Academic literature on the topic 'Non-covalent inhibitor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non-covalent inhibitor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non-covalent inhibitor"
Bjij, Imane, Pritika Ramharack, Shama Khan, Driss Cherqaoui, and Mahmoud Soliman. "Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase Through Target-Focused Modelling." Proceedings 22, no. 1 (November 14, 2019): 103. http://dx.doi.org/10.3390/proceedings2019022103.
Full textLockbaum, Gordon J., Archie C. Reyes, Jeong Min Lee, Ronak Tilvawala, Ellen A. Nalivaika, Akbar Ali, Nese Kurt Yilmaz, Paul R. Thompson, and Celia A. Schiffer. "Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188." Viruses 13, no. 2 (January 25, 2021): 174. http://dx.doi.org/10.3390/v13020174.
Full textGomez, Eliana B., Lippincott Isabel, Mary S. Rosendahal, Stephen M. Rothenberg, Steven W. Andrews, and Barb J. Brandhuber. "Loxo-305, a Highly Selective and Non-Covalent Next Generation BTK Inhibitor, Inhibits Diverse BTK C481 Substitution Mutations." Blood 134, Supplement_1 (November 13, 2019): 4644. http://dx.doi.org/10.1182/blood-2019-126114.
Full textBuneeva, O. A., L. N. Aksenova, and A. E. Medvedev. "A Simple Approach for Pilot Analysis of Time-dependent Enzyme Inhibition: Discrimination Between Mechanism-based Inactivation and Tight Binding Inhibitor Behavior." Biomedical Chemistry: Research and Methods 3, no. 1 (2020): e00115. http://dx.doi.org/10.18097/bmcrm00115.
Full textZhang, Datong, He Gong, and Fancui Meng. "Recent Advances in BTK Inhibitors for the Treatment of Inflammatory and Autoimmune Diseases." Molecules 26, no. 16 (August 13, 2021): 4907. http://dx.doi.org/10.3390/molecules26164907.
Full textEhmann, D. E., H. Jahic, P. L. Ross, R. F. Gu, J. Hu, G. Kern, G. K. Walkup, and S. L. Fisher. "Avibactam is a covalent, reversible, non- -lactam -lactamase inhibitor." Proceedings of the National Academy of Sciences 109, no. 29 (July 2, 2012): 11663–68. http://dx.doi.org/10.1073/pnas.1205073109.
Full textBjij, Imane, Pritika Ramharack, Shama Khan, Driss Cherqaoui, and Mahmoud E. S. Soliman. "Tracing Potential Covalent Inhibitors of an E3 Ubiquitin Ligase through Target-Focused Modelling." Molecules 24, no. 17 (August 28, 2019): 3125. http://dx.doi.org/10.3390/molecules24173125.
Full textSugiyama, Katsumi, Zhou Chen, Yong S. Lee, and Peter F. Kador. "Isolation of a non-covalent aldose reductase–nucleotide–inhibitor complex." Biochemical Pharmacology 59, no. 4 (February 2000): 329–36. http://dx.doi.org/10.1016/s0006-2952(99)00332-9.
Full textYang, Zhimin, Hui Liu, Botao Pan, Fengli He, and Zhengying Pan. "Design and synthesis of (aza)indolyl maleimide-based covalent inhibitors of glycogen synthase kinase 3β." Organic & Biomolecular Chemistry 16, no. 22 (2018): 4127–40. http://dx.doi.org/10.1039/c8ob00642c.
Full textSivakumar, Dakshinamurthy, and Matthias Stein. "Binding of SARS-CoV Covalent Non-Covalent Inhibitors to the SARS-CoV-2 Papain-Like Protease and Ovarian Tumor Domain Deubiquitinases." Biomolecules 11, no. 6 (May 28, 2021): 802. http://dx.doi.org/10.3390/biom11060802.
Full textDissertations / Theses on the topic "Non-covalent inhibitor"
Bordessa, Andrea. "Design, synthesis and structural evaluation of peptidomimetics towards foldamers, PNAs and non covalent inhibitors of the 20S proteasome." kostenfrei, 2008. http://www.opus-bayern.de/uni-regensburg/volltexte/2009/1112/.
Full textEngdahl, Cecilia. "Selective inhibition of acetylcholinesterase 1 from disease-transmitting mosquitoes : design and development of new insecticides for vector control." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-134625.
Full textLe, Thien Anh [Verfasser], Bernd [Gutachter] Engels, and Volker [Gutachter] Engel. "Theoretical investigations of proton transfer and interactions or reactions of covalent and non-covalent inhibitors in different proteins / Thien Anh Le ; Gutachter: Bernd Engels, Volker Engel." Würzburg : Universität Würzburg, 2020. http://d-nb.info/1219429864/34.
Full textMehrtens, (nee Nikkel) Janna Marie. "The Design, Synthesis and Biological Assay of Cysteine Protease Specific Inhibitors." Thesis, University of Canterbury. Chemistry, 2007. http://hdl.handle.net/10092/3271.
Full textNichols, Derek Allen. "Structure-Based Design of Novel Inhibitors and Ultra High Resolution Analysis of CTX-M Beta-Lactamase." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5284.
Full textScholtes, Jan Felix [Verfasser], and Oliver [Akademischer Betreuer] Trapp. "Chiral induction in stereodynamic catalysts by non-covalent interactions : ligand design, supramolecular self-recognition, deracemization and enantioselective self-inhibition / Jan Felix Scholtes ; Betreuer: Oliver Trapp." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1188564129/34.
Full textKeita, Massaba. "Conception, synthèse et évaluation biologique d'inhibiteurs fluorés non covalents du protéasome." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-01059792.
Full textKuo, Chin-Jung, and 郭瑾融. "A non-covalent small inhibitor blocking β-tubulin:CCT-β complex induces apoptosis and suppresses migration and invasionin CL1-5 cells." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/yj45b7.
Full text國立臺灣大學
生化科學研究所
107
Previously, we reported the protein-protein interaction (PPI) between β-tubulin and CCT-β complex as a potential anti-cancer chemotherapeutic target. Through virtual screening, a compound 3112210 from Sigma-Aldrich compound bank was identified to be a reversible inhibitor of the PPI by docking into hot spots on this PPI interface of β- tubulin. In this study, 3112210 was tested on a highly metastatic non-small cell lung cancer (NSCLC) cell line, CL1-5. The co-IP experiments showed that, in 3112210-treated cancer cells, β-tubulin and CCT-β complex was disrupted. Furthermore, 3112210 caused CL1-5 cell death through ER stress and apoptosis. In addition to verifying its toxicity toward CL1-5, we performed migration and invasion assays using dosage at about IC20. The results indicated that 3112210 also inhibited cancer cell migration and invasion, and MMP-2, -9 were also inhibited. These anti-metastatic effects were endowed via integrin- related pathways and EMT transcriptional factors, as demonstrated by western blot experiments. To sum, 3112210 is a novel non-covalent inhibitor for β-tubulin:CCT-β complex in CL1-5 lung adenocarcinoma cells to induce cancer cell death and impeded cell metastasis.
Le, Thien Anh. "Theoretical investigations of proton transfer and interactions or reactions of covalent and non-covalent inhibitors in different proteins." Doctoral thesis, 2020. https://doi.org/10.25972/OPUS-17051.
Full textHeutzutage sind computergestützte Untersuchungen ein essentieller Teil in der chemischen, biochemischen oder pharmazeutischen Forschung. Durch die in den Jahren gestiegene Rechenleistung ist die Berechnung biologischer Systeme möglich. Im Rahmen dieser Arbeit wurden molekularmechanische (MM) und quantenmechanische (QM) Methoden sowie die Kombination beider (QM/MM) für verschiedene Studien eingesetzt, die teilweise aus Fragestellungen verschiedener Arbeitsgruppen hervorgegangen sind. Dadurch umfasst diese Arbeit acht verschiedene Themenkomplexe, bei denen chemische Reaktionen, aber auch der Protonentransfer in Enzymen, Konformationsänderungen von Liganden oder Proteinen und die Verifizierung experimenteller Daten im Fokus standen. Die Arbeit befasst sich anfangs mit Reaktionsmechansimen aromatischer Inhibitoren für Cysteinproteasen, Enzyme, welche in vielen Organismen enthalten sind. Diese Enzyme sind für verschiedene Karzinome oder Krankheiten wie der Afrikanischen Trypanosomiasis oder der Chagas-Krankheit verantwortlich. Aromatische SNAr-Elektrophile bieten hierbei eine neue Möglichkeit der kovalenten Modifikation dieser Proteasen. Quantenmechanische wurden durchgeführt, um Einblicke in die Energetik und mögliche Mechanismen zu erhalten. Das nächste Kapitel befasst sich ebenfalls mit Trypanosomiasis, setzt aber den Fokus auf ein anderes Enzym. Die Besonderheit von Trypanosomiasis ist der Thiol Metabolismus, welcher durch kovalente Inhibitoren modifiziert werden kann. In diesem Kontext wurden der Wildtyp und Punktmutationen des Enzyms Tryparedoxin mittels Molekulardynamik Simulationen untersucht, um Interaktionen einzelner Aminosäuren mit dem kovalenten Inhibitor zu evaluieren. Experimentelle Daten zeigten, dass eine Dimerisierung des Enzyms in Anwesenheit des Inhibitors stattfindet. Durch MD-Simulationen konnte gezeigt werden, dass die Stabilität des Dimers in Abwesenheit des Inhibitors sinkt, wodurch experimentellen Daten bestätigt wurden. Weitere Untersuchungen zu Cysteinproteasen wie Cruzain und Rhodeasin wurden durchgeführt, um experimentelle kinetische Daten von kovalenten Vinylsulfon Inhibitoren zu reproduzieren. Hierbei wurden Methoden wie QM oder QM/MM Rechnungen aber auch Docking, MD und MMPBSA/MMGBSA Simulationen angewandt, um diese Daten zu reproduzieren. In den Untersuchungen zeigte sich, dass die Verwendung der Kraftfeld-basierten Methoden zu qualitativ richtigen Vorhersagen führte. Die Kinase AKT ist in einer Reihe von Krankheiten involviert und spielt eine wichtige Rolle bei der Entstehung von Krebs. Neue kovalent-allosterische Inhibitoren wurden entwickelt und im kovalenten Komplex mit AKT kristallisiert. Die Kristallstrukturen zeigten, dass je nach Inhibitor ein anderes Cystein adressiert wurde. Um diese Unterschiede zu untersuchen, wurden computergestützte Simulationen verwendet. Enoyl-(acyl carrier) (ENR) Proteine sind essentiell für den letzten Schritt in der Fettsäurebiosynthese II (FAS) und bilden ein gutes Target zur Inhibition. Der Diphenylether Inhibitor SKTS1, welchen man ursprünglich als Target für den ENR von Staphylococcus aureus entwarf, wurde auch in InhA, dem ENR von Mycobacterium Tuberculosis (TB), kristallisiert. Die Kristallstrukturen weisen je nach Protein auf einen Wechsel der tautomeren Form des Inhibitors hin. Dieser Sachverhalt wurde mittels MD Simulationen untersucht. Hierbei zeigten die Ergebnisse eine Übereinstimmung mit den experimentellen Daten. Diese Arbeit befasst sich ebenfalls mit der Entwicklung eines kovalenten Inhibitors ausgehend von einem nicht-kovalenten Liganden. Das Target FadA5 ist ein integrales Enzym zur Degradation von Steroiden in TB und ist für die chronische Tuberkulose verantwortlich. Dieses Enzym wurde im Komplex mit einem nicht-kovalenten Liganden kristallisiert, welches als Startpunkt dieser Untersuchungen diente. QM, QM/MM, Docking und MD Simulationen wurden hierbei verwandt, um potentielle Kandidaten zu evaluieren. Das nächste Kapitel befasst sich mit der Modifikation des Produktspektrums von Bacillus megaterium Levansucrase, eine Polymerase, welche die Biosynthese von Fruktanen katalysiert. Durch kovalente Modifikatoren im Wildtyp oder bei Mutanten des Enzyms konnte sowohl eine Anreicherung von Oligosacchariden, aber auch von Polymeren mit höherem Polymerisationsgrad erzielt werden. Um diese Änderungen im Produktspektrum zu verstehen, wurden MD Simulationen durchgeführt. Schließlich wurde die Untersuchung des Protonentransfers in katalytischen Cystein Histidin Dyaden durchgeführt. Hierbei stand der Einfluss der Relaxation der Proteinumgebung auf diese Reaktion im Fokus. Berechnungen in den Enzymen FadA5 und Rhodesain zeigten, dass der präferierte Protonierungszustand der Diade von der Proteinumgebung abhängt und einen großen Einfluss auf die Reaktionsbarriere hat. Um dynamische Effekte einzubeziehen, wurde die Adaption der Umgebung auf einen fixierten Protonierungszustand mittels MD Simulationen analysiert
Tseng, Guo-Hsing, and 曾國興. "Identification and Characterization of Optimal Inhibitors and Non-covalent Interaction with Enzyme Using Mass Spectrometry." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/71966133273175971286.
Full text國立彰化師範大學
化學系
93
Revolutional progress in combinatorial chemistry in recent years necessitated the development of high-throughput screening tools capable of purification/isolation, structural characterization with maximum sensitivity and speed. The intrinsic properties for the structural and analytical characterization render mass spectrometry an essential tool in combinatorial technologies. In this study, we attempted to use electrospray ionization mass spectrometry (ESI-MS) to investigate the non-covalent interaction between enzyme and its inhibitor. The ��-L-fucosidase from corynebacterium sp was chosen as a model for non-covalent interaction. Enzyme-inhibitor (E-I) complexes were investigated by nanoflow ESI-MS under non-denaturing conditions. Several methods were investigated to characterize the non-covalent interaction of enzyme-inhibitor. In the first part of the thesis, the non-covalent nature and the specificity of complexes are studied in detail with a number of control experiments. Mass spectrometry can be a tool to determine the inhibition constant (KI) of ��-L-fucosidase inhibitors. The ratio of the free enzyme and E-I complex in mass spectrum could be a measure to reflect their concentrations in solution to evaluate KI. Under the current nanoflow ESI-MS sensitivity, we found that the method was valid for KI ranging from micromolar to nanomolar. However, direct MS-based evaluation of more potent inhibitors can not obtain accurate values and still present a challenge by mass spectrometry. Alternatively, we tried to determine the most potent inhibitor in an inhibitor mixture used tandem mass spectrometry. In the collisional-induced dissociation (CID) mass spectrum, the intensity of fragment ion for the precursor of each enzyme-inhibitor can be used to identify the most potent inhibitor. The potency of the inhibitor in the range of nanomolar obtained from the tandem mass spectrometry was in agreement to the literature. In addition, we found that the proton affinity of inhibitor can be obtained from CID experiment, and the tendency correlated well with the inhibition capability reported in the literature. Whether the proton affinity of inhibitor can be used as a probe to select the more potent inhibitors from CID mass spectrum remains further study. On the other hand, in source CID experiment monitored by mass spectrometry permitted us to evaluate rapidly the relative gas phase stabilities of non-covalent fucosidase-inhibitor complexes. In this experiment, dissociation in the gas phase was provoked by increasing the accelerating voltage of the ion (DP2) in the source-analyzer interface region. The DP2 value needed to dissociate 50% of the non-covalent complex initially present was taken as a gas phase stability parameter of the enzyme-inhibitor complex. The DP2 values that needed to dissociate 50% of the complexes initially present were may correlate the energy of the electrostatic and H-bond interactions between ��-L-fucosidase and inhibitor. Therefore, we could use the method to probe the binding force of fucosidase-inhibitor.
Book chapters on the topic "Non-covalent inhibitor"
Potier, Noelle, Patrick Barth, Denis Tritsch, Jean-François Biellmann, and Alain Van Dorsselaer. "Study of Non-Covalent Enzyme-Inhibitor Complexes of Aldose Reductase by Electrospray Mass Spectrometry." In Advances in Experimental Medicine and Biology, 453–54. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5871-2_51.
Full textCrawford, James J., and Haiming Zhang. "Discovery and Development of Non-Covalent, Reversible Bruton’s Tyrosine Kinase Inhibitor Fenebrutinib (GDC-0853)." In ACS Symposium Series, 239–66. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1332.ch009.
Full textLegler, Günter. "β-Glucocerebrosidase: Mechanistic Studies With Covalent and Non-Covalent Inhibitors." In Lipid Storage Disorders, 63–72. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1029-7_7.
Full textWatterson, Scott H., and Joseph A. Tino. "Advances in the Discovery and Development of Non-Covalent and Covalent BTK Inhibitors Targeting Autoimmune Diseases." In 2020 Medicinal Chemistry Reviews, 195–226. Medicinal Chemistry Division of the American Chemical Society, 2020. http://dx.doi.org/10.29200/acsmedchemrev-v55.ch8.
Full textConference papers on the topic "Non-covalent inhibitor"
Asami, Tokiko, Wataru Kawahata, Shigeki Kashimoto, and Masaaki Sawa. "Abstract B152: CB1763, a highly selective, novel non-covalent BTK inhibitor, targeting ibrutinib-resistant BTK C481S mutant." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; October 26-30, 2017; Philadelphia, PA. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1535-7163.targ-17-b152.
Full textQuereda, V., S. Bayle, V. Francesca, M. Andrii, R. William, and D. Derek. "Abstract P1-06-03: A selective Cdk12/13 non-covalent inhibitor with potent anti-breast cancer activity." In Abstracts: 2018 San Antonio Breast Cancer Symposium; December 4-8, 2018; San Antonio, Texas. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-p1-06-03.
Full textSebti, Said M., Aslamuzzaman Kazi, Sevil Ozcan, Awet G. Tecleab, Ying Sun, and Harshani Lawrence. "Abstract 1810: PI-1840, a novel non-covalent and rapidly reversible proteasome inhibitor with anti-tumor activity." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1810.
Full textJohannessen, Liv H., Shanhu Hu, Nan Ke, Anthony D'Ippolito, Nisha Rajagopal, Jason Marineau, Anneli Savinainen, William Zamboni, and Graeme Hodgson. "Abstract C091: Preclinical evaluation of PK, PD, and antitumor activity of the oral, non-covalent, potent and highly selective CDK7 inhibitor, SY-5609, provides rationale for clinical development in multiple solid tumor indications." In Abstracts: AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; October 26-30, 2019; Boston, MA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1535-7163.targ-19-c091.
Full textBeltran, Pedro J., Jinghui Zhan, Petia Mitchell, Ryan P. Wurz, Liping Pettus, Tian Wu, Mary Chaves, et al. "Abstract 2587: A novel covalent inhibitor of mutant but not wild-type (WT) epidermal growth factor receptor (EGFR) has activity in vitro and in vivo in non-small cell lung cancer (NSCLC) models." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2587.
Full textFreund, M., J.-P. Cazenave, M.-L. Wiesel, C. Roitsch, N. Riehl-Bellon, G. Loison, Y. E. Lemoine, S. Brown, and M. Courtney. "RECOMBINANT HIRUDIN INHIBITS EXPERIMENTAL VENOUS THROMBOSIS INDUCED BY INJECTION OF TISSUE FACTOR AND STASIS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643917.
Full textKoneti Rao, A., and Maria A. Kowalska. "ADP-INDUCED CYTOPLASMIC CALCIUM MOBILIZATION AND SHAPE CHANGE IN PLATELETS ARE MEDIATED BY DIFFERENT BINDING SITES." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644466.
Full textKodama, K., O. Larm, P. Olsson, B. Pasehe, J. Risenfeldt, and J. Swedenborg. "ANTITHROMBIN III BINDING TO IMMOBILIZED HEPARIN FRAGMENTS AND ITS RELATION TO F XA INHIBITION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643091.
Full textKazi, Aslamuzzaman, Sevil Ozcan, Harshani Lawrence, and Said M. Sebti. "Abstract 2778: Development of non-covalent reversible proteasome inhibitors." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-2778.
Full textLee, Ho-June, Gabriele Schaefer, Tim Heffron, Shiva Malek, Mark Merchant, Robert L. Yauch, Valentina Pirazzoli, Katerina Politi, and Jeff Settleman. "Abstract LB-309: Non-covalent wild-type-sparing inhibitors of EGFR T790M ." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-lb-309.
Full text