Academic literature on the topic 'Non Equilibrium Green's Function'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Non Equilibrium Green's Function.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Non Equilibrium Green's Function"
Stefanucci, Gianluca, Andrea Marini, and Stefano Bellucci. "Non‐Equilibrium Green's Functions." physica status solidi (b) 256, no. 7 (July 2019): 1900335. http://dx.doi.org/10.1002/pssb.201900335.
Full textWinge, David O., Martin Franckié, Claudio Verdozzi, Andreas Wacker, and Mauro F. Pereira. "Simple electron-electron scattering in non-equilibrium Green's function simulations." Journal of Physics: Conference Series 696 (March 2016): 012013. http://dx.doi.org/10.1088/1742-6596/696/1/012013.
Full textTakeda, Hiroshi, and Nobuya Mori. "Mode-Coupling Effects in Non-Equilibrium Green's Function Device Simulation." Japanese Journal of Applied Physics 44, no. 4B (April 21, 2005): 2664–68. http://dx.doi.org/10.1143/jjap.44.2664.
Full textYAMAMOTO, Kouhei, Hiroyuki ISHII, Kenji HIROSE, and Nobuhiko KOBAYASHI. "Thermal Conduction Calculation of Nanowire by Non-equilibrium Green's Function." Hyomen Kagaku 32, no. 7 (2011): 410–15. http://dx.doi.org/10.1380/jsssj.32.410.
Full textKoshelkin, A. V. "Two-particle Green's functions in non-equilibrium matter." Physics Letters B 471, no. 2-3 (December 1999): 202–7. http://dx.doi.org/10.1016/s0370-2693(99)01373-8.
Full textKoshelkin, A. V. "Two-particle Green's functions in non-equilibrium matter." Czechoslovak Journal of Physics 50, S2 (February 2000): 120–25. http://dx.doi.org/10.1007/s10582-000-0036-7.
Full textCamsari, Kerem Y., Samiran Ganguly, Deepanjan Datta, and Supriyo Datta. "Non-Equilibrium Green's Function Based Circuit Models for Coherent Spin Devices." IEEE Transactions on Nanotechnology 18 (2019): 858–65. http://dx.doi.org/10.1109/tnano.2018.2889443.
Full textZhao, Renqiang, Yao Luo, Fan Jiang, Yuxin Dai, Zengying Ma, Junwen Zhong, Peng Wu, Tao Zhou, and Yucheng Huang. "Ultrahigh-stability SnOX (X = S, Se) nanotubes with a built-in electric field as a highly promising platform for sensing NH3, NO and NO2: a theoretical investigation." Journal of Materials Chemistry A 10, no. 14 (2022): 7948–59. http://dx.doi.org/10.1039/d2ta00463a.
Full textHe, Yu, Yu Wang, Gerhard Klimeck, and Tillmann Kubis. "Non-equilibrium Green's functions method: Non-trivial and disordered leads." Applied Physics Letters 105, no. 21 (November 24, 2014): 213502. http://dx.doi.org/10.1063/1.4902504.
Full textSubhan, Fazle, M. Umar Farooq, and Jisang Hong. "Bias-dependent transport properties of passivated tilted black phosphorene nanoribbons." Physical Chemistry Chemical Physics 20, no. 16 (2018): 11021–27. http://dx.doi.org/10.1039/c8cp00090e.
Full textDissertations / Theses on the topic "Non Equilibrium Green's Function"
Gustafsson, Alexander. "Modeling of non-equilibrium scanning probe microscopy." Licentiate thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-46448.
Full textCovito, Fabio [Verfasser], and Angel [Akademischer Betreuer] Rubio. "An efficient ab-initio non-equilibrium Green's function approach to carrier dynamics in many-body interacting systems / Fabio Covito ; Betreuer: Angel Rubio." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2020. http://d-nb.info/1218688459/34.
Full textKruglyak, Yu A. "Non-Equilibrium Green’s Function Method in Matrix Representation and Model Transport Problems of Nanoelectronics." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35352.
Full textFonseca, James Ernest. "Accurate treatment of interface roughness in nanoscale double-gate metal oxide semiconductor field effect transistors using non-equilibrium Green's functions." Ohio : Ohio University, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1176318345.
Full textOdell, Anders. "Quantum transport in photoswitching molecules : An investigation based on ab initio calculations and Non Equilibrium Green Function theory." Licentiate thesis, KTH, Materials Science and Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4790.
Full textMolecular electronics is envisioned as a possible next step in device miniaturization. It is usually taken to mean the design and manufacturing of electronic devices and applications where organic molecules work as the fundamental functioning unit. It involves the easurement and manipulation of electronic response and transport in molecules attached to conducting leads. Organic molecules have the advantages over conventional solid state electronics of inherent small sizes, endless chemical diversity and ambient temperature low cost manufacturing.
In this thesis we investigate the switching and conducting properties of photochromic dithienylethene derivatives. Such molecules change their conformation in solution when acted upon by light. Photochromic molecules are attractive candidates for use in molecular electronics because of the switching between different states with different conducting properties. The possibility of optically controlling the conductance of the molecule attached to leads may lead to new device implementations.
The switching reaction is investigated with potential energy calculations for different values of the reaction coordinate between the closed and the open isomer. The electronic and atomic structure calculations are performed with density functional theory (DFT). It is concluded that there is a large potential energy barrier separating the open and closed isomer and that switching between open and closed forms must involve excited states.
The conducting properties of the molecule inserted between gold leads is calculated within the Non Equilibrium Green Function theory. The transmission function is calculated for the two isomers with different basis sizes for the gold contacts, as well as the electrostatic potential, for finite applied bias voltages. We conclude that a Au 6s basis give qualitatively the same result as a Au spd basis close to the Fermi level. The transmission coefficient at the Fermi energy is around 10 times larger in the closed molecule compared to the open. This will result in a large difference in conductivity. It is also found that the large difference in conductivity will remain for small applied bias voltages. The results are consistent with earlier work.
Monturet, Serge. "Inelastic effects in electronic currents at the nanometer scale." Phd thesis, Université Paul Sabatier - Toulouse III, 2008. http://tel.archives-ouvertes.fr/tel-00469906.
Full textMOTTA, CARLO. "First-principles study of electronic transport in organic molecular junctions." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/40094.
Full textBarr, Joshua. "Transport in Interacting Nanostructures." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/301551.
Full textEdirisinghe, Pathirannehelage Neranjan S. "Charge Transfer in Deoxyribonucleic Acid (DNA): Static Disorder, Dynamic Fluctuations and Complex Kinetic." Digital Archive @ GSU, 2011. http://digitalarchive.gsu.edu/phy_astr_diss/45.
Full textNadimi, Ebrahim. "Quantum Mechanical and Atomic Level ab initio Calculation of Electron Transport through Ultrathin Gate Dielectrics of Metal-Oxide-Semiconductor Field Effect Transistors." Doctoral thesis, Universitätsbibliothek Chemnitz, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200800477.
Full textDie vorliegende Arbeit beschäftigt sich mit der Berechnung von Tunnelströmen in MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors). Zu diesem Zweck wurde ein quantenmechanisches Modell, das auf der selbstkonsistenten Lösung der Schrödinger- und Poisson-Gleichungen basiert, entwickelt. Die Gleichungen sind im Rahmen der EMA gelöst worden. Die Lösung der Schrödinger-Gleichung unter offenen Randbedingungen führt zur Berechnung von Ladungsverteilung und Lebensdauer der Ladungsträger in den QBSs. Der Tunnelstrom wurde dann aus diesen Informationen ermittelt. Der Tunnelstrom wurde in verschiedenen Proben mit unterschiedlichen Oxynitrid Gatedielektrika berechnet und mit gemessenen Daten verglichen. Der Vergleich zeigte, dass die effektive Masse sich sowohl mit der Schichtdicke als auch mit dem Stickstoffgehalt ändert. Im zweiten Teil der vorliegenden Arbeit wurde ein atomistisches Modell zur Berechnung des Tunnelstroms verwendet, welche auf der DFT und NEGF basiert. Zuerst wurde ein atomistisches Modell für ein Si/SiO2-Schichtsystem konstruiert. Dann wurde der Tunnelstrom für verschiedene Si/SiO2/Si-Schichtsysteme berechnet. Das Modell ermöglicht die Untersuchung atom-skaliger Verzerrungen und ihren Einfluss auf den Tunnelstrom. Außerdem wurde der Einfluss einer einzelnen und zwei unterschiedlich positionierter neutraler Sauerstoffleerstellen auf den Tunnelstrom berechnet. Zug- und Druckspannungen auf SiO2 führen zur Deformationen in den chemischen Bindungen und ändern den Tunnelstrom. Auch solche Einflüsse sind anhand des atomistischen Modells berechnet worden
Books on the topic "Non Equilibrium Green's Function"
Pourfath, Mahdi. The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1800-9.
Full textKadanoff, Leo P. Quantum statistical mechanics: Green's function methods in equilibrium and nonequilibrium problems. Redwood City, Calif: Addison-Wesley Pub. Co., Advanced Book Program, 1989.
Find full textPourfath, Mahdi. Non-Equilibrium Green's Function Method for Nanoscale Device Simulation. Springer Wien, 2014.
Find full textPourfath, Mahdi. The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation. Pourfath Mahdi, 2016.
Find full textPourfath, Mahdi. The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation. Pourfath Mahdi, 2014.
Find full textHoring, Norman J. Morgenstern. Non-Equilibrium Green’s Functions: Variational Relations and Approximations for Particle Interactions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0009.
Full textNikolic, Branislav K., Liviu P. Zarbo, and Satofumi Souma. Spin currents in semiconductor nanostructures: A non-equilibrium Green-function approach. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.24.
Full textThygesen, K. S., and A. Rubio. Correlated electron transport in molecular junctions. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.23.
Full textGolizadeh-Mojarad, Roksana, and Supriyo Datta. NEGF-based models for dephasing in quantum transport. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.3.
Full textYang, Jinlong, and Qunxiang Li. Theoretical simulations of scanning tunnelling microscope images and spectra of nanostructures. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.15.
Full textBook chapters on the topic "Non Equilibrium Green's Function"
Lannoo, Michel, and Marc Bescond. "Non-Equilibrium Green's Function Formalism." In Simulation of Transport in Nanodevices, 223–59. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118761793.ch6.
Full textRungger, Ivan, Andrea Droghetti, and Maria Stamenova. "Non-equilibrium Green’s Function Methods for Spin Transport and Dynamics." In Handbook of Materials Modeling, 957–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-44677-6_75.
Full textRungger, Ivan, Andrea Droghetti, and Maria Stamenova. "Non-equilibrium Green’s Function Methods for Spin Transport and Dynamics." In Handbook of Materials Modeling, 1–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-42913-7_75-1.
Full textNeophytou, Neophytos. "Non-Equilibrium Green’s Function Method for Electronic Transport in Nanostructured Thermoelectric Materials." In SpringerBriefs in Physics, 59–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38681-8_4.
Full textFransson, Jonas. "Many-Body Operator Green Functions." In Non-Equilibrium Nano-Physics, 23–39. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9210-6_3.
Full textKeeling, Jonathan, Marzena H. Szymańska, and Peter B. Littlewood. "Keldysh Green’s function approach to coherence in a non-equilibrium steady state: connecting Bose-Einstein condensation and lasing." In Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures, 293–329. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12491-4_12.
Full textKarlsson, Daniel, and Robert van Leeuwen. "Non-equilibrium Green’s Functions for Coupled Fermion-Boson Systems." In Handbook of Materials Modeling, 367–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-44677-6_8.
Full textKarlsson, Daniel, and Robert van Leeuwen. "Non-equilibrium Green’s Functions for Coupled Fermion-Boson Systems." In Handbook of Materials Modeling, 1–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-42913-7_8-1.
Full textAfzalian, Aryan, Jean-Pierre Colinge, and Denis Flandre. "Gate Modulated Resonant Tunneling Transistor (RT-FET): Performance Investigation of a Steep Slope, High On-Current Device Through 3D Non-Equilibrium Green Function Simulations." In Semiconductor-On-Insulator Materials for Nanoelectronics Applications, 201–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15868-1_11.
Full textLemasters, John J., Jo A. Freedman, Kenneth E. Fleishman, and Thomas L. Dawson. "ATP/2e− Stoichiometries for the Coupling Sites of Mitochondrial Oxidative Phosphorylation: Evaluation by Equilibrium and Non-Equilibrium Thermodynamics." In Integration of Mitochondrial Function, 155–68. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2551-0_14.
Full textConference papers on the topic "Non Equilibrium Green's Function"
Datta, Supriyo. "Non-equilibrium green's function (NEGF) method: a different perspective." In 2015 International Workshop on Computational Electronics (IWCE). IEEE, 2015. http://dx.doi.org/10.1109/iwce.2015.7301951.
Full textYasuda, H., T. Kubis, P. Vogl, N. Sekine, I. Hosako, and K. Hirakawa. "Non-equilibrium green's function calculation for terahertz quantum cascade lasers." In 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IORMMW-THz 2009). IEEE, 2009. http://dx.doi.org/10.1109/icimw.2009.5324924.
Full textKurniawan, Oka, Ping Bai, and Er Ping Li. "Non-Equilibrium Green's Function Calculation of Optical Absorption in Nano Optoelectronic Devices." In 2009 13th International Workshop on Computational Electronics (IWCE 2009). IEEE, 2009. http://dx.doi.org/10.1109/iwce.2009.5091128.
Full textHong, Ki-ha, Jongseob Kim, Sung-hoon Lee, Young-gu Jin, Sung-il Park, Mincheol Shin, Sung Suk, et al. "Channel Engineering of Silicon Nanowire Field Effect Transistor: Non-Equilibrium Green's Function Study." In 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings. IEEE, 2006. http://dx.doi.org/10.1109/icsict.2006.306114.
Full textYasuda, Hiroaki, Tillmann Kubis, and Kazuhiko Hirakawa. "Non-equilibrium Green's function calculation for GaN-based terahertz quantum cascade laser structures." In 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6105199.
Full textMahzoon, M. H., P. Danielewicz, and A. Rios. "Correlations within the non-equilibrium Green’s function method." In PROCEEDINGS OF THE 43RD INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS: (AMEE’17). Author(s), 2017. http://dx.doi.org/10.1063/1.5016137.
Full textJing Guo, Datta, Anantram, and Lundstrom. "Atomistic simulation of carbon nanotube field-effect transistors using non-equilibrium Green's function formalism." In Electrical Performance of Electronic Packaging. IEEE, 2004. http://dx.doi.org/10.1109/iwce.2004.1407328.
Full textCarrillo-Nunez, Hamilton, Jaehyun Lee, Salim Berrada, Cristina Medina-Bailon, Mathieu Luisier, Asen Asenov, and Vihar P. Georgiev. "Efficient Two-Band based Non-Equilibrium Green's Function Scheme for Modeling Tunneling Nano-Devices." In 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2018. http://dx.doi.org/10.1109/sispad.2018.8551629.
Full textShaukat, Ayesha, and Naz E. Islam. "Comparative Study of Ballistic Transport in Si and GaAs Using Non Equilibrium Green's Function Formalism." In 2014 12th International Conference on Frontiers of Information Technology (FIT). IEEE, 2014. http://dx.doi.org/10.1109/fit.2014.76.
Full textKhan, H. R., D. Mamaluy, and D. Vasileska. "Modeling FinFETs using non-equilibrium green's function formalism: Influence of interface-roughness on device characteristics." In 7th IEEE International Conference on Nanotechnology. IEEE, 2007. http://dx.doi.org/10.1109/nano.2007.4601284.
Full text