Academic literature on the topic 'Non-centrosymmetric'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-centrosymmetric.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Non-centrosymmetric"

1

Vande Velde, C. M. L., M. Zeller, and F. Blockhuys. "Non-centrosymmetric molecules – centrosymmetric structure?" Acta Crystallographica Section A Foundations of Crystallography 67, a1 (August 22, 2011): C749. http://dx.doi.org/10.1107/s0108767311081098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Flack, H. D., G. Bernardinelli, D. A. Clemente, A. Linden, and A. L. Spek. "Centrosymmetric and pseudo-centrosymmetric structures refined as non-centrosymmetric." Acta Crystallographica Section B Structural Science 62, no. 5 (September 18, 2006): 695–701. http://dx.doi.org/10.1107/s0108768106021884.

Full text
Abstract:
The behaviour of the Flack parameter for centrosymmetric and pseudo-centrosymmetric crystal structures based on crystal structures published as being non-centrosymmetric is presented. It is confirmed for centrosymmetric structures that the value obtained for the Flack parameter is critically dependent on the Friedel coverage of the intensity data, approaching 0.5 for a coverage of 100% and sticking near the starting value for a coverage of 0%. For pseudo-centrosymmetric structures, even those very close to being centrosymmetric, it is found that it is often possible to obtain significant values of the Flack parameter. A theoretical basis for this surprising result is established. It has also been possible to establish an a priori estimate of the standard uncertainty of the Flack parameter based only on the chemical composition of the compound and the wavelength of the radiation. The paper concludes with preliminary presentations of bias in the Flack parameter and of inconsistent chemical and crystallographic data.
APA, Harvard, Vancouver, ISO, and other styles
3

Šoptrajanov, Bojan, and Mira Trpkovska. "Copper sulfate monohydrate: Centrosymmetric or non-centrosymmetric?" Journal of Molecular Structure 293 (March 1993): 109–12. http://dx.doi.org/10.1016/0022-2860(93)80027-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chérif, Saïda Fatma, Khaled Hizaoui, Mohamed Faouzi Zid, and Ahmed Driss. "Non-centrosymmetric Na3Nb4As3O19." Acta Crystallographica Section E Structure Reports Online 68, no. 4 (March 17, 2012): i25—i26. http://dx.doi.org/10.1107/s1600536812010537.

Full text
Abstract:
A new non-centrosymmetric compound, trisodium tetraniobium triarsenic nonadecaoxide, Na3Nb4As3O19, has been synthesized by a solid-state reaction at 1123 K. The structure consists of AsO4tetrahedra and NbO6octahedra sharing corners to form a three-dimensional framework containing two types of tunnels running along thecaxis, in which the sodium ions are located. Na+cations occupying statistically several sites, respectively, are surrounded by seven, six and four O atoms at distances ranging from 2.08 (1) to 2.88 (4) Å. The title structure is compared with those containing the same groups,viz.M2XO13andM2X2O17(M= transition metal, andX= As or P).
APA, Harvard, Vancouver, ISO, and other styles
5

Zmitrowicz, Alfred. "Illustrative examples of centrosymmetric and non-centrosymmetric anisotropic friction." International Journal of Solids and Structures 29, no. 23 (1992): 3045–59. http://dx.doi.org/10.1016/0020-7683(92)90157-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zmitrowicz, Alfred. "A constitutive modelling of centrosymmetric and non-centrosymmetric anisotropic friction." International Journal of Solids and Structures 29, no. 23 (1992): 3025–43. http://dx.doi.org/10.1016/0020-7683(92)90156-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mukherjee, Soumya P., and Stephanie H. Curnoe. "Superconductivity in non-centrosymmetric LaNiC2." Physica C: Superconductivity 499 (April 2014): 6–8. http://dx.doi.org/10.1016/j.physc.2014.01.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kneidinger, F., E. Bauer, I. Zeiringer, P. Rogl, C. Blaas-Schenner, D. Reith, and R. Podloucky. "Superconductivity in non-centrosymmetric materials." Physica C: Superconductivity and its Applications 514 (July 2015): 388–98. http://dx.doi.org/10.1016/j.physc.2015.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yahia, Hamdi Ben, Ute Ch Rodewald, and Rainer Pöttgen. "Non-centrosymmetric Ce3OCl[AsO3]2." Zeitschrift für Naturforschung B 64, no. 8 (August 1, 2009): 896–900. http://dx.doi.org/10.1515/znb-2009-0804.

Full text
Abstract:
The arsenite chloride Ce3OCl[AsO3]2 was synthesized in the form of colorless crystals from arsenic and cerium dioxide in a NaCl / KCl flux at 850 ◦C. Ce3OCl[AsO3]2 crystallizes with the noncentrosymmetric tetragonal Gd3OCl[AsO3]2 type, space group P42nm. The structure was refined from single crystal diffractometer data: a = 12.8590(6), c = 5.5627(3) Å, wR2 = 0.0429, 1463 F2 values, and 65 variables. The structure is built up from chains of trans edge-sharing OCe4/2 tetrahedra. The [AsO3]3− units coordinate to these chains via the oxygen atoms. Their lone-pairs point all to a common channel. Formation of the non-centrosymmetric superstructure is most likely driven by geometrical constraints and is discussed on the basis of a group-subgroup scheme
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Hyunsoo, Anthony Bakhtiiarov, Wei Zhang, Ignacio Vargas-Baca, and Jacques Barbier. "Non-centrosymmetric Ba3Ti3O6(BO3)2." Journal of Solid State Chemistry 177, no. 1 (January 2004): 159–64. http://dx.doi.org/10.1016/s0022-4596(03)00389-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Non-centrosymmetric"

1

Ou, Shih-hong. "Non-centrosymmetric Langmuir films." Case Western Reserve University School of Graduate Studies / OhioLINK, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=case1060358516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eguchi, Gaku. "Non-centrosymmetric superconductivity in d-electron compounds." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/175101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ham, Woo Seung. "Spin-orbit Phenomena in Non-centrosymmetric Magnetic Multilayers." Kyoto University, 2019. http://hdl.handle.net/2433/242636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smidman, M. "Superconducting and magnetic properties of non-centrosymmetric systems." Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/64119/.

Full text
Abstract:
Non-centrosymmetric superconductors (NCS) and related compounds have been studied using magnetic, specific heat and transport measurements as well as by neutron scattering and muon spin relaxation/rotation (μSR). The crystal structures of NCS lack inversion symmetry and in the presence of a finite antisymmetric spin orbit coupling, the Cooper pairs are a mixture of spin-singlet and spin-triplet states. In particular, the cerium based NCS have been reported to display unconventional superconductivity. Two different approaches for studying NCS are used. Firstly, the ground states of materials in the CeTX3 (T = transition metal, X = Si or Ge) family have been studied. CeCoGe3 is an antiferromagnet at ambient pressures and becomes superconducting at p > 4.3 GPa and was studied using inelastic neutron scattering (INS), muon spin relaxation/rotation (μSR), neutron diffraction and magnetic susceptibility measurements. The crystal electric fields (CEF) were studied using INS and magnetic susceptibility and the CEF scheme was evaluated. From this a ground state magnetic moment of 1.01 μB/Ce along the c axis was predicted. However, a magnetic moment of 0.405 μB/Ce along the c axis was observed in single crystal neutron diffraction measurements, indicating a reduced magnetic moment due to hybridization between the cerium f-electrons and the conduction band. The INS response was compared to the isostructural CePdSi3, CePtSi3 and CeRuSi3. The former two order antiferromagnetically and the Kondo temperatures were evaluated from the quasielastic scattering. CeRuSi3 is non-magnetic and there is a broad peak in the magnetic scattering at 59 meV. Another approach is to study weakly correlated NCS to look for evidence of unconventional behaviour. In particular, systems where the spin-orbit coupling can be varied by the substitution of heavier atoms into non-centrosymmetric positions were considered. LaPdSi3 and LaPtSi3 are superconductors with Tc = 2.65 and 1.52 K respectively and crystallize in the same crystal structure as the CeTX3 compounds. Magnetization, specific heat and μSR measurements reveal that both compounds are weakly coupled, fully gapped s-wave superconductors but LaPdSi3 is a type-I material while LaPtSi3 is type-II with a Ginzburg-Landau parameter of 2.49. The superconducting properties of single crystals of Nb0.18Re0.82 have been investigated and are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Scheidt, Torsten. "Non-linear optical diagnostics of non-centrosymmetric opto-electronic semiconductor materials." Thesis, Stellenbosch : University of Stellenbosch, 2006. http://hdl.handle.net/10019.1/17332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Valdivia-Berroeta, Gabriel Alejandro. "Design, Synthesis, and Characterization of New Non-Centrosymmetric Organic Crystals for Terahertz Generation." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8411.

Full text
Abstract:
Terahertz (THz) spectroscopy is an emerging technology with promising applications in imaging, homeland security, and material detection and quantification. Frequencies in the THz region can be generated by optical rectification of ultrafast near-infrared laser pulses in the presence of a nonlinear optical (NLO) materials such as organic crystals. Non-centrosymmetric organic THz generating crystals such as DAST, HMQ-TMS, and OH1 have received special attention due to the strong generated fields on the order of MV/cm. The cation of these organic salts is designed by connecting electron-donating with electron-accepting groups via a highly planar aromatic system. To improve the performance of organic crystals for THz generation, the molecular hyperpolarizability (β) can be optimized by introducing modifications in the architecture of these push-pull chromophores. However, the large dipole moments associated with molecules that have a large β promote the formation of NLO inactive centrosymmetric molecular alignments in the crystal state. This dissertation provides important insights into the design of new push-pull chromophores that feature a) higher β values compared with state-of-the-art organic crystals, and b) non-centrosymmetric molecular packing in the crystalline state. The first strategy presented on this dissertation relates to the introduction of a triple bond instead of a double bond in the cation of DAST to improve the β parameter. The newly designed 4DEP core was combined with different anions to promote non-centrosymmetric molecular packing with almost ideal arrangements for THz generation. However, large single crystals were difficult to obtain and high THz generation was not achieved. The second strategy presented in this dissertation raises the value of β by extending the π-conjugation length in different cations with dimethylamino and methoxy electron-donating groups. A new molecular cation, 6MNEP, was found to have large β value combined with ideal non-centrosymmetric molecular packing. Combining these two factors, a ~ 75% higher performance for THz generation is expected for 6MNEP compared with DAST. Currently, we are testing different crystallization techniques to grow large single crystals of 6MNEP. In addition to the strategies developed to increase the β parameter value, we also introduce a new molecular modification to induce non-centrosymmetric packing in organic salt THz generating crystals. This is achieved by substituting a methyl by an ethyl group in the quaternary nitrogen of hydrogen-bonded crystals. We showed the applicability of this method for changing molecular packing in the crystal state from centrosymmetric to non-centrosymmetric in two different molecular cations. We also demonstrated the generation of strong THz fields in the novel NLO crystal EHPSI-4NBS.
APA, Harvard, Vancouver, ISO, and other styles
7

Fink, Mario [Verfasser], Ronny [Gutachter] Thomale, and Björn [Gutachter] Trauzettel. "Unconventional and topological superconductivity in correlated non-centrosymmetric systems with spin-orbit coupling / Mario Fink ; Gutachter: Ronny Thomale, Björn Trauzettel." Würzburg : Universität Würzburg, 2019. http://d-nb.info/1175881767/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Velazquez, Orlando Cigarroa. "Estudo da supercondutividade nos sistemas intermetálicos não-centrossimétricos de composição YCo1-xC2 e Lu1-xThxNiC2." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/97/97135/tde-25022016-095616/.

Full text
Abstract:
Recentemente, os compostos não-centrossimétricos têm sido intensamente estudados devido à grande variedade de comportamentos magnéticos, os quais são induzidos pela ausência de centro de simetria na sua estrutura cristalográfica. Esta assimetria induz uma modificação na estrutura de bandas, causando um acoplamento spin-orbita antissimétrico quem é responsável por mecanismos de interação magnética inusuais. A supercondutividade em este tipo de compostos apresenta propriedades que divergem do comportamento esperado pela teoria BCS. Neste trabalho será apresentado um estudo sobre a investigação de supercondutividade em dois sistemas ternários, Y-Co-C e Lu-Ni-C particularmente nos compostos YCo1-xC2 e Lu1-xThNiC2. Estes compostos cristalizam na estrutura CeNiC2 de simetria ortorrômbica é do grupo espacial 38 Amm2 que não possui centro de inversão. As técnicas de caracterização usadas neste trabalho incluem medidas de magnetização, resistividade e calor especifico como funções da temperatura, assim como magnetização como função do campo magnético aplicado. O composto YCo0.7C2 é supercondutor com Tc = 4 K e exibe um comportamento que diverge da teoria BCS. As medidas realizadas neste trabalho sugerem que este material é um forte candidato como supercondutor não convencional, onde poderia existir uma mistura de contribuições nos canais singleto e tripleto. No caso do sistema Lu1-xThxNiC2 os resultados preliminares indicam claramente supercondutividade nos compostos dopados com Th, onde a composição Lu0.6Th0.4NiC2 apresenta uma Tc= 8 K.
In recent years, non-centrosymmetric compounds have attracted a great interest because of their wealth variety of topical behaviors, induced by the lack of the inversion center on the crystallographic structure. This asymmetry leads to a strong modification in the band structures, causing an antisymmetric spin-orbit coupling which is responsible for unusual magnetic interaction mechanisms. Superconductivity in compounds whose crystal structure lacks inversion symmetry are known to display intriguing properties that deviate from conventional BCS superconducting behavior. Here we report the analysis of the ternary systems Y-Co-C and Lu-Ni-C, We focused our analysis in the intermetallic compounds YCo1-xC2 and Lu1-xThxNiC2. Magnetization, resistivity, and heat capacity measurements on polycrystalline samples of noncentrosymmetric YCo0.7C2, showing clear evidence of bulk superconductivity with a critical temperature of Tc =4 K. Interestingly the specific heat of the superconducting state deviates from conventional exponential temperature dependence, which is suggestive of possible unconventional superconducting behavior in YCo0.7C2, similar to that seen in the isostructural and isoelectronic superconductor LaNiC2. Besides, these results strongly suggest that this material is a strong candidate of multiband superconductivity. In the case of the system Lu1- xThxNiC2 our results showed a clear superconducting signal in the Th doped samples, where the composition Lu0.6Th0.4NiC2 has a Tc= 8 K.
APA, Harvard, Vancouver, ISO, and other styles
9

Sguerra, Fabien. "Variation autour de la porphyrine." Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00840225.

Full text
Abstract:
Ces travaux de thèse traitent de l'exploitation des nombreuses propriétés chimiques, physiques et structurales qu'offre le macrocycle porphyrinique.Le premier chapitre présente la sensibilisation de lanthanides émettant dans le proche-infrarouge par un chromophore porphyrinique. La synthèse d'une porphyrine substituée par deux 8-hydroxyquinoléines, sa métallation avec des lanthanides (La, Nd, Yb et Gd) ainsi que les propriétés photophysiques de ces complexes sont présentées. La synthèse de porphyrines fonctionnalisées par des oxamates orientés de façon convergente dans le but de diminuer les désactivations non radiatives du lanthanide par vibrations des liaisons est également étudiée. Le second chapitre décrit la synthèse de porphyrines substituées par deux groupements pyridyl et éthynylpyridyl en position méso-trans. La métallation du macrocyclique porphyrinique par du Zn(II) conduit à la formation de réseaux de coordination mono- ou bi-dimensionnels dont la topologie est dépendante de la nature de la porphyrine. Le troisième chapitre présente la fonctionnalisation de surface par chimi- ou par physi-sorption d'un réseau de coordination directionnel. Dans un premier temps la synthèse de porphyrines substituées par des pyridines et des terpyridines est présentée. Puis l'adsorption de ces tectons sur une surface de graphite est décrite. Enfin une dernière partie traite de la synthèse de porphyrines fonctionnalisées par deux ou quatre bras possédant des substituants soufrés, qui après chimisorption sur une surface d'or, pourraient servir de point d'ancrage à la construction d'un réseau de coordination directionnel perpendiculaire à la surface.
APA, Harvard, Vancouver, ISO, and other styles
10

Bhardwaj, Namrta. "Synthesis of multi-neopentoxy substituted and non-centrosymmetric phthalocyanines." 2001. http://wwwlib.umi.com/cr/yorku/fullcit?pNQ67891.

Full text
Abstract:
Thesis (Ph. D.)--York University, 2001. Graduate Programme in Chemistry.
Typescript. Includes bibliographical references (leaves 134-141). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNQ67891.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Non-centrosymmetric"

1

Bauer, Ernst, and Manfred Sigrist, eds. Non-Centrosymmetric Superconductors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24624-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bauer, Ernst, and Manfred Sigrist. Non-centrosymmetric superconductors: Introduction and overview. Heidelberg: Springer Verlag, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Manfred, Sigrist, and SpringerLink (Online service), eds. Non-Centrosymmetric Superconductors: Introduction and Overview. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Blinov, L. M. Non-Centrosymmetric Langmuir-Blodgett Films. Routledge, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Non-centrosymmetric"

1

Bauer, E., and P. Rogl. "Non-centrosymmetric Superconductors: Strong vs. Weak Electronic Correlations." In Non-Centrosymmetric Superconductors, 3–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24624-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miclea, Corneliu F., Ana-Celia Mota, and Manfred Sigrist. "Vortex Dynamics in Superconductors Without Inversion Symmetry." In Non-Centrosymmetric Superconductors, 297–311. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24624-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eschrig, Matthias, Christian Iniotakis, and Yukio Tanaka. "Properties of Interfaces and Surfaces in Non-centrosymmetric Superconductors." In Non-Centrosymmetric Superconductors, 313–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24624-1_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kimura, N., and I. Bonalde. "Non-centrosymmetric Heavy-Fermion Superconductors." In Non-Centrosymmetric Superconductors, 35–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24624-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Y. Onuki, Yoshichika, and Rikio Settai. "Electronic States and Superconducting Properties of Non-centrosymmetric Rare Earth Compounds." In Non-Centrosymmetric Superconductors, 81–126. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24624-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mineev, V. P., and M. Sigrist. "Basic Theory of Superconductivity in Metals Without Inversion Center." In Non-Centrosymmetric Superconductors, 129–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24624-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Agterberg, D. F. "Magnetoelectric Effects, Helical Phases, and FFLO Phases." In Non-Centrosymmetric Superconductors, 155–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24624-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yanase, Y., and S. Fujimoto. "Microscopic Theory of Pairing Mechanisms." In Non-Centrosymmetric Superconductors, 171–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24624-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Klam, Ludwig, Dirk Manske, and Dietrich Einzel. "Kinetic Theory for Response and Transport in Non-centrosymmetric Superconductors." In Non-Centrosymmetric Superconductors, 211–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24624-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fujimoto, S., and S. K. Yip. "Aspects of Spintronics." In Non-Centrosymmetric Superconductors, 247–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24624-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Non-centrosymmetric"

1

Cabezon, B., S. Rodriguez-Morgade, and T. Torres. "Triazolephthalocyanines as non-centrosymmetric phthalocyanine analogues." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835350.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grahn, P., Andriy Shevchenko, and Matti Kaivola. "Internally twisted non-centrosymmetric optical metamaterials." In SPIE Photonics Europe, edited by Allan D. Boardman, Nigel P. Johnson, Kevin F. MacDonald, and Ekmel Özbay. SPIE, 2014. http://dx.doi.org/10.1117/12.2051779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ueda, K., G. Motoyama, T. Kohara, Amitabha Ghoshray, and Bilwadal Bandyopadhyay. "Microscopic Properties In Non-Centrosymmetric Superconductors." In MAGNETIC MATERIALS: International Conference on Magnetic Materials (ICMM-2007). AIP, 2008. http://dx.doi.org/10.1063/1.2928938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sigrist, M. "Unconventional superconductivity in non-centrosymmetric materials." In EFFECTIVE MODELS FOR LOW-DIMENSIONAL STRONGLY CORRELATED SYSTEMS. AIP, 2006. http://dx.doi.org/10.1063/1.2178038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Luo, Junhua. "Non-Centrosymmetric Structure-Based Optoelectronic Crystalline Materials." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/acpc.2016.as1i.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Akhmedzhanov, Farkhad, Sirojiddin Mirzaev, and Jamoliddin Nazarov. "Elastic anisotropy of non-centrosymmetric cubic crystals." In 178th Meeting of the Acoustical Society of America. ASA, 2019. http://dx.doi.org/10.1121/2.0001294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maurya, Arvind, Fuminori Honda, Yusei Shimizu, Ai Nakamura, Yoshiki J. Sato, Yoshiya Homma, DeXin Li, and Dai Aoki. "Electrical Transport under Pressure in Non-centrosymmetric URhSn." In Proceedings of J-Physics 2019: International Conference on Multipole Physics and Related Phenomena. Journal of the Physical Society of Japan, 2020. http://dx.doi.org/10.7566/jpscp.29.014003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Denisyuk, Igor, Marina Fokina, Ilia Pavlovetc, Tatiana V. Timofeeva, Marina Fonari, and Sergiu Draguta. "Comparison study of non-centrosymmetric materials from aminopyridines." In 2014 International Conference Laser Optics. IEEE, 2014. http://dx.doi.org/10.1109/lo.2014.6886443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Szabados, Jan, Ingo Breunig, and Karsten Buse. "Frequency comb generation in non-centrosymmetric optical microresonators." In Laser Resonators, Microresonators, and Beam Control XXII, edited by Andrea M. Armani, Alexis V. Kudryashov, Alan H. Paxton, and Vladimir S. Ilchenko. SPIE, 2020. http://dx.doi.org/10.1117/12.2544657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sigrist, Manfred, Adolfo Avella, and Ferdinando Mancini. "Introduction to unconventional superconductivity in non-centrosymmetric metals." In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XIII: Thirteenth Training Course in the Physics of Strongly Correlated Systems. AIP, 2009. http://dx.doi.org/10.1063/1.3225489.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Non-centrosymmetric"

1

Paglione, Johnpierre. Non-Centrosymmetric Topological Superconductivity. Office of Scientific and Technical Information (OSTI), April 2019. http://dx.doi.org/10.2172/1507363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jackson, A. G., M. Ohmer, and Steven R. Leclair. Relationship of the Second Order Nonlinear Optical Coefficient to Bandgap in Inorganic Non-Centrosymmetric Crystals. Fort Belvoir, VA: Defense Technical Information Center, May 1995. http://dx.doi.org/10.21236/ada302554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography