 2005): 744–53. http://dx.doi.org/10.1016/j.neuropsychologia.2004.08.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mitchell, Douglas W. "88.27 More on spreads and non-arithmetic means." Mathematical Gazette 88, no. 511 (March 2004): 142–44. http://dx.doi.org/10.1017/s0025557200174534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gilmore, C. K., and E. S. Spelke. "Arithmetic in symbolic and non-symbolic numerical domains." Journal of Vision 6, no. 6 (March 24, 2010): 960. http://dx.doi.org/10.1167/6.6.960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Avila, Artur, and Vincent Delecroix. "Weak mixing directions in non-arithmetic Veech surfaces." Journal of the American Mathematical Society 29, no. 4 (January 13, 2016): 1167–208. http://dx.doi.org/10.1090/jams/856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Barth, Hilary, Kristen La Mont, Jennifer Lipton, Stanislas Dehaene, Nancy Kanwisher, and Elizabeth Spelke. "Non-symbolic arithmetic in adults and young children." Cognition 98, no. 3 (January 2006): 199–222. http://dx.doi.org/10.1016/j.cognition.2004.09.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chen, Yong-Gao, and Yu Ding. "Corrigendum to “Non-Wieferich primes in arithmetic progressions”." Proceedings of the American Mathematical Society 146, no. 12 (August 10, 2018): 5485. http://dx.doi.org/10.1090/proc/14265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bringmann, Kathrin, and David Penniston. "Arithmetic properties of non-harmonic weak Maass forms." Proceedings of the American Mathematical Society 137, no. 03 (September 12, 2008): 825–33. http://dx.doi.org/10.1090/s0002-9939-08-09541-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Yokoyama, Keita. "Formalizing non-standard arguments in second-order arithmetic." Journal of Symbolic Logic 75, no. 4 (December 2010): 1199–210. http://dx.doi.org/10.2178/jsl/1286198143.

Full text
Abstract:
AbstractIn this paper, we introduce the systems ns-ACA0 and ns-WKL0 of non-standard second-order arithmetic in which we can formalize non-standard arguments in ACA0 and WKL0, respectively. Then, we give direct transformations from non-standard proofs in ns-ACA0 or ns-WKL0 into proofs in ACA0 or WKL0.
APA, Harvard, Vancouver, ISO, and other styles
34

Nagaraj, Nithin, Prabhakar G. Vaidya, and Kishor G. Bhat. "Arithmetic coding as a non-linear dynamical system." Communications in Nonlinear Science and Numerical Simulation 14, no. 4 (April 2009): 1013–20. http://dx.doi.org/10.1016/j.cnsns.2007.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Yaying, Taja, and Bipan Hazarika. "Arithmetic summable sequence space over non-Newtonian field." Afrika Matematika 31, no. 2 (October 19, 2019): 263–72. http://dx.doi.org/10.1007/s13370-019-00722-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Allcock, Daniel, James A. Carlson, and Domingo Toledo. "Non-Arithmetic Uniformization of Some Real Moduli Spaces." Geometriae Dedicata 122, no. 1 (May 30, 2006): 159–69. http://dx.doi.org/10.1007/s10711-005-9039-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wells, Joseph. "Non-arithmetic hybrid lattices in $${\text {PU}}(2,1)$$." Geometriae Dedicata 208, no. 1 (December 23, 2019): 1–11. http://dx.doi.org/10.1007/s10711-019-00506-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Schmidt, Thomas A. "Klein's cubic surface and a 'non-arithmetic' curve." Mathematische Annalen 309, no. 4 (November 1, 1997): 533–39. http://dx.doi.org/10.1007/s002080050126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hofmann, Walter, and G�tz Wiesend. "Non-abelian class field theory for arithmetic surfaces." Mathematische Zeitschrift 250, no. 1 (January 7, 2005): 203–24. http://dx.doi.org/10.1007/s00209-004-0751-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Abt, Markus. "On the product and the sum of random variables with arithmetic and non-arithmetic distributions." Statistics & Probability Letters 19, no. 4 (March 1994): 291–97. http://dx.doi.org/10.1016/0167-7152(94)90179-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Novak, Elena, and Ilker Soyturk. "Effects of Action Video Game Play on Arithmetic Performance in Adults." Perception 50, no. 1 (January 2021): 52–68. http://dx.doi.org/10.1177/0301006620984405.

Full text
Abstract:
This experimental study investigated the state (short-term) effects of action video game (AVG) training on arithmetic performance and their persistence over time. In addition, it examined group differences between experienced and novice AVGers. Twenty-nine college students without a prior AVG experience were randomly assigned to one of the two training groups: AVG and non-AVG. After 40 minutes of video game training, the arithmetic problem-solving speed and accuracy of non-AVG group increased, while the AVG group’s arithmetic performance decreased, thus suggesting a possibility of state effects of a non-AVG training on arithmetic performance. The state effects did not persist over time; on a delayed posttest, both groups’ arithmetic performance was similar to their pretraining scores. In addition, there were nonsignificant differences in arithmetic performance between experienced and novice AVGers. Implications for investigating the game mechanics and transfer mechanism between the game and transfer task are discussed.
APA, Harvard, Vancouver, ISO, and other styles
42

Peng, Peng. "The Computer Calibration Modeling of Radial Distortion Based Weld System with Parallel Planes." Advanced Materials Research 463-464 (February 2012): 1397–401. http://dx.doi.org/10.4028/www.scientific.net/amr.463-464.1397.

Full text
Abstract:
The paper illuminates the designed automatic weld control system. The RAC calibration arithmetic considering radial distortion is introduced, and according to the actual conditions of this weld system, the inchoate rapid calibration arithmetic is designed. Finally combined with the precision characteristic of the non-linear RAC calibration arithmetic and the concision characteristic of the inchoate rapid arithmetic, the improved automatic calibration arithmetic with six parameters is proposed, which achieves satisfied result.
APA, Harvard, Vancouver, ISO, and other styles
43

Yu, Zhi Nan. "The Study on Landscape Architecture Rebuilding Design in City Wasteland." Advanced Materials Research 505 (April 2012): 463–67. http://dx.doi.org/10.4028/www.scientific.net/amr.505.463.

Full text
Abstract:
The paper illuminates the designed automatic weld control system. The RAC calibration arithmetic considering radial distortion is introduced, and according to the actual conditions of this weld system, the inchoate rapid calibration arithmetic is designed. Finally combined with the precision characteristic of the non-linear RAC calibration arithmetic and the concision characteristic of the inchoate rapid arithmetic, the improved automatic calibration arithmetic with six parameters is proposed, which achieves satisfied result.
APA, Harvard, Vancouver, ISO, and other styles
44

VOETS, DEAN, and DANNY DE SCHREYE. "Non-termination analysis of logic programs with integer arithmetics." Theory and Practice of Logic Programming 11, no. 4-5 (July 2011): 521–36. http://dx.doi.org/10.1017/s1471068411000159.

Full text
Abstract:
AbstractIn the past years, analyzers have been introduced to detect classes of non-terminating queries for definite logic programs. Although these non-termination analyzers have shown to be rather precise, their applicability on real-life Prolog programs is limited because most Prolog programs use non-logical features. As a first step towards the analysis of Prolog programs, this paper presents a non-termination condition for Logic Programs containing integer arithmetics. The analyzer is based on our non-termination analyzer presented at International Logic Programming Conference (ICLP) 2009. The analysis starts from a class of queries and infers a subclass of non-terminating ones. In first phase, we ignore the outcome (success or failure) of the arithmetic operations, assuming success of all arithmetic calls. In second phase, we characterize successful arithmetic calls as a constraint problem, the solution of which determines the non-terminating queries.
APA, Harvard, Vancouver, ISO, and other styles
45

Philipp, Andreas. "Arithmetic of non-principal orders in algebraic number fields." Actes des rencontres du CIRM 2, no. 2 (2010): 99–102. http://dx.doi.org/10.5802/acirm.42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chinburg, Ted, Darren Long, and Alan W. Reid. "Cusps of Minimal Non-compact Arithmetic Hyperbolic 3-orbifolds." Pure and Applied Mathematics Quarterly 4, no. 4 (2008): 1013–31. http://dx.doi.org/10.4310/pamq.2008.v4.n4.a1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Aehlig, Klaus, Ulrich Berger, Martin Hofmann, and Helmut Schwichtenberg. "An arithmetic for non-size-increasing polynomial-time computation." Theoretical Computer Science 318, no. 1-2 (June 2004): 3–27. http://dx.doi.org/10.1016/j.tcs.2003.10.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Shen, Peiping, Kecun Zhang, and Yanjun Wang. "Applications of interval arithmetic in non-smooth global optimization." Applied Mathematics and Computation 144, no. 2-3 (December 2003): 413–31. http://dx.doi.org/10.1016/s0096-3003(02)00417-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bogomolny, E., and C. Schmit. "Multiplicities of periodic orbit lengths for non-arithmetic models." Journal of Physics A: Mathematical and General 37, no. 16 (April 5, 2004): 4501–26. http://dx.doi.org/10.1088/0305-4470/37/16/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Stahl, V. "A sufficient condition for non-overestimation in interval arithmetic." Computing 59, no. 4 (December 1997): 349–63. http://dx.doi.org/10.1007/bf02684417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography