Academic literature on the topic 'NON COMMUTATIVITY'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'NON COMMUTATIVITY.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "NON COMMUTATIVITY"
Balibrea, Francisco, Jose Salvador Cánovas Peña, and Víctor Jiménez López. "Commutativity and non-commutativity of topological sequence entropy." Annales de l’institut Fourier 49, no. 5 (1999): 1693–709. http://dx.doi.org/10.5802/aif.1735.
Full textPaban, Sonia, Savdeep Sethi, and Mark Stern. "Non-commutativity and Supersymmetry." Journal of High Energy Physics 2002, no. 03 (March 6, 2002): 012. http://dx.doi.org/10.1088/1126-6708/2002/03/012.
Full textBanerjee, Rabin, Biswajit Chakraborty, and Kuldeep Kumar. "Membrane and non-commutativity." Nuclear Physics B 668, no. 1-2 (September 2003): 179–206. http://dx.doi.org/10.1016/j.nuclphysb.2003.07.009.
Full textFortin, S., M. Gadella, F. Holik, and M. Losada. "Evolution of quantum observables: from non-commutativity to commutativity." Soft Computing 24, no. 14 (December 2, 2019): 10265–76. http://dx.doi.org/10.1007/s00500-019-04546-7.
Full textHaouam, Ilyas. "The Non-Relativistic Limit of the DKP Equation in Non-Commutative Phase-Space." Symmetry 11, no. 2 (February 14, 2019): 223. http://dx.doi.org/10.3390/sym11020223.
Full textLiang, Jin, and Chengwei Zhang. "Study on Non-Commutativity Measure of Quantum Discord." Mathematics 7, no. 6 (June 14, 2019): 543. http://dx.doi.org/10.3390/math7060543.
Full textChung, Won Sang. "Hall effect on non-commutative plane with space-space non-commutativity and momentum-momentum non-commutativity." Advanced Studies in Theoretical Physics 11 (2017): 357–64. http://dx.doi.org/10.12988/astp.2017.614.
Full textTweed, Douglas B., Thomas P. Haslwanter, Vera Happe, and Michael Fetter. "Non-commutativity in the brain." Nature 399, no. 6733 (May 1999): 261–63. http://dx.doi.org/10.1038/20441.
Full textSidharth, B. G. "Non-commutativity, fluctuations and unification." Chaos, Solitons & Fractals 13, no. 9 (July 2002): 1763–66. http://dx.doi.org/10.1016/s0960-0779(01)00188-6.
Full textGuttenberg, S., M. Herbst, M. Kreuzer, and R. Rashkov. "Non-topological non-commutativity in string theory." Fortschritte der Physik 56, no. 4-5 (April 18, 2008): 440–51. http://dx.doi.org/10.1002/prop.200710517.
Full textDissertations / Theses on the topic "NON COMMUTATIVITY"
López, Armand Idárraga. "Position dependent non-commutativity in two dimensions." reponame:Repositório Institucional da UFABC, 2015.
Find full textDissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Matemática , 2015.
No presente trabalho estudamos as consequências físicas da não-comutatividade dependente da posição e rotacionalmente invariante em duas dimensões [x, y] = iq f (x2 + y2), usando a teoria de perturbações em mecânica quântica e considerando os modelos exatamente solúveis como o oscilador harmônico isotrópico e o problema de Landau. Nós demonstramos a consistência da abordagem proposta, em particular, derivamos a versão não-comutativa da equação de continuidade e mostramos que a probabilidade é conservada na nossa abordagem. Pesquisamos três formas gerais diferentes para a f (r): constante, monomial de r2 e exponencial Gaussiana. Obtendo resultados diversos de acordo com as características específicas de cada f (e. g. a potência do monomio, largura da Gaussiana). Para a maior parte das escolhas da f , temos encontrado quebra da degenerescência.
In the present work we study the physical consequences of the position dependent rotationally invariant noncommutativity in two dimensions [x, y] = iq f (x2 + y2), using the perturbation theory in quantum mechanics and considering the exactly solvable models in standard quantum mechanics: isotropic harmonic oscillator and Landau problem. We demonstrate the consistency of the proposed approach, in particular, we derive the noncommutative continuity equation and show that the probability is conserved in our approach. We investigate three different general forms of f (r): constant, monomial of r2 and Gaussian exponential. Obtaining diverse results according to specific characteristics of each f (e. g. monomial power and Gaussian width). Degeneracy breaking is found in most of the cases.
Bouatta, Nazim. "String field theory, non-commutativity and higher spins." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210481.
Full textIn Chapter 2, we give a brief review of vacuum string field theory (VSFT), an approach to open string field theory around the stable vacuum of the tachyon. We discuss the sliver state explaining its role as projector in the space of half-string basis. We review the construction of D-brane solutions in vacuum string field theory. We show that in the sliver basis the star product correspond to a matrix product.
Using the material introduced in the previous chapters, in Chapter 3 we establish a translation dictionary between open and closed strings, starting from open string field theory. Under this correspondence, we show that (off--shell) level--matched closed string states are represented by star algebra projectors in open string field theory. As an outcome of our identification, we show that boundary states, which in closed string theory represent D-branes, correspond to the identity string field in the open string side.
We then turn to noncommutative field theories. In Chapter 4, we introduce the framework in which we will work. The tools introduced are solitons, projectors, and partial isometries.
The ideas of Chapter 4 are applied to specific examples in Chapter 5, where we present new solutions of noncommutative gauge theories in which coincident vortices expand into circular shells. As the theories are noncommutative, the naive definition of the locations of the vortices and shells is gauge-dependent, and so we define and calculate the profiles of these solutions using the gauge-invariant noncommutative Wilson lines introduced by Gross and Nekrasov. We find that charge 2 vortex solutions are characterized by two positions and a single nonnegative real number, which we demonstrate is the radius of the shell. We find that the radius is identically zero in all 2-dimensional solutions. If one considers solutions that depend on an additional commutative direction, then there are time-dependent solutions in which the radius oscillates, resembling a braneworld description of a cyclic universe. There are also smooth BIon-like space-dependent solutions in which the shell expands to infinity, describing a vortex ending on a domain wall.
In Chapter 6, we review the Fronsdal models for free high-spin fields that exhibit peculiar properties. We discuss the triplet structure of totally symmetric tensors of the free String Field Theory and their generalization to AdS background.
In Chapter 7, in the context of massless higher spin gauge fields in constant curvature spaces discussed in chapter 6, we compute the surface charges which generalize the electric charge for spin one, the color charges in Yang-Mills theories and the energy-momentum and the angular momentum for asymptotically flat gravitational fields. We show that there is a one-to-one map from surface charges onto divergence free Killing tensors. These Killing tensors are computed by relating them to a cohomology group of the first quantized BRST model underlying the Fronsdal action.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Tumwesigye, Alex Behakanira. "On one-dimensional dynamical systems and commuting elements in non-commutative algebras." Licentiate thesis, Mälardalens högskola, Utbildningsvetenskap och Matematik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-31437.
Full textGawell, Elin. "Centra of Quiver Algebras." Licentiate thesis, Stockholms universitet, Matematiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-106734.
Full textIpia, Carlos Andrés Palechor. "Deformações e invariâncias em modelos supersimétricos em três e quatro dimensões espaçotemporais." reponame:Repositório Institucional da UFABC, 2017.
Find full textTese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2017.
As deformações do espaço-tempo têm sido bastante estudadas desde diferentes abordagens tais como a não comutatividade canônica e deformações via álgebras de Hopf, com a motivação de que estas deformações podem aparecer a escalas de altas energias, como por exemplo a escala de Planck. De igual forma, pode-se buscar estender deformações para a estrutura do superespaço e a supersimetria, e assim estudar o comportamento clássico e quântico, como a invariância supersimétrica e renormalizabilidade, em modelos definidos sobre estas estruturas. Dois tipos de deformações possíveis da supersimetria foram estudadas neste trabalho. O primeiro deles envolve a introdução de um produto não comutativo em (3+1) dimensões, que embora seja um produto não associativo e que quebra a álgebra da supersimetria, permite construir um modelo de Wess-Zumino com correções de derivadas de ordem superior do tipo Lee-wick, e que resultam ser invariante sob as transformações da SUSY usual. O segundo tipo de deformação estudado utiliza o conceito de álgebras de Hopf, através de um twist de Drinfel¿d. No caso do modelo de Wess-Zumino em (2 + 1) dimensões, veremos que apesar de que as estruturas sejam construídas de forma consistente e seja possível preservar a álgebra da SUSY usando geradores deformados, o modelo resulta não ser invariante sob esta última e não renormalizável. Também foi usado o formalismo de twist para um modelo de Chern-simons com SUSY N = 2 em (2 + 1) dimensões, que permite construir um modelo invariante de calibre, no entanto a invariância da SUSY não seja evidente. Neste modelo, embora em principio a álgebra da SUSY pode ser preservada pelo uso de geradores deformados, estes tornam-se bastante complicados, dificultando a prova da invariância supersimétrica. Pode-se concluir que existem diferentes formas de deformar as estruturas algébricas da supersimetria e que devido aos vínculos de cada modelo em específico torna-se difícil a construção de modelos que preservem algumas das propriedades importantes de modelos supersimétricos que se estudam, tais como a invariância e renormalização.
The space-time deformations have been well studied using different approaches, like as canonical commutativity and deformations via Hopf algebras, with the motivation of such deformations can appear in high scale energies, for example, planck scales. The same way, they can extend deformations to superspace and supersymmetry structures, and thus, study the quantum and classical behavior, like as the supersymmetry invariance and renormalizability, in models defined on these structures. Two classes of possible transformation of supersymmetry were studied in this work. The first one involves the introduction of one non commutative product in (3 + 1) dimensions, although it is not associative and breaks the supersymmetry algebra. It allows the construction of a Wess- Zumino model with higher order derivatives corrections like as Lee-Wick models, and it is invariant under usual SUSY transformations. The second deformation class studied utilizes the Hopf algebra concept, through Drinfel¿d twist. In the Wess-Zumino case in (2 + 1) dimensions, we can observe, although, the construction of the algebraic structure is consistent and it is possible preserve the SUSY algebra using deformed generators, the model is not invariant under this last and non renormalizable, also the twist formalism was used to Chern-Simons model N = 2 in (2 + 1) dimensions, it allows to construct an invariant gauge model, however the SUSY invariance is not evident. In this model, although the SUSY algebra can be preserved using the deformed generators, they become complicated, making it difficult to prove the supersymmetric invariance. It is possible to conclude that there are different ways to deform the algebraic structures of supersymmetry and because of the constraints of each specific model, it is difficult the construction of models which preserve some important properties of supersymmetry models studies, like as invariance and renormalizability.
Baudot, Rémi. "Programmation logique : non-commutativité et polarisation." Paris 13, 2000. http://www.theses.fr/2000PA132024.
Full textBallanti, Federico. "Lo spettro di alcuni oscillatori non commutativi." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8978/.
Full textEl, Khoury Antoine. "Méthodes de vérification de la commutativité des diagrammes dans les catégories symétriques monoïdales fermées libres et non-libres." Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1582/.
Full textThe subject of this thesis belongs to the field of categorical proof theory, which lies somewhere between category theory and proof theory. It uses proof theoretical methods in solving problems related to some general matters in category theory, which are syntactical nature (for example, question of commuting diagrams in canonical structure of some freely generated category belonging to a particular class of categories). On the other hand, categrorical proof theory uses categories as contexts where comme questions of particular interest fo general proof theory may be correctly formulated and answered (for example, the question whether two dérivations are equal, which is the main question of general proof theory)
Malaty, George. "Isomorphic Visualization and Understanding of the Commutativity of Multiplication: from multiplication of whole numbers to multiplication of fractions." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-82868.
Full textBooks on the topic "NON COMMUTATIVITY"
Non-Commutativity, Infinite Dimensionality and Probability at the Crossroads: Proceedings of the Rims Workshop on Infinite-Dimensional Analysis and Quantum ... Quantum Probability & White Noise Analysis). World Scientific Pub Co Inc, 2003.
Find full textBook chapters on the topic "NON COMMUTATIVITY"
Amblard, Maxime. "Encoding Phases Using Commutativity and Non-commutativity in a Logical Framework." In Logical Aspects of Computational Linguistics, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22221-4_1.
Full textBlaisdell, Eben, Max Kanovich, Stepan L. Kuznetsov, Elaine Pimentel, and Andre Scedrov. "Non-associative, Non-commutative Multi-modal Linear Logic." In Automated Reasoning, 449–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10769-6_27.
Full textKrajči, S., R. Lencses, J. Medina, M. Ojeda-Aciego, A. Valverde, and P. Vojtáš. "Non-commutativity and Expressive Deductive Logic Databases." In Logics in Artificial Intelligence, 149–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45757-7_13.
Full textManolakos, G., and G. Zoupanos. "Non-commutativity in Unified Theories and Gravity." In Springer Proceedings in Mathematics & Statistics, 177–205. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2715-5_10.
Full textMedina, Jesús. "Overcoming Non-commutativity in Multi-adjoint Concept Lattices." In Lecture Notes in Computer Science, 278–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02478-8_35.
Full textGhoderao, Pulkit S., Rajiv V. Gavai, and P. Ramadevi. "Scale of Non-commutativity and the Hydrogen Spectrum." In Springer Proceedings in Physics, 429–35. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4408-2_60.
Full textGuglielmi, Alessio, and Lutz Straßburger. "Non-commutativity and MELL in the Calculus of Structures." In Computer Science Logic, 54–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44802-0_5.
Full textChechik, Marsha, Ioanna Stavropoulou, Cynthia Disenfeld, and Julia Rubin. "FPH: Efficient Non-commutativity Analysis of Feature-Based Systems." In Fundamental Approaches to Software Engineering, 319–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89363-1_18.
Full textSergyeyev, Artur. "Time Dependence and (Non)commutativity of Symmetries of Evolution Equations." In Noncommutative Structures in Mathematics and Physics, 379–90. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0836-5_31.
Full textFaragó, I., and Á. Havasi. "The Mathemathical Background of Operator Splitting and the Effect of Non-Commutativity." In Large-Scale Scientific Computing, 264–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45346-6_27.
Full textConference papers on the topic "NON COMMUTATIVITY"
Sabido, M., O. Obregón, E. Mena, Alfredo Herrera-Aguilar, Francisco S. Guzmán Murillo, Ulises Nucamendi Gómez, and Israel Quiros. "Non Commutativity and Λ." In GRAVITATION AND COSMOLOGY: Proceedings of the Third International Meeting on Gravitation and Cosmology. AIP, 2008. http://dx.doi.org/10.1063/1.3058570.
Full textFaggian, Claudia. "Proof construction and non-commutativity." In the 2nd ACM SIGPLAN international conference. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/351268.351278.
Full textRecknagel, Andreas. "Branes, boundary CFT and non-commutativity." In Non-perturbative Quantum Effects 2000. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.006.0031.
Full textMOCIOIU, I., M. POSPELOV, and R. ROIBAN. "LIMITS ON THE NON-COMMUTATIVITY SCALE." In Proceedings of the Second Meeting. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778123_0044.
Full textSeridi, M. A., and N. Belaloui. "Parabosonic string and space-time non-commutativity." In THE 8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011). AIP, 2012. http://dx.doi.org/10.1063/1.4715445.
Full textZhao, Sumu, Damian Pascual, Gino Brunner, and Roger Wattenhofer. "Of Non-Linearity and Commutativity in BERT." In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9533563.
Full textPimentel, Luis O. "Non-commutativity in classical and quantum cosmology." In GRAVITATION AND COSMOLOGY: 2nd Mexican Meeting on Mathematical and Experimental Physics. AIP, 2005. http://dx.doi.org/10.1063/1.1900526.
Full textDisenfeld, Cynthia, Ioanna Stavropoulou, Julia Rubin, and Marsha Chechik. "FPH: Efficient Detection of Feature Interactions through Non-Commutativity." In 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C). IEEE, 2017. http://dx.doi.org/10.1109/icse-c.2017.71.
Full textHorváthy, P. A. "Exotic Galilean Symmetry, Non-commutativity & the Hall Effect." In Proceedings of the 23rd International Conference of Differential Geometric Methods in Theoretical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772527_0018.
Full textLUKIERSKI, J., and M. WORONOWICZ. "Twisted Space-Time Symmetry, Non-Commutativity and Particle Dynamics." In Proceedings of the 23rd International Conference of Differential Geometric Methods in Theoretical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772527_0028.
Full text