To see the other types of publications on this topic, follow the link: Non-centrosymmetric.

Journal articles on the topic 'Non-centrosymmetric'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Non-centrosymmetric.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Vande Velde, C. M. L., M. Zeller, and F. Blockhuys. "Non-centrosymmetric molecules – centrosymmetric structure?" Acta Crystallographica Section A Foundations of Crystallography 67, a1 (August 22, 2011): C749. http://dx.doi.org/10.1107/s0108767311081098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Flack, H. D., G. Bernardinelli, D. A. Clemente, A. Linden, and A. L. Spek. "Centrosymmetric and pseudo-centrosymmetric structures refined as non-centrosymmetric." Acta Crystallographica Section B Structural Science 62, no. 5 (September 18, 2006): 695–701. http://dx.doi.org/10.1107/s0108768106021884.

Full text
Abstract:
The behaviour of the Flack parameter for centrosymmetric and pseudo-centrosymmetric crystal structures based on crystal structures published as being non-centrosymmetric is presented. It is confirmed for centrosymmetric structures that the value obtained for the Flack parameter is critically dependent on the Friedel coverage of the intensity data, approaching 0.5 for a coverage of 100% and sticking near the starting value for a coverage of 0%. For pseudo-centrosymmetric structures, even those very close to being centrosymmetric, it is found that it is often possible to obtain significant values of the Flack parameter. A theoretical basis for this surprising result is established. It has also been possible to establish an a priori estimate of the standard uncertainty of the Flack parameter based only on the chemical composition of the compound and the wavelength of the radiation. The paper concludes with preliminary presentations of bias in the Flack parameter and of inconsistent chemical and crystallographic data.
APA, Harvard, Vancouver, ISO, and other styles
3

Šoptrajanov, Bojan, and Mira Trpkovska. "Copper sulfate monohydrate: Centrosymmetric or non-centrosymmetric?" Journal of Molecular Structure 293 (March 1993): 109–12. http://dx.doi.org/10.1016/0022-2860(93)80027-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chérif, Saïda Fatma, Khaled Hizaoui, Mohamed Faouzi Zid, and Ahmed Driss. "Non-centrosymmetric Na3Nb4As3O19." Acta Crystallographica Section E Structure Reports Online 68, no. 4 (March 17, 2012): i25—i26. http://dx.doi.org/10.1107/s1600536812010537.

Full text
Abstract:
A new non-centrosymmetric compound, trisodium tetraniobium triarsenic nonadecaoxide, Na3Nb4As3O19, has been synthesized by a solid-state reaction at 1123 K. The structure consists of AsO4tetrahedra and NbO6octahedra sharing corners to form a three-dimensional framework containing two types of tunnels running along thecaxis, in which the sodium ions are located. Na+cations occupying statistically several sites, respectively, are surrounded by seven, six and four O atoms at distances ranging from 2.08 (1) to 2.88 (4) Å. The title structure is compared with those containing the same groups,viz.M2XO13andM2X2O17(M= transition metal, andX= As or P).
APA, Harvard, Vancouver, ISO, and other styles
5

Zmitrowicz, Alfred. "Illustrative examples of centrosymmetric and non-centrosymmetric anisotropic friction." International Journal of Solids and Structures 29, no. 23 (1992): 3045–59. http://dx.doi.org/10.1016/0020-7683(92)90157-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zmitrowicz, Alfred. "A constitutive modelling of centrosymmetric and non-centrosymmetric anisotropic friction." International Journal of Solids and Structures 29, no. 23 (1992): 3025–43. http://dx.doi.org/10.1016/0020-7683(92)90156-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mukherjee, Soumya P., and Stephanie H. Curnoe. "Superconductivity in non-centrosymmetric LaNiC2." Physica C: Superconductivity 499 (April 2014): 6–8. http://dx.doi.org/10.1016/j.physc.2014.01.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kneidinger, F., E. Bauer, I. Zeiringer, P. Rogl, C. Blaas-Schenner, D. Reith, and R. Podloucky. "Superconductivity in non-centrosymmetric materials." Physica C: Superconductivity and its Applications 514 (July 2015): 388–98. http://dx.doi.org/10.1016/j.physc.2015.02.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yahia, Hamdi Ben, Ute Ch Rodewald, and Rainer Pöttgen. "Non-centrosymmetric Ce3OCl[AsO3]2." Zeitschrift für Naturforschung B 64, no. 8 (August 1, 2009): 896–900. http://dx.doi.org/10.1515/znb-2009-0804.

Full text
Abstract:
The arsenite chloride Ce3OCl[AsO3]2 was synthesized in the form of colorless crystals from arsenic and cerium dioxide in a NaCl / KCl flux at 850 ◦C. Ce3OCl[AsO3]2 crystallizes with the noncentrosymmetric tetragonal Gd3OCl[AsO3]2 type, space group P42nm. The structure was refined from single crystal diffractometer data: a = 12.8590(6), c = 5.5627(3) Å, wR2 = 0.0429, 1463 F2 values, and 65 variables. The structure is built up from chains of trans edge-sharing OCe4/2 tetrahedra. The [AsO3]3− units coordinate to these chains via the oxygen atoms. Their lone-pairs point all to a common channel. Formation of the non-centrosymmetric superstructure is most likely driven by geometrical constraints and is discussed on the basis of a group-subgroup scheme
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Hyunsoo, Anthony Bakhtiiarov, Wei Zhang, Ignacio Vargas-Baca, and Jacques Barbier. "Non-centrosymmetric Ba3Ti3O6(BO3)2." Journal of Solid State Chemistry 177, no. 1 (January 2004): 159–64. http://dx.doi.org/10.1016/s0022-4596(03)00389-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sigrist, Manfred, D. F. Agterberg, P. A. Frigeri, N. Hayashi, R. P. Kaur, A. Koga, I. Milat, K. Wakabayashi, and Y. Yanase. "Superconductivity in non-centrosymmetric materials." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 536–40. http://dx.doi.org/10.1016/j.jmmm.2006.10.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Grant, T., A. J. S. Machado, D. J. Kim, and Z. Fisk. "Superconductivity in non-centrosymmetric ThCoC2." Superconductor Science and Technology 27, no. 3 (January 1, 2014): 035004. http://dx.doi.org/10.1088/0953-2048/27/3/035004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bouzidi, Chahira, Mohamed Faouzi Zid, Ahmed Driss, and Amira Souilem. "Non-centrosymmetric Rb2Mn2(MoO4)3." Acta Crystallographica Section E Structure Reports Online 70, no. 7 (June 11, 2014): i36—i37. http://dx.doi.org/10.1107/s1600536814013099.

Full text
Abstract:
The title compound, dirubidium dimanganese(II) tris(tetraoxomolybdate), Rb2Mn2(MoO4)3, was prepared by solid-state reactions. The structure can be described as being composed of MnO6octahedra sharing corners with MoO4tetrahedra. The three-dimensional framework contains cavities in which the rubidium ions are located. The Rb+cations are within distorted nine- and 12-vertex polyhedra. The pairs of different Mn2+and Rb+cations are each located on threefold rotation axes.. Rb2Mn2(MoO4)3is isotypic with compounds of the Cs2M2Mo3O12(M= Ni, Fe) family. A comparative structural description is provided between the structure of the title compound and those of related phases. Differences with structures such as alluaudite are discussed.
APA, Harvard, Vancouver, ISO, and other styles
14

Domieracki, Krzysztof, and Dariusz Kaczorowski. "Superconductivity in non-centrosymmetric ThNiSi." Journal of Alloys and Compounds 731 (January 2018): 64–69. http://dx.doi.org/10.1016/j.jallcom.2017.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Weber, T., J. Waizner, G. S. Tucker, L. Beddrich, M. Skoulatos, R. Georgii, A. Bauer, C. Pfleiderer, M. Garst, and P. Böni. "Non-reciprocal magnons in non-centrosymmetric MnSi." AIP Advances 8, no. 10 (October 2018): 101328. http://dx.doi.org/10.1063/1.5041036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Dordević, Tamara. "Ba(ZnAsO4)2·H2O, a non-centrosymmetric framework structure related to feldspar." European Journal of Mineralogy 23, no. 3 (July 13, 2011): 437–47. http://dx.doi.org/10.1127/0935-1221/2011/0023-2100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Iyo, Akira, Izumi Hase, Hiroshi Fujihisa, Yoshito Gotoh, Nao Takeshita, Shigeyuki Ishida, Hiroki Ninomiya, et al. "Superconductivity of centrosymmetric and non-centrosymmetric phases in antiperovskite (Ca,Sr)Pd3P." Journal of Alloys and Compounds 882 (November 2021): 160733. http://dx.doi.org/10.1016/j.jallcom.2021.160733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang Jing-Lei, Jiao Lin, Pang Gui-Ming, and Yuan Hui-Qiu. "Order parameters of non-centrosymmetric superconductors." Acta Physica Sinica 64, no. 21 (2015): 217403. http://dx.doi.org/10.7498/aps.64.217403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Grzybowski, Marek, Artur Jeżewski, Irena Deperasińska, Daniel H. Friese, Marzena Banasiewicz, Vincent Hugues, Bolesław Kozankiewicz, Mireille Blanchard-Desce, and Daniel T. Gryko. "Solvatofluorochromic, non-centrosymmetric π-expanded diketopyrrolopyrrole." Organic & Biomolecular Chemistry 14, no. 6 (2016): 2025–33. http://dx.doi.org/10.1039/c5ob02583d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lee, Der-Hau, and Chung-Hou Chung. "Non-Centrosymmetric Superconductors on Honeycomb Lattice." physica status solidi (b) 255, no. 9 (June 28, 2018): 1800114. http://dx.doi.org/10.1002/pssb.201800114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Rauch, D., S. Süllow, M. Bleckmann, A. Buchsteiner, N. Stüßer, H.-H. Klauss, H. Luetkens, and E. Bauer. "Magnetic order in non-centrosymmetric CePt3B." Journal of Physics: Conference Series 391 (December 14, 2012): 012055. http://dx.doi.org/10.1088/1742-6596/391/1/012055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bernstein, J. "Some reminiscences of non-centrosymmetric structures." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (August 23, 2005): c11—c12. http://dx.doi.org/10.1107/s0108767305099502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ishizawa, Nobuo, Keishi Hiraga, Douglas du Boulay, Hisashi Hibino, Takashi Ida, and Shuji Oishi. "A non-centrosymmetric polymorph of Gd3RuO7." Acta Crystallographica Section E Structure Reports Online 62, no. 1 (December 14, 2005): i13—i16. http://dx.doi.org/10.1107/s1600536805040973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Malik, Z., F. Kneidinger, H. Michor, S. Puchegger, E. Bauer, G. Giester, and P. Rogl. "Physical properties of non-centrosymmetric Ni2Zn11." Intermetallics 38 (July 2013): 88–91. http://dx.doi.org/10.1016/j.intermet.2013.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Piecha, A., A. Gągor, A. Pietraszko, and R. Jakubas. "Unprecedented solid-state chemical reaction—from . From centrosymmetric to non-centrosymmetric crystal structure." Journal of Solid State Chemistry 183, no. 12 (December 2010): 3058–66. http://dx.doi.org/10.1016/j.jssc.2010.10.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kashino, Setsuo, Takeo Fukunaga, Hironobu Izutsu, and Shiho Miyashita. "Hydrogen-bonded complexes of 2-pyridone with centrosymmetric and non-centrosymmetric dicarboxylic acids." Acta Crystallographica Section C Crystal Structure Communications 57, no. 5 (May 15, 2001): 627–31. http://dx.doi.org/10.1107/s0108270101002839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Islam, Md Sahanoor, and Jiten Ghosh. "Study of non-centrosymmetric to centrosymmetric structural transformation in Zr-doped Barium Titanate." Phase Transitions 93, no. 4 (February 25, 2020): 351–60. http://dx.doi.org/10.1080/01411594.2020.1731509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Even, J., L. Pedesseau, C. Hajlaoui, C. Katan, and J.-M. Jancu. "Non-linear electro-elastic coupling in non-centrosymmetric materials." Journal of Physics: Conference Series 367 (May 21, 2012): 012005. http://dx.doi.org/10.1088/1742-6596/367/1/012005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sumiyama, Akihiko, Daichi Kawakatsu, Jun Gouchi, Akira Yamaguchi, Gaku Motoyama, Yusuke Hirose, Rikio Settai, and Yoshichika Ōnuki. "Spontaneous Magnetization of Non-centrosymmetric Superconductor LaNiC2." Journal of the Physical Society of Japan 84, no. 1 (January 15, 2015): 013702. http://dx.doi.org/10.7566/jpsj.84.013702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Porter, Yetta, N. S. P. Bhuvanesh, and P. Shiv Halasyamani. "Synthesis and Characterization of Non-centrosymmetric TeSeO4." Inorganic Chemistry 40, no. 6 (March 2001): 1172–75. http://dx.doi.org/10.1021/ic000994u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Vorontsov, A., I. Vekhter, and M. Eschrig. "Andreev bound states in non-centrosymmetric superconductors." Physica B: Condensed Matter 403, no. 5-9 (April 2008): 1095–97. http://dx.doi.org/10.1016/j.physb.2007.10.291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Barbier, Jacques, Nicolas Penin, Aurélie Denoyer, and Lachlan M. D. Cranswick. "BaBiBO4, a novel non-centrosymmetric borate oxide." Solid State Sciences 7, no. 9 (September 2005): 1055–61. http://dx.doi.org/10.1016/j.solidstatesciences.2004.11.031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Moodie, A. F., and H. J. Whitfield. "Friedel's law and non-centrosymmetric space groups." Acta Crystallographica Section A Foundations of Crystallography 51, no. 2 (March 1, 1995): 198–201. http://dx.doi.org/10.1107/s0108767394012055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Rupar, P. A., L. Chabanne, M. A. Winnik, and I. Manners. "Non-Centrosymmetric Cylindrical Micelles by Unidirectional Growth." Science 337, no. 6094 (August 2, 2012): 559–62. http://dx.doi.org/10.1126/science.1221206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Takimoto, Tetsuya. "Anomalous Spin Response in Non-centrosymmetric Compounds." Journal of the Physical Society of Japan 77, no. 11 (November 15, 2008): 113706. http://dx.doi.org/10.1143/jpsj.77.113706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Meyer, Dirk C., Kurt Richter, Andreas Seidel, Jörg Weigelt, Ronald Frahm, and Peter Paufler. "DAFS Experiments with Non-Centrosymmetric Single Crystals." Journal of Synchrotron Radiation 5, no. 5 (September 1, 1998): 1275–81. http://dx.doi.org/10.1107/s0909049598004026.

Full text
Abstract:
Diffraction anomalous fine structure (DAFS) experiments were applied to an epitaxially grown (Ga,In)P layer on a [001] GaAs substrate as a single-crystalline model substance. The requirements for the reliable measurement of reflection intensities as a function of photon energy, as well as the quantitative DAFS analysis resulting in the complex-valued fine-structure function of the scattering factor, are described. In the case of single crystals, effort had to be put into performing the DAFS measurements in order to hold the position of the Bragg reflection exactly during the energy scan. Using the zinc-blende-type structure as an example, it is shown for the first time that, similar to single-crystal structure analysis, the lack of inversion symmetry has a significant impact on the DAFS signal, so that DAFS may contribute to structure analysis as well.
APA, Harvard, Vancouver, ISO, and other styles
37

Rößler, Ulrich K., Andrei A. Leonov, and Alexei N. Bogdanov. "Chiral Skyrmionic matter in non-centrosymmetric magnets." Journal of Physics: Conference Series 303 (July 6, 2011): 012105. http://dx.doi.org/10.1088/1742-6596/303/1/012105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Pidcock, Elna. "Achiral molecules in non-centrosymmetric space groups." Chemical Communications, no. 27 (2005): 3457. http://dx.doi.org/10.1039/b505236j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Domieracki, Krzysztof, and Dariusz Kaczorowski. "Superconductivity in a non-centrosymmetric compound ThCoSi." Journal of Alloys and Compounds 688 (December 2016): 206–10. http://dx.doi.org/10.1016/j.jallcom.2016.06.292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Delysse, Stéphane, Paul Raimond, and Jean-Michel Nunzi. "Two-photon absorption in non-centrosymmetric dyes." Chemical Physics 219, no. 2-3 (July 1997): 341–51. http://dx.doi.org/10.1016/s0301-0104(97)00106-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Dai, Xia, Cong-Cong Le, Xian-Xin Wu, Sheng-Shan Qin, Zhi-Ping Lin, and Jiang-Ping Hu. "Topological Phase in Non-centrosymmetric Material NaSnBi." Chinese Physics Letters 33, no. 12 (December 2016): 127301. http://dx.doi.org/10.1088/0256-307x/33/12/127301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Arima, T. "Magneto-electric optics in non-centrosymmetric ferromagnets." Journal of Physics: Condensed Matter 20, no. 43 (October 9, 2008): 434211. http://dx.doi.org/10.1088/0953-8984/20/43/434211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Goldacker, Thorsten, Volker Abetz, Reimund Stadler, Igor Erukhimovich, and Ludwik Leibler. "Non-centrosymmetric superlattices in block copolymer blends." Nature 398, no. 6723 (March 1999): 137–39. http://dx.doi.org/10.1038/18191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ueta, D., M. Yoshida, Y. Ikeda, Y. Liu, T. Hong, T. Masuda, and H. Yoshizawa. "Magnetic structure of a non-centrosymmetric CePtSi3." AIP Advances 8, no. 11 (November 2018): 115006. http://dx.doi.org/10.1063/1.5042736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Knyrim, Johanna S., Petra Becker, Dirk Johrendt, and Hubert Huppertz. "A New Non-Centrosymmetric Modification of BiB3O6." Angewandte Chemie International Edition 45, no. 48 (December 11, 2006): 8239–41. http://dx.doi.org/10.1002/anie.200602993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bouzidi, Chahira, Mohamed Faouzi Zid, Ahmed Driss, and Amira Souilem. "ChemInform Abstract: Non-centrosymmetric Rb2Mn2(MoO4)3." ChemInform 45, no. 39 (September 11, 2014): no. http://dx.doi.org/10.1002/chin.201439007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Maruyama, Daisuke, Manfred Sigrist, and Youichi Yanase. "Locally Non-centrosymmetric Superconductivity in Multilayer Systems." Journal of the Physical Society of Japan 81, no. 3 (March 15, 2012): 034702. http://dx.doi.org/10.1143/jpsj.81.034702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

SETTAI, R., Y. OKUDA, I. SUGITANI, Y. ŌNUKI, T. D. MATSUDA, Y. HAGA, and H. HARIMA. "NON-CENTROSYMMETRIC HEAVY FERMION SUPERCONDUCTIVITY IN CeCoGe3." International Journal of Modern Physics B 21, no. 18n19 (July 30, 2007): 3238–45. http://dx.doi.org/10.1142/s0217979207044287.

Full text
Abstract:
We measured the electrical resistivity under pressure for an antiferromagnet CeCoGe 3 without inversion symmetry in the tetragonal crystal structure. The Néel temperature T N1 = 21 K at ambient pressure decreases monotonically with increasing pressure, and becomes zero at about 5.5 GPa. Superconductivity appears above 4.3 GPa, with a superconduting transition temperature T sc = 0.72 K and a large upper critical field H c2 (0) = 7 T at 5.6 GPa. The large upper critical field H c2 (0)= 7 T exceeds the Pauli limitting field H p (≃ 1.86T sc )=1.3 T as in CePt 3 Si , CeRhSi 3 and CeIrSi 3. The large slope of H c2 at T sc , -dH c2 /dT = 18 T/K , at 5.6 GPa indicates the heavy-fermion superconductivity in CeCoGe 3.
APA, Harvard, Vancouver, ISO, and other styles
49

Janoschek, M., R. E. Baumbach, J. J. Hamlin, I. K. Lum, and M. B. Maple. "The non-centrosymmetric heavy fermion ferromagnet Sm2Fe12P7." Journal of Physics: Condensed Matter 23, no. 9 (February 17, 2011): 094221. http://dx.doi.org/10.1088/0953-8984/23/9/094221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ashwell, Geoffrey J., Darren Lochun, Gurmit S. Bahra, Christopher R. Brown, Ian R. Gentle, and Colin H. L. Kennard. "Non-centrosymmetric alignment of optically nonlinear dyes." Supramolecular Science 2, no. 3-4 (September 1995): 131–34. http://dx.doi.org/10.1016/0968-5677(96)89666-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography